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ABSTRACT UAV-based wireless powered communication network is a promising method of power supply
for battery-free IoT devices, but the limited wireless transmission capability of the UAV constrains the
coverage area and transmission throughput. This paper aims to address this issue by exploring intelligent
reflecting surfaces with optimized configurations, including the number of reflective elements, transmission
power, and the UAV’s altitude. The scheme design is challenging because such a throughput maximization
problem is essentially a non-convex optimization problem due to the random wireless channel state
and the unknown probability distribution of the objective function. By sequentially applying alternating
optimization, successive convex approximation, penalty function, and difference-convex optimization, the
schemes proposed in this paper can transform the original non-convex optimization problem into a convex
one. Extensive evaluation proves the efficacy of the proposed scheme. The paper further compares two
settings of the intelligent reflecting surface, namely dynamic phase shift and static phase shift, and provides
their performance gap.

INDEX TERMS Wireless powered communication network, intelligent reflecting surface, UAV, alternating
optimization.

I. INTRODUCTION
With the development of Internet-of-things (IoT) technol-
ogy, the number of intelligent wireless devices is increased
explosively [1], [2], [3]. However, the large number of
batteries used to power these devices presents a serious
challenge to both the natural environment and devicemanage-
ment. Energy harvesting and wireless power transfer (WPT)
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[4], [5] together make a promising solution for sustainable
IoT [6]systems in the future.

Recently, wireless powered communication network
(WPCN) was proposed for the new generation of green loT
communication systems [7], [8], [9]. Particularly, the uplink
is used for wireless data transfer in a time-division multiplex-
ing manner, while the downlink is purely for power trans-
mission. However, WPCN [10] suffers from several critical
limitations. First, the conversion efficiency of WPT degrades
significantly as the transmission range increases. Second, the
energy conversion efficiency affects the efficiency of wireless
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information transmission (WIT). Increasing the number of
antennas for WPT [11] is a straightforward and effective
solution but not practical because it incur non-negligible cost
increase [12].

Intelligent Reflecting Surfaces (IRS), also known as recon-
figurable intelligent surfaces (RIS), are developed using
metamaterial technology [13] and are usually packaged with
programmable electromagnetic surface structures. IRS con-
sists of a large amount of low-cost subwavelength metal
reflecting elements forming a two-dimensional planar array.
Each element can independently and intelligently adjust
parameters such as the reflected amplitude, phase, polar-
ization, and frequency of an incident signal [14], allowing
the target user to gather precise information about wireless
signal propagation characteristics and enjoy a better quality
of service. Additionally, because each reflective element is
small, the IRS has malleable shape and scales well to almost
all mounting surfaces. According to the survey in [15], a slab
of IRS with 100*102 reflective elements can be as small as
1.02m2. It can be easily mounted to the surface of scattering
bodies in the complex wireless propagation environment,
such as the outer walls of buildings, indoor ceilings, and
vehicle surfaces. IRS can improve the efficiency of both
power and data transfer inWPCN since its high passive beam-
forming gain can achieve optimal downlink energy beams and
strengthen uplink received signals with low complexity and
cost. To further enhance the transmission rate of information,
this paper explores unmanned aerial vehicles(UAVs) as a
hybrid access point (HAP).

In the past decade, UAV has been widely used as an
aerial access point in emergency rescues and aerial surveil-
lance [16], [17], [18], [19]. The UAV-based AP significantly
outperforms the traditional fixed AP in terms of mobility,
flexibility, and deployment, especially in hazardous monitor-
ing spots, and can guarantee continuous line-of-sight (LoS)
link. UAVs with advanced transceivers have attracted a lot
of attention for its potential applications in data relaying,
information transferring, and sharing [20]. UAVs can also act
as wireless energy transmitters to charge low-power wireless
devices deployed on the ground [21]. Taking advantage of
its highly controllable flexibility, the UAVs can adjust their
incident angle over time to shorten the distance to target users
on the ground and provide better wireless connections, which
provide an appropriate back-up to the WIT and WPT. UAVs
in WPCN have been proven to be a promising solution to
the energy-constraint of wireless devices. Chen et al. in [22]
discusses UAV-enabled WPCNs, in which UAVs are used
to harmonize information transfer and energy transmission
between a pair of nodes and to minimize the total time
consumption to collect the required amount of data at both
nodes.

A. RELATED LITERATURE AND MOTIVATION
Considering both IRS and UAV’s characteristics and advan-
tages, these two technologies can be merged mutually for the

WPCN system to cooperatively enhance the coverage and
efficiency of both WPT and WIT. The contributive research
efforts related to such pioneering works have been reported
in [8], [23], [24], [25], [26], and [27]. To maximize the
total network throughput, Hua et al. [8] evaluate influenc-
ing factors such as the time allocation, HAP transmission
power, and IRS phase shift of full-duplex IRS-WPCN in
three different phase shift configurations. The fully dynamic
IRS beamforming is firstly proposed that the IRS phase shift
vector varies with each time slot during DL WPT and UL
WIT.However, the existingworks are idealistically thought to
be constrained by the linear energy harvesting model, which
neglects the channel randomness. Reference [23] studied the
self-sustainable hybrid-relaying scheme of IRS-WPCN net-
work, and equipped IRS with an active energy supply unit,
so that it can operate for a period of time without HAP energy
supply. In [24], under the imperfect channel state information
and nonlinear energy harvesting model, the hybrid access
point assisted WPCN network is studied, and the provided
energy by HAP is minimized. However, although the liter-
atures [8], [23] or [24] have considered the situation where
the base station is on the ground, but it would cause the
‘double near-far’ problem. This problem is in fact an unfair
energy harvesting problem caused by the different distances
between the base station and the device. UAV’s participa-
tion can alleviate such a ‘double near-far’ problem to some
extent. In [25], the RF wireless energy transmission method
is adopted in the UAV-WPCN network. The UAV transmits
the RF energy signal to the wireless device and receives
the data information returned by the device. Two schemes
of harvest-and-use and harvest-store-use are designed. How-
ever, only a single wireless device case was considered in [25]
where the UAV trajectory is fixed to a line segment without
optimizing the flight track. A multi-agent deep Q learning
(DQL) strategy [26] is used to optimize the UAV’s flight
speed, trajectory, transmission power, and channel resource
allocation to maximize the system’s minimal throughput.
Such deep learning strategy improves the lower bound of the
unmanned aerial vehicle-wireless powered communication
network (UAV-WPCN) performance. However, IRS as an
innovativematerial technique is not introduced to the scenario
in [26], so the potentially further improvement of WPCN
network performance remains unexplored. The IRS-assisted
UAV-SWIPT system is studied in [27], and the overall down-
link information transmission rate of the UAV-SWIPT system
is improved by using the alternating optimization (AO) algo-
rithm, through which the variables are optimized in four time
blocks. The AO optimization framework is validated effective
for SWIPT networks, and the attempt application paves the
way for its extension and trial in the WPCN networks.

The combining of UAV and IRS has broaden the network
coverage, improved energy efficiency, and increased link
capacity ofWPCNnetwork. Nevertheless, IRS-assistedUAV-
WPCN has not been fully studied, and rare results on the
study of network throughput expansion has been reported.
Distinguished from the idealized linear energy harvesting
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model, which is often too idealistic to model the practical
energy consumption behavior. The nonlinearmodel gradually
attracts more research concerns. In the paper, the network
throughput maximization is considered in IRS-assisted UAV-
WPCN with nonlinear energy harvesting model. In the fol-
lowing, the distinct contributions are given to conclude the
advantages of our proposal.

B. CONTRIBUTIONS
The main contributions of this paper are summarized as
follows:

• By optimizing the UAV’s flight track and other critical
parameters, the network throughput is maximized in
wireless powered communication networks with the aid
of IRS. The throughput maximization problem is proved
to be essentially a non-convex optimization problem.

• Several creative mathematical tactics comprehensively
cooperate with each other to obtain a tractable problem.
The resource configuration at the optimization solution
reveals how the maximal throughput can be reached.

• The proposal with dynamic phase shift scheme obtains a
higher network throughput than that with the static phase
shift scheme.

C. NOTATIONS AND ORGANIZATION
In the paper, the lowercase letter x represents scalar, bold
lowercase letter xxx represents a vector, and the bold uppercase
letter XXX represents a matrix. |x| denotes the absolute value of
the complex scalar x, ||xxx|| marks the Euclidean norm of the
complex vector x. Diag(xxx) represents a diagonal array, where
the diagonal elements are the corresponding elements in the
vectorxxx. Given a square matrixX, tr (X) , rank (X) ,XH , and
[X]m,n denote the trace, rank, conjugate transpose, and them-
th row, n-th column element of the matrix X, respectively.
X ≽ 0 means that X is a semi-positive definite matrix.
CM×N denotes a M × N -dimensional complex matrix C. j
indicates the imaginary unit, i.e. j2 = −1. E{ } represents
the mathematical expectation operation. The distribution of
a circularly symmetric complex Gaussian (CSCG) matrix
X with its mean µ and covariance matrix C is denoted as
X ∼ CN (µ,C), ‘∼’ refers to ‘distribution for’.

The paper is organized as follows, Section II describes the
network model and formulates the network throughput max-
imization problem considering dynamic phase shift scheme
of IRS. Section III describes the problem transformation and
the procedures to obtain the solution within the framework
of alternating optimization. In section IV, the solution to the
optimization problem considering the static phase shift of
IRS is proposed. In section V, the numerical results show the
effectiveness of the proposed algorithm. The conclusions and
future research direction are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
Fig.1 illustrates a typical IRS-assisted UAV-WPCN network.
The network consists of a single-antenna UAV acting as a

FIGURE 1. The information and energy flows in the WPCN.

HAP, an IRS with M reflective elements, and K wireless
intelligent devices. In this paper, ‘HAP’ and ‘UAV’ have
identical meanings and will be designated interchangeably.
Meanwhile, network throughput and the sum of achieved data
transmission rate are also of the same definition. All K wire-
less intelligent devices planted on the ground are assumed
operating in their fully passive mode. Noticeably, they have
no built-in battery to sustain themselves and must harvest
energy from the HAP’s RF broadcasting signals. The IRS is
mounted on the outer wall of the nearby towering architecture
to assist the RF energy transmission by reflecting RF signals
from the UAV to K wireless devices and the data trans-
mission by transferring the required data from K wireless
devices to the UAV. For brevity, the network modeled in the
paper follows HTT (harvest and then transmit) protocol [10].
In phase of the downlink wireless power transfer (DL-WPT),
K wireless devices first harvest the RF energy from the HAP,
and then deplete the scavenged power in phase of the uplink
wireless information transmission (UL-WIT). These wireless
devices make use of the converted energy from the HAP’s
RF signals to transfer locally collected data to the HAP. Due
to channel reciprocity, signals in phases of DL-WPT and
UL-WIT experience the same level of channel fading. The
quasi-static flat-fading channel models characterize both the
channel gains in UL-WIT and DL-WET links. The channel
coefficients are reasonably assumed maintaining constant
during each short time slot but could vary from slot to slot.
All channel state information (CSI) are assumed to be known
in advance at the HAP, so the achievable performance to be
explored herein is practically a theoretical upper bound of
the actual performance. Due to the IRS’s low manufacturing
cost and tiny energy expense, its computation capability is
usually constrained. Therefore, the IRS needs the HAP to
assist it in calculating the optimal phase shift, which helps
each reflective element work in the optimized state, and thus
is beneficial to improving the transmission performance.

The k-th device’s coordinate can be described by its Carte-
sian 3D coordinate wk = [xk , yk , 0]T , k = 1, . . . ,K , where
xk and yk are the horizontal and vertical axises, respectively.
As to the IRS, the coordinate of the i-th reflective element
is denoted as wi = [xi, yi, hi]T , i = 1, . . . ,M , where xi, yi
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are the coordinate of the horizontal and vertical axises, and
hi denotes its centroid height. The UAV’s total flight time T
can be equally divided into N time slots, and for any time
slot n, n ∈ {1, 2, . . . ,N }, its time duration is defined as
δ = T/N . The duration of each slot will be infinitely short
as N → +∞. The UAV keeps flying parallelly to the ground
at its maximum horizontal speed vmax . Since the duration of
each time slot can be set to be very short, the UAV’s relative
position to the ground can be regarded stationary during each
time slot. Therefore, the coordinate of the UAV in time slot
n can be denoted as L[n] = [x[n], y[n], z]T , n = 1, . . . ,N ,
where z indicates the fixed flight height. The flight height is
predefined as the lowest altitude at which the UAV can avoid
colliding with the nearby buildings and ensure the stability
of its downlink connections with K devices on the ground.
The starting and ending points of the UAV can be represented
by LI and LF , respectively. The flight track of the UAV
simultaneously satisfies the following constraints

LI = L[1], (1)

LF = L[N ], (2)

||L[n+ 1] − L[n]||2 ≤ (vmaxδ)2, n = 1, . . . ,N−1. (3)

B. CHANNEL MODEL
The channel gains of the links originating from the UAV to
the IRS, from the IRS to the device k , and from the UAV
to device k are denoted by hU ,I ∈ CM×1, hHI ,k ∈ C1×M

and hHU ,k ∈ C, respectively. To explore the upper bound of
the network performance for WPCN, the CSI of all channels
defined in the paper is assumed to be acquired beforehand for
simplifying the formulation of a joint dynamic beamforming
and resource allocation optimization problem [28]. Since the
UAV flies or hovers stably at a fixed height and the IRS is
placed on the outer wall of the building, no other visible
objects can block the links between the UAV and the IRS,
LoS link can be established between them. On the other hand,
both the channels from the IRS to device k , and from the
UAV to device k , can be modeled as Rice channels, because
the received signal at the device k contains both LoS and
multipath signals that arrive from scattering directions due
to object reflections [29].

The LoS component relevant to the IRS can be represented
by the response of a uniform linear array (ULA) of anten-
nas. In the n-th time slot downlink transmission, the ULA
response vector can be expressed by

aaa[n] = [1, e−j2π
d
λ
cosφ[n], . . . , e−j2π (M−1) d

λ
cosφ[n]]

T
,∀n,

(4)

where φ[n] denotes the angle of arrival (AoA) from the UAV
to the IRS in the n-th time slot, and cosφ[n] =

xi−x[n]
||L[n]−wi||

, λ
indicates the wavelength, d represents the distance between
two adjacent reflective elements. Therefore, the channel gain
of the LoS link from the UAV to the IRS in the n-th time slot

can be expressed as

hU ,I [n] =

√
β0

||L[n] − wi||2
aaa[n],∀n, (5)

where β0 represents the reference path loss at a distance of
1 meter. Meanwhile, the channel gain between the UAV and
device k in the n-th time slot can be expressed as [24]

hU ,k [n] =

√
β0

||L[n] − wk ||α
(
√

κ1

1 + κ1
hLoSU ,k [n]

+

√
1

1 + κ1
hNLoSU ,k [n]),∀k, n, (6)

where α is the path loss index of the channel from UAV to
device k (named as U-K channel for short), and κ1 is the
Rice factor, hLoSU ,k [n] = 1, and hNLoSU ,k [n] ∼ CN (0, 1) denotes
the random scattering component. Similarly, the channel gain
hI ,k of the link between the IRS and the wireless device k can
be expressed as

hI ,k =

√
β0

||wi-wk||γ
(
√

κ2

1 + κ2
hLoSI ,k +

√
1

1 + κ2
hNLoSI ,k ),∀k,

(7)

where γ is the path loss index associated with the channels
from the IRS to device k (named I-K channels for short), and
κ2 is the Rice factor. Since the direct channel is related to the
IRS, the corresponding LoS component can be expressed as

hLoSI ,k = [1, ej2π
d
λ
cosϕk , . . . , ej2π

d
λ
(M−1) cosϕk ]

T
,∀k, (8)

where ϕk is the angle of departure of the information on
the channel from the IRS signal to the k-th wireless device,
cosϕk =

xk−xi
||wi−wk ||

, hNLoSI ,k ∼ CN (0, IM ), IM denotes the unit
vector.

For an IRS withM reflecting elements, each reflecting ele-
ment can independently adjust the reflection amplitude and
the phase of the incident signal, so the reflection coefficient
matrix at the IRS can be expressed in the form of a diag-
onal array, i.e., 2[n]= diag(β1[n]ejθ1[n], . . . , βm[n]ejθm[n],
. . . , βM [n]ejθM [n]), where βm[n] ∈ [0, 1] and θm[n] ∈ [0, 2π )
represent the amplitude and phase shift of the m-th reflection
element, respectively. Since βm[n] = 1, m ∈ {1, . . . ,M}

can achieve the maximum amplitude, let βm[n] = 1 be
uniformed throughout the paper. Then the reflection coef-
ficient matrix in DL-WET and UL-WIT can be expressed
by 20[n] = diag(ejθ0,1[n], . . . , ejθ0,M [n]), and 2k [n] =

diag(ejθk,1[n], . . . , ejθk,M [n]), k ∈ 1, . . . ,K , respectively. Let
ejθ0,m[n] = e0,m[n],∀m, ejθk,m = ek,m[n],∀k,m. The phase
shift constraint for the reflecting elements of the IRS in the
DL-WET and UL-WIT can be expressed as follows respec-
tively,

|e0,m[n]| = 1,∀m, n, (9)

|ek,m[n]| = 1,∀k,m, n. (10)
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FIGURE 2. Dynamic IRS phase shift within time slot n.

FIGURE 3. Static IRS phase shift within time slot n.

C. TRANSMISSION MODEL
The HTT protocol is applied for energy harvesting and data
transmission. In general, the time required for CSI acquisition
is significantly smaller than that of the effective transmission
phase [30]. Consequently, in this paper, the time required for
CSI acquisition is disregarded in the time constraints. In each
time slot, the UAV first transmits RF energy in form of broad-
casting signals to the devices on the ground via the DL-WET
link in the allocated time segment τ0[n]. All wireless devices
harvest RF energy during the time segment of τ0[n], and then
the k-th wireless device transfers the collected sensing data
to the UAV via UL-WIT links in the allocated time segment
τk [n]. Since the duration of each time slot is limited, the
time segments constraint should satisfy τ0[n]+ τ1[n]+ . . .+
τK [n] ≤ δ.
The IRS elements’ phase shift can keep uniform or vary

in the downlink or the uplink transmissions within a time
slot. Therefore two different IRS phase shift scenarios, the
dynamic IRS phase shift and the static IRS phase shift are
studied in the paper. In the dynamic IRS phase shift settings,
i.e., the phase shift of IRS can be adjusted with respect to each
time slot e.g., τk [n], k ∈ {0, 1, . . . ,K }, while in the static IRS
phase shift scenario, the phase shift of the IRS keeps uniform
within time slot n. To clearly describe the two scenarios,
the dynamic IRS phase shift and the static IRS phase shift
are illustrated in Fig.2 and Fig.3, respectively. Fig.2 shows a
dynamic phase shift in the n-th time slot, in which the phase
shift settings for energy and information can be dynamically
tuned to meet each segment’s needs. Fig.3 shows a static
phase shift configuration in the n-th time slot, in which the
phase shift configurations keep unvaried irrespective of the
available segments. In view of channel estimation and cost-
cutting, the IRS is thought to be equipped with an extreme
low-power receive RF chain [31], which enables IRS to sense
the real time channel state. Therefore, the CSI information

can be obtained by theHAP, and then it is transmitted from the
HAP to the IRS controller through the wireless control link,
thereby changing the phase shift of the IRS. For these two
phase shift schemes, CSI is successively updated at the very
beginning of each time slot to respond to the real-time phase
shift change. The CSI acquisition phase is also indispensable
to the implementation of dynamic phase shift scheme.

In the DL-WPT link, the HAP broadcasts RF signal using
constant transmission power P0 to K wireless devices during
the time segment τ0[n]. Considering that the noise power is
much less than the HAP RF signal power, the RF energy
harvested from the RF noises can be negligible. The received
power PDLk [n] at the k-th wireless device in the n-th time slot
is given by,

PDLk [n] = P0|hU ,k [n] + hI ,k20[n]hU ,I [n]|2. (11)

To accurately count the RF energy harvested by the k-th
wireless device, a non-linear energy harvesting model better
fit to reality is employed to be more coincidental with prac-
tice [32]. The energy collected by the k-th wireless device can
be expressed as

4(PDLk [n]) =
A

Xk (1 + exp(−ak (PDLk [n] − bk )))
− Yk ,∀k,

(12)

where Xk = exp( akbk
1+exp(akbk )

) and Yk =
A

exp(akbk )
. The

constant A indicates the maximum received power of the
EH receiver when the EH circuit is saturated, ak and bk are
parameters related to the circuit designing components, such
as resistance, capacitance, and the breakover voltage of the
diode. Curve fitting tools can help find typical values of these
three parameters, i.e., A, ak , bk . Accordingly, the amount of
energy collected by wireless device k during time segment
τ0[n] can be expressed as

Ek [n] = τ0[n]4(PDLk [n]). (13)

The wireless devices transmit locally data to UAV by using
the collected energy during the UL-WIT transmission. The
transmitted signal of the k-th device is

dk =

√
PULk [n]sULk [n],∀k, n, (14)

where PULk [n] is the transmission power of the k-th device in
the n-th time slot and sULk [n] ∼ CN (0, 1) is the transmitted
information signal. The energy consumed by each device for
the uplink information transmission should be no more than
the collected energy during the DL-WET, so the following
available energy constraint should be satisfied

τk [n]PULk [n] ≤ Ek [n]. (15)

In the phase of UL-WIT, the received signals by the HAP
through both the direct and indirect links can be synthesized
as

y =

K∑
k=1

(hU ,k [n] + hI ,k2k [n]hU ,I [n])dk + n̄, (16)
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where n̄ ∈ C1×M denotes the additive white Gaussian noise
(AWGN) introduced by theHAP receiving antenna, assuming
that n̄ ∼ CN (0, σ 2). The signal-to-noise ratio (SNR) of the
k-th wireless device in the n-th time slot can be expressed as

SNRk [n] =
PULk [n]|hU ,k [n] + hI ,k2k [n]hU ,I [n]|2

σ 2 . (17)

As a result, the achievable information rate by the k-th
device at time slot n can be expressed as Rk [n] = log2(1 +

SNRk [n]),∀k, n. The network throughput achieved by all K
devices in the time period T can be given by

Rsum =

N∑
n=1

K∑
k=1

τk [n]Rk [n] =

N∑
n=1

K∑
k=1

τk [n]log(1 +
PULk [n]|hHU ,k [n] + hI ,k2k [n]hU ,I [n]|2

σ 2 ).

(18)

D. PROBLEM FORMULATION
In the paper, the sum rate ofK devices is maximized by simul-
taneously optimizing flight track L = {L[n],∀n} of the UAV,
the IRS phase shift of the downlink e0 = {e0,m[n],∀m, n}, the
IRS phase shift of the uplink ek = {ek,m[n],∀k,m, n},
the time segment for energy transmission τ0 = {τ0[n],∀n},
the time segment τk = {τk [n],∀k, n} for information trans-
mission, and the transmission power of the wireless device
PULk = {PULk [n],∀k, n}. The optimization problem P0 can be
formulated as follows,

P0 : max
e0,ek ,τ0,τk ,PULk ,L

Rsum, (19a)

s.t. LI = L[1], (19b)

LF = L[n],∀n, (19c)

||L[n+ 1] − L[n]||2 ≤ (vmaxδ)2,

n = 1, . . . ,N − 1, (19d)

τk [n]PULk [n] ≤ Ek [n], (19e)

τ0[n] +

K∑
k=1

τk [n] ≤ δ, (19f)

|e0,m[n]| = 1,∀m, (19g)

|ek,m[n]| = 1,∀k,m, (19h)

τ0[n] ≥ 0, τk [n] ≥ 0,PULk [n] ≥ 0,∀k.
(19i)

The constraints (19b)-(19d) represent the UAV’s trajectory
constraint. The inequality constraint (19e) indicates that the
energy consumption on the uplink data transmission of device
k should be less than its harvested energy purely from the RF
signal. The constraint (19f) represents that the total duration
of time segments should be no more than the predefined
time slot δ. The constraint (19g) represents the phase shift
constraint on the downlink data transmission. The constraint
(19h) represents the phase shift constraint on the uplink data

transmission, and the constraint (19i) indicates that the opti-
mization variables cannot be negative. Due to the complex
coupling relationships between the optimization variables,
the objective function is not jointly concave, and the con-
straint set is non-convex. Thus the optimization problem P0
is non-convex. Finding an efficient solution using conven-
tional methods is difficult, so the alternating optimization
(AO) algorithm is introduced to solve this optimization prob-
lem [33], [34].

III. PROBLEM TRANSFORMATION AND AO ALGORITHM
DESIGN
In problem P0, random variables appear in the objective
function, which makes the problem difficult to solve directly.
To make the problem easy to solve, the objective function
is transformed by using mathematical expectation. However,
the transformed problem is still non-convex, so the AO based
algorithm is proposed. The AO based algorithm divides the
transformed problem into four subproblems, each of which is
solved separately.

A. PROBLEM TRANSFORMATION
Since the probability distribution of Rsum is hard to acquire
beforehand, it is not easy to find a closed-form solution for
P0. However, since the objective function of the optimiza-
tion problem P0 contains random variables, the mathematical
expectation E{Rsum} can be applied in the problem transfor-
mation. The following lemma 1 can be used to approximate
the probability distribution of Rsum.
Lemma 1: If X is a positive random variable, for ∀ψ >

0, ϕ > 0, the following approximate expression holds,

E{log2(1 +
ψX
ϕ

)} ≈ log2(1 +
ψE{X}

ϕ
). (20)

Proof: Please see the appendix for proof. The proof of
Lemma 1 is completed.

Let Hk [n] = |hU ,k [n] + hI ,k2k [n]hU ,I [n]|2, the follow-
ing transformations can be used to obtain the mathematical
expectation of Hk [n],

E{Hk [n]}

= E{|hIU ,k [n] + hIIU ,k [n] + (hII ,k + hIII ,k )2k [n]hHU ,I [n]|
2
}

= E{|hIU ,k [n]+h
I
I ,k2k [n]hHU ,I [n]|

2
} + E{|hIIU ,k [n]|

2
}

+ E|hIII ,k2k [n]hHU ,I [n]|
2

=
β0 − v1

||L[n] − wk ||α
+

Mβ0(β0 − v2)
||L[n] − wi||2||wi − wk ||γ

+ |hIU ,k [n]+h
I
I ,k2k [n]hHU ,I [n]|

2 △
= ξ,

(21)
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where

hIU ,k [n] =

√
v1

||L[n] − wk ||α
hLoSU ,k [n], v1 =

β0χ1

1 + χ1
,

hIIU ,k [n] =

√
β0 − v1

||L[n] − wk ||α
hNLoSU ,k [n], v2 =

β0χ2

1 + χ2
,

hII ,k =

√
v2

||wi − wk ||γ
hLoSI ,k , h

II
I ,k =

√
β0 − v2

||wi − wk ||γ
hNLoSI ,k .

According to Lemma 1, it can be shown that

E{Rk [n]} = E{log2(1 +
PULk [n]E{Hk [n]}

σ 2 )

= log2(1 +
PULk [n]ξ

σ 2 ) ≜ R̃k [n]. (22)

Substitute Eq.(22) to the optimization problem P0, the
updated objective function yields and is shown as

R̃sum =

N∑
n=1

K∑
k=1

τk [n]R̃k [n]. (23)

B. OPTIMIZATION OF UAV FLIGHT TRAJECTORY
Given the downlink IRS phase shift e0, uplink IRS phase
shift ek , time segment τ0 for energy transfer, time segment τk
for information transmission, and information transmission
power of the wireless device PULk , the optimization problem
for solving the UAV’s flight trajectory can be formulated as
problem P1:

P1 : max
L

R̃sum, (24a)

s.t. (19b)-(19e). (24b)

The optimization problem P1 remains a non-convex opti-
mization problem since the constraint (19e) is non-convex.
The auxiliary variables need to be introduced to help further
transform it. Denote {Uk > 0,∀k} as the upper limit of
||L[n]−wk || and {Ur > 0} as the upper limit of ||L[n]−wi||,
i.e.,

U2
k ≥ ||L[n] − wk ||2, (25)

U2
r ≥ ||L[n] − wi||2. (26)

So the lower bound of ξ can be obtained as

ξ lb =
β0

Uα
k

+
αk

U2
r

+
βk

Uα/2
k Ur

, (27)

where αk = β0|hII ,k2k [n]aaa[n]|2 +
Mβ0(β0−v2)
||wi−wk ||γ

and βk =

2Re{
√
v1β0hII ,k2k [n]aaa[n]}. Define the auxiliary variable Ck

Ck = σ 2/ξ lb. (28)

Therefore, the lower bound of the objective function of the
optimization problem P1 can be formulated as

τk [n]R̃k [n] ≥ τk [n]log2(1 +
PULk [n]

Ck
). (29)

Thus problem P1 can be equivalently transformed to P1.1:

P1.1 : max
L,9

N∑
n=1

K∑
k=1

τk [n]log2(1 +
PULk [n]

Ck
), (30a)

s.t. PDLk [n] ≥ 4−1(
τk [n]
τ0[n]

PULk [n]), (30b)

Ck ≥ σ 2/ξ lb, (30c)

(19b)-(19d),(25)-(27), (30d)

where 9 = {Uk ,Ur , ξ lb,Ck} denotes the set of all
the auxiliary variables introduced above. 4−1(x) =bk −
ln(A/(x+Yk )Xk )−1

ak
. (30b) is derived from (13) and (19e). Since

the objective function of P1.1 is non-concave and the con-
straints (25)-(27) are non-convex, the optimization problem
P1.1 remains a non-convex optimization problem. Generally,
it is challenging to obtain the optimal solution to non-convex
problems, thus the successive convex approximation (SCA)
method is used to obtain a suboptimal solution to the trans-
formed problem P1.1.

The objective function (30a) can be expressed as f (Ck ) =
N∑
n=1

K∑
k=1

τk [n]log2(1 +
PULk [n]
Ck

), which is convex in terms ofCk .

Since problem P1.1 aims to find the maximum value of the
objective function, the lower bound of the objective function
f (Ck ) at the point C

(r)
k in the r-th iteration.

f (Ck ) ≥

N∑
n=1

K∑
k=1

τk [n](log2(1 +
PULk [n]

C (r)
k

)

−
PULk [n](Ck − C (r)

k )

C (r)
k (C (r)

k + PULk [n]) ln 2
)1= f lb(Ck ). (31)

For inequalities (25) and (26), their left hand sides can be
approximated by their first order Taylor expansion at any
given point U (r)

k and U (r)
r . After approximation, inequalities

(25) and (26) can be written as

(U (r)
k )

2
+ 2U (r)

k (Uk − U (r)
k ) ≥ ||L[n] − wk ||2,∀k,∀n, (32)

(U (r)
r )

2
+ 2U (r)

r (Ur − U (r)
r ) ≥ ||L[n] − wi||2,∀k,∀n. (33)

The variable φ[n] of AoA in the right hand side of Eq.(27)
is included in both αk and βk , which depend on the position
of the drone in the n-th time slot, so the constraint can be
introduced as

||L[n] − L[n](r)|| ≤ δ2max, (34)

where L[n](r) denotes the value of the r-th iteration of SCA
and δmax indicates the maximum migration distance allowed
in the time slot δ. If δmax is small enough, it can be assumed
that AoA is almost constant after each iteration and therefore
αk , βk are almost unchanged. The (r+1)-th SCA iteration is
based on the AoA achieved in the r-th time slot. To ensure the
accuracy of the approximation, it is required that the ratio of
the maximum migration distance of the n-th time slot to the
minimum altitude of the UAV should satisfy: δmax/zmin ≤ ι,
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i.e., δmax ≤ ιzmin. Due to this constraint, both sides of Eq.(27)
depend only on Uk ,Ur , so the following lemma 2 is used to
solve it.
Lemma 2: g1(x1, x2) = a1(x1)−α + a2(x2)−2, g2(x1, x2) =

a3(x1)−(α/2)(x2)−1 is jointly convex with respect to x1, x2,
when α, a1, a2, a3, x1, x2 are positive.
Proof: When x1 > 0, x2 > 0, the Hessian matrices

of g1(x1, x2), g2(x1, x2) are both semi-positive definite, and
therefore both of them are convex functions. The proof of
Lemma 2Lemma 2Lemma 2 is completed.

Then ξ lb = g̃(Uk ,Ur ) + βk h̃, where h̃ =
1

Uα/2k Ur
. Accord-

ing to Lemma 2, because of β0 > 0 and βk > 0, then
g̃(Uk ,Ur ) + βk h̃ is jointly convex with respect to Uk ,Ur .
So SCA can be used to obtain the lower bound of g̃(Uk ,Ur )+
βk h̃, i.e.,

(g̃+ βk h̃)
lb

= g̃lb + βk h̃lb, (35)

g̃lb = β0(U
(r)
k )

−α
− α(U (r)

k )
−α−1

(Uk − U (r)
k )+

αk (U (r)
r )

−2
− 2αk (U (r)

r )
−3

(Ur − U (r)
r ),∀k,

(36)

h̃lb= (U (r)
k )

−α/2
(U (r)

r )
−1

− α/2(U (r)
k )

−α/2−1
(U (r)

r )
−1

(Uk − U (r)
k )− (U (r)

k )
−α−2

(U (r)
r )

−2
(Ur − U (r)

r ),∀k (37)

So the constraint (27) can be converted to

ξ lb ≤ (g̃+ βk h̃)
lb
,∀k. (38)

After the first-order Taylor expansion and SCA transforma-
tion, the optimization problem P1.1 can be reorganized as
follows:

P1.2 : max
L,9

f lb(Ck ), (39a)

s.t. (19b)-(19d),(30b)-(30c),(32),(33),(38). (39b)

In problem P1.2, a standard convex optimization problem can
be solved directly by using the CVX toolbox [35].

C. OPTIMIZATION OF UPLINK PHASE SHIFT
Only the uplink IRS phase shift remains to be optimizedwhen
the downlink IRS phase shift e0, information transmission
power PULk , UAV trajectory L, energy transfer time τ0, and
information transfer time τk are all fixed.
Initially, the optimization variable ek,m[n] involves only

unit mode constraint (19h) and the objective function (19a).
Each ek,m[n] is only associated with one device and is inde-
pendent of all the other variables, and there are no mutual
coupling relationships between ek,m[n] and ej,m[n] (j ̸= k).
In other words, ek,m[n] can be separated from the optimiza-
tion problem P0, so that the optimal ek,m[n] for IRS phase
shifts can be obtained by solving k subproblems and finally
synthesized their optimums into ek,m[n] of the original prob-
lem P0. In particular, each optimal ek,m[n] can be found by

solving the following problem P2,

P2 : max
ek

|(hIU ,k [n])
H

+ GHk [n]e
′
k,m[n]|

2, (40a)

s.t. |ek,m[n]| = 1,∀k,m, (40b)

where Gk [n] = (hII ,k )
Hdiag(hU ,I [n]) and e′k,m[n] =

[ejθk,1[n], . . . , ejθk,M [n]]T . According to [36], this problem
should be solved by aligning all IRS reflections and all
non-IRS reflection signals to maximize the effective uplink
channel power gain, as given by

e∗k,m[n] ≜ ek,m[n] = ej(arg{(h
I
U ,K [n])

H
}−arg{[Gk [n]]m})

,∀k,m.
(41)

D. OPTIMIZATION OF TIME ALLOCATION
Given downlink IRS phase shift e0, uplink IRS phase shift ek ,
information transmission power PULk , and UAV trajectory L,
the optimization problem of solving the energy transfer time
τ0 and information transmission time τk can be written as P3,
i.e.,

P3 : max
τ0,τk

R̃sum, (42a)

s.t. τk [n]PULk [n] ≤ τ0[n]4[PDLk ], (42b)

τ0[n] +

K∑
k=1

τk [n] ≤ δ, (42c)

τ0[n] ≥ 0, τk [n] ≥ 0, k = 1, . . . ,K . (42d)

As can be seen, the objective function R̃sum is a concave
function of τk [n], and the constraints (42b)-(42d) are linear
functions about the optimization variables, i.e., τ0[n] and
τk [n]. P3 is still a convex optimization problem and can be
solved directly using a toolbox such as CVX.

E. OPTIMIZATION OF DOWNLINK PHASE SHIFT AND
UPLINK POWER
When the UAV flight trajectory, IRS uplink phase shift,
energy transfer time, and information transmission time are
given, the optimization problem for solving the downlink
phase shift and uplink power can be expressed as problem P4.

P4 : max
pULk ,e0

R̃sum, (43a)

s.t. (19e),(19g), (43b)

PULk [n] ≥ 0,∀k. (43c)

Let H0[n] = |hU ,k [n] + hI ,k20[n]hU ,I [n]|2, according to
Eq. (21), it can be obtained

E{H0[n]} =
β0 − v1

||L[n] − wk ||α
+

Mβ0(β0 − v2)
||L[n] − wi||2||wi − wk ||γ

+ |hIU ,k [n] + hII ,k20[n]hHU ,I [n]|
2 ≜ ξ0.

(44)

Let fk = diag(hHU ,I [n])h
I
I ,k , ẽ0 = [e0,1[n], . . . , e0,m[n]]H ,

thus |hIU ,k [n]+h
I
I ,k20[n]hHU ,I [n]|

2 can be written as
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|hIU ,k [n] + ẽH0 fk |
2. Then we introduce auxiliary variables as

Vk =

[
fk f Hk fkhIU ,k [n]

hIU ,k [n]f
H
k 0

]
, ¯̃e0 =

[
ẽ0
1

]
. (45)

Therefore, |hIU ,k [n] + ẽH0 fk |
2 can be further expressed as

¯̃e0
H
Vk ¯̃e0 +|hIU ,k [n]|

2. Since ¯̃e0
H
Vk ¯̃e0 = tr(Vk ¯̃e0 ¯̃eH0 ), then let

E0 = ¯̃e0 ¯̃eH0 , where E0 ≽ 0 and the rank one constraint must
be satisfied, i.e., Rank(E0) = 1. Thus ξ0 = ωk +|hIU ,k [n]|

2
+

tr(VkE0), where ωk =
β0−v1

||L[n]−wk ||α
+

Mβ0(β0−v2)
||L[n]−wi||2||wi−wk ||γ

.
Eq. (11) can be expressed as

PDLk [n] = P0ξ0. (46)

In other words, the non-linear energy harvesting behavior
depicted in Eq.(12) can be expressed as

4(P0ξ0) =
A

Xk (1 + exp(−ak (P0ξ0) − bk )))
− Yk ,∀k. (47)

Substituting Eq. (47) to inequality (19e), the following
inequality is obtained as

τk [n]PULk [n] ≤ τ0[n]4(P0ξ0). (48)

The inequality (48) can be reshaped as follows via an identical
deformation

−ak (P0ξ0 − bk ) ≤ ln(
Aτ0[n]

(τk [n]PULk [n] + τ0[n]Yk )Xk
− 1).

(49)

And finally, the optimization problem P4 can be summarized
as follows,

P4.1 : max
E0,PULk

N∑
n=1

K∑
k=1

τk [n] log(1 +
PULk [n]ξ

σ 2 ), (50a)

s.t. rank(E0)=1, (50b)

||E0||=1, (50c)

(43c),(49), (50d)

The optimization problem P4.1 is a joint convex problemwith
linear constraints. This optimization problem can be solved
by relaxing the rank one constraint using convex optimization
solvers. The relaxation of the rank-one constraint helps obtain
an upper bound of the idealized performance and can be
used for evaluating the performances of other suboptimal
algorithms. Gaussian randomization can be used to obtain
a rank one solution if the output optimal solution does not
satisfy the constraint of rank one.

To find the solution to problem P0, an iterative algorithm
based on AO is proposed. In each iteration, the above four
subproblems are sequentially solved in each circulation. The
algorithm continues until the predefined precision is satisfied,
and thus the final solution is obtained. A summary of the
overall optimization algorithm is described by the pseudo
code in Algorithm 1.

Algorithm 1 Alternating Optimization Algorithm for
Dynamic Phase Shift

1. InitializationInitializationInitialization L(0), e(0)0 , ek
(0), τ

(0)
0 , τk

(0),PULk
(0)
, let

r = 0, ι = 10−3

2. RepeatRepeatRepeat
3. Solve sub-problem 1: given e(r)0 , ek

(r), τ
(r)
0 , τk

(r), PULk
(r)
,

obtain L(r+1)

4. Solve sub-problem 2: given L(r), e(r)0 , τ
(r)
0 , τk

(r), PULk
(r)
,

obtain ek
(r+1)

5. Solve sub-problem 3: given L(r), ek
(r), e(r)0 , P

UL
k

(r)
, obtain

τ
(r+1)
0 , τk

(r+1)

6. Solve sub-problem 4: given L(r), ek
(r), τ

(r)
0 , τk

(r), obtain
e(r+1)
0 ,PULk

(r+1)

7.Update: r = r + 1
8. UntilUntilUntil Objective function value of (r+1)-th iteration
objective function value of r-th iteration ≤ ι

9. ReturnReturnReturn Optimal values of UAV trajectory, downlink/uplink
phase shift, energy/information transmission time,
information transmission power

F. COMPLEXITY ANALYSIS
During each iteration, the complexity of problem P1.2 is
O(N ). The complexity of problems P2 and P3 is O(M3.5) [10]
and O(K ) respectively. The problem P4.1 solves the relaxed
SDP problem by the interior point method, so the com-
putational complexity is O((M + 1)3.5). Assuming that the
number of iterations required for the algorithm computational
is r , the computational complexity of the proposed algorithm
can hence be concluded as O(r(N+K+M3.5

+(M + 1)3.5)).

IV. OPTIMIZATION AND SOLUTION IN THE STATIC
PHASE SHIFT SCENARIO
In the static phase shift scenario as shown in Fig.3, the
uplink and downlink phase shifts are of the same config-
urations, so the static phase shift can be set as 2̃[n] =

diag(ejθ̃1[n], . . . , ejθ̃m[n]). Let ejθ̃m[n] = ẽm[n]. Substitute 2̃[n]
to Eq.(21), the following Eq.(51) can be obtained,

ξ̃=
β0 − v1

||L[n] − wk ||α
+

Mβ0(β0 − v2)
||L[n] − wi||2||wi − wk ||γ

+ |hIU ,k [n]+h
I
I ,k2̃[n]hHU ,I [n]|

2.

(51)

Therefore, the original optimization problem P0 evolves to
problem P5.

P5 : max
ẽm,τ0,τk ,PULk ,L

R′
sum =

N∑
n=1

K∑
k=1

τk [n]log2(1 +
PULk [n]ξ̃

σ 2 ),

(52a)

s.t. (19b)-(19e),(19f),(19i), (52b)

|ẽm[n]| = 1,m = 1, . . . ,M . (52c)

VOLUME 11, 2023 36721



L. Xue et al.: Resource Configuration for Throughput Maximization in UAV-WPCN With IRS

P5 can also be solved by the AO algorithm. Taking into
account the main difference of the problem structure between
the static and dynamic phase shift problems, the static phase
shift optimization algorithm is analyzed in detail. In addition,
due to the change of phase shift, Eq. (11) is also changed into
P̄DLk [n] = P0|hU ,k [n] + hI ,k2̃[n]hU ,I [n]|2, and substitute it
into (30b) to get the new constraint

P̄DLk [n] ≥ 4−1(
τk [n]
τ0[n]

PULk [n]). (53)

Given UAV flight trajectory L, energy transfer time τ0,
and information transmission time τk , problem P5.1 is hence
obtained,

P5.1 : max
ẽm,PULk

R′
sum (54a)

s.t. (43c),(52c),(53). (54b)

The non-concave objective function and non-convex con-
straint set make problem P5.1 actually a non-convex opti-
mization problem, and auxiliary variables need to be intro-
duced to reshape it. Let ẽ = [ẽ1[n], . . . , ẽm[n]]H , thus
|hIU ,k [n]+h

I
I ,k2̃[n]hHU ,I [n]|

2 can be written as |hIU ,k [n] +

ẽH fk |2. Then we introduce auxiliary variables as

¯̃ek =

[
ẽk
1

]
. (55)

Therefore, |hIU ,k [n] + ẽH fk |2 can be further expressed as
¯̃e
H
Vk ¯̃e + |hIU ,k [n]|

2. Since ¯̃e
H
Vk ¯̃e = tr(Vk ¯̃e ¯̃eH ), then let

Ẽ = ¯̃e ¯̃eH , where Ẽ ≽ 0 and the rank one constraint must
be satisfied, i.e., Rank(Ẽ) = 1. Thus ξ̃ = ωk + |hIU ,k [n]|

2
+

tr(Vk Ẽ). After the above processing, the objective function
(52a) becomes a tractable convex function. Lemma 3 is pro-
posed to transform the non-convex rank-one constraint to the
deviation of a spectral norm from a kernel norm through the
difference-convex (DC) programming.
Lemma 3: For a semi-positive definite square matrix M,

the rank-one constraint can be equivalently transformed to the
difference of two convex functions, i.e.,

Rank(M)=1 ⇔ ||M||∗- ||M||2 ≤ 0, (56)

where ||M||∗ denotes the kernel norm of the matrixM, which

is the sum of the singular values, i.e. ||M||∗ =

N∑
n=1

σn(M),

σn(M) represents the first n largest singular values, and ||M||2
denotes the spectral norm of the matrix, i.e. ||M||2 = σ1(M).
Proof:Proof:Proof: For any m-dimensional Hermitian matrix, ||M||∗ ≥

||M||2 is established. The equality holds if and only if the rank
of M is 1. The proof of Lemma 3Lemma 3Lemma 3 is completed.
Consequently, the kernel and spectral norm can be used

to equivalently represent the rank one constraint. Thus, the
equivalently transformed rank one constraint is added to
the objective function as a penalty term [37] according to

Lemma 3, the problem P5.1 now evolves to P5.2.

P5.2 : max
Ẽ,PULk

R′
sum +

1
µ
(||Ẽ||∗ − ||Ẽ||2), (57a)

s.t. P0(ωk + |hIU ,k [n]|
2
+ tr(Vk Ẽ))

≥ 4-1(
τk [n]
τ0[n]

PULk [n]), (57b)

Ẽ ≽ 0, (57c)

(52c). (57d)

In this case, µ is the penalty factor, and the objective function
is expressed in the form of DC, which can be solved by using
SCA. The lower bound of ||Ẽ||2 in the objective function of
P5.2 can be estimated by the first-order Taylor expansion at
each iteration of the SCA algorithm which is shown as

||Ẽ||2 ≥ ||Ẽ (r)
||2 + tr[λmax(Ẽ (r)) × λHmax(Ẽ

(r))(Ẽ − Ẽ (r))],
(58)

where Ẽ (r) is the solution obtained at the r-th iteration.
Updating the objective function with its lower bound, the
optimization problem P5.2 can be rewritten as P5.3,

P5.3 : max
Ẽ,PULk

R′
sum +

1
µ
(|Ẽ||∗ − ||Ẽ (r)

||2−

tr[λmax(Ẽ (r)) × λHmax(Ẽ
(r))(Ẽ − Ẽ (r))],

(59a)

s.t. (57b)-(57d). (59b)

Algorithm 2OptimizationAlgorithmDesign for Static Phase
Shift

1. InitializationInitializationInitialization L(0), ẽ(0)m , τ
(0)
0 , τk

(0),PULk
(0)
, let

r = 0, ι = 10−3

2. RepeatRepeatRepeat
3. Solve sub-problem 1: given e(r)0 = ek

(r)
= ẽ(r)m , τ

(r)
0 , τk

(r),

PULk
(r)
, obtain L(r+1)

4. Solve sub-problem 3: given L(r), e(r)0 = ek
(r)

= ẽ(r)m ,

PULk
(r)
, obtain τ (r+1)

0 , τk
(r+1)

5. Solve sub-problem 5: given L(r), τ (r)0 , τk
(r), obtain ẽ(r+1)

m ,

PULk
(r+1)

6.Update: r = r + 1
7. UntilUntilUntil Objective function value of (r+1)-th
iterationobjective function value of r-th iteration ≤ ι

8. ReturnReturnReturn Optimal values of UAV trajectory, static phase
shift, energy/information transmission time, information
transmission power

This problem can be directly solved by using the CVX
toolbox, because it is now a convex optimization problem
with respect to Ẽ and PULk . Algorithm 2 summarizes the
process for getting the optimal solution in scenario of static
phase shift.

36722 VOLUME 11, 2023



L. Xue et al.: Resource Configuration for Throughput Maximization in UAV-WPCN With IRS

V. SIMULATION RESULTS AND PERFORMANCE
EVALUATIONS
This section provides numerical results to verify the effective-
ness of the two proposed algorithms and analyzes their perfor-
mance gap in WPCN with the aid of UAV and IRS. Consider
a UAV hovering at a fixed height of 80m, a maximum flight
speed of 20m/s, and a transmitting power of 40dBm. The
UAV’s initial and termination projection coordinates are (0, 0)
and (500m, 0) respectively. The IRS is mounted at a height
of 30m with its projection coordinate (250m, 250m), and the
number of reflection elements of the IRS is set to be 50.
Signal attenuation is set as 30dB when the reference distance
β0 = 1m. The other parameters for all K wireless devices
are assigned with uniformly the same values, i.e., A = 24mV,
ak = 150, bk = 0.024 [38], Rician factor κ1=κ2=3dB. The
AWGN is σ = −80dBm, and the algorithm’s precision value
ι is 10-3.

Fig.4 shows four flight trajectories of UAV along their
tracks with different time constraints in the dynamic phase
shift scenario. By observing Fig.4, the trajectory of UAV
varies with time constraints. When the hovering time T gets
longer, UAV approaches closer to the geometric center of
wireless devices’ locations to help reduce the link length
between them, by which better DL-WPT and UL-WIT chan-
nel gains can be obtained. Due to the merits of IRS, UAV
prefers to move towards it to readjust the existed relay links
and the directed links. When the hovering time is set as
T = 80s, UAV will spend more time on circling over the
IRS to provide better service quality to wireless devices
planted on the ground. However, in the none-IRS casewithout
time limits, UAV flight trajectory obviously changes. UAV
will approach to the point just over the uppermost device to
promote better channel conditions.

Figure 5 shows the time separation for WPT and WIT
when T = 60s and T = 80s, respectively. It is interesting
to find that HAP is more likely to serve less devices rather
than serving all devices once upon a segment. When HAP
maintains to serve one device, the time used for WPT will
decrease as T increases. In another word, when the energy
reserve of the device is insufficient, HAP will spend more
time on energy transferring, whereas when the energy reserve
is sufficient, HAP will allocate more time on WIT. In the
extreme cases, the time length for energy transmission can
be optimally reduced to 0 in specific time segment.

Fig.6 shows the relationship between the number of IRS
reflective elements and the achievable sum rate when P0 =

50dBm, k = 6. The proposed two schemes, dynamic phase
shift and static phase shift, achieve visibly higher network
throughput than those of the random IRS phase shift scheme
and the none-IRS scheme when varying the number of M
from 20 to 100. Compared with the IRS-WPCN algorithm
proposed in [10], the dynamic phase shift scheme increased
in the network throughput by about 28 percent with the
same simulation settings. Moreover, the network through-
put brought by the dynamic phase shift is increased up by
about five times to the proposal for UAV-WPCN in [18].

FIGURE 4. UAV’s trajectory projected on the horizontal plane.

FIGURE 5. Time segment allocation histogram.

FIGURE 6. The relationship between the sum rate and the number of
reflective elements.

As seen from the above facts, single technique, i.e., solely
UAV and IRS, is confined in effectively improving the net-
work throughput ofWPCN.Moreover, it can be observed that
the random segment allocation scheme can achieve higher
throughput than that of the random IRS phase shift scheme,
because the reflected signal of indirect link will experience
poor channel gain in the random phase shift, and ultimately
reduce the total network throughput. In contrast, the random
segment allocation will affect the time of energy collection
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FIGURE 7. The relationship between the sum rate and the HAP
transmission power.

FIGURE 8. The relationship between the sum rate and the UAV’s flight
height.

and information transmission. That is to say, the device needs
more transmitting power, or the information transmission
time has to be longer, leading to a trivial increase of the
network throughput. The sum rate of the proposed two IRS
phase-shift optimization schemes, increases monotonically
with M , since more reflective elements promote greater
growth. In addition, the sum rate performance gap between
the proposed two schemes becomes evident as M increases.
That is because the static phase shift scheme in DL or UL
prevents the IRS from releasing its entire beamforming gain.
This demonstrates the necessity for dynamic phase shifting
in the applications of large-scale deployment of IRS.

Fig.7 shows the effect of the UAV transmission power
P0 on the sum rate when M = 50. It can be seen from
Fig.7 that the sum rate rises with the increase of P0 in all
the selected schemes. Nevertheless, increasing transmission
power results in the rise of the sum rate but at the cost
of excessive energy consumption at the UAV (HAP). When
considering the UAV’s limited energy reserves, increasing
transmission power is not economical to raise the rate for a
green and sustainable WPCN. It is also found that the IRS
with random phase shift obtains a lower sum rate increase
than that of the none-IRS assistance scheme, because the
reflective links assisted by the IRS have been compensated

by theworse channel gain resulting from the randomly signals
bounced back by the IRS.

The relationship between the UAV’s flight height and the
sum rate is shown in Fig.8 when M = 50, P0 = 50dBm.
It describes that when the height of the UAV rises, the sum
rate descends. Correspondingly, when the UAV’s fight height
descends from 100m to 50m, the UAV gets much closer to the
devices on the ground. Thus the air-ground channel quality
is improved, and the energy transfer efficiency improves,
leading to the sum rate rising rapidly.

VI. CONCLUSION
The paper aims at maximizing the the network throughput of
UAV-WPCN with the aid of IRS. The UAV flight trajectory,
uplink and downlink phase shifts of IRS, transmission time,
and transmission power of the UAV are jointly optimized.
The IRS’s dynamic and static phase shifts are studied sepa-
rately to analyze their network performance gap. To solve the
formulated non-convex optimization problems, successive
convex approximation, difference-convex optimization, and
penalty functions are applied. Numerical simulation results
validate the effectiveness and convergence of the proposed
algorithms. The results disclose that the conjunctive use of
UAV and IRS can effectively improve the network throughput
of UAV-WPCN at a low cost.

APPENDIX A PROOF OF LEMMA 1
Let f (x) = log2(1 + x), x > 0, g(x) = log2(1 +

1
x ), x > 0.

Clearly, f (x) is a concave function for x and g(x) is a convex
function for x. We get the following inequality based on
Jensen’s inequality [39],

log2(1 +
1

E{1/x}
) ≤ E{log2(1 + x)} ≤ log2(1 + E{x}).

(1)

Let x = A/B,A > 0,B > 0, then obtain

log2(1 +
1

E{B/A}
)≤ E{log2(1 + A/B)} ≤ log2(1+ E{A/B}).

(2)

If A > 0,B > 0 are independent of each other, then

E{A/B} = E{A}E{1/B} ≥ E{A}/E{B}. (3)

where the inequality holds due to the convexity of function
1/B for B > 0 and Jensen’s inequality. As a result, equa-
tion (3) gives us

log2(1 +
1

E{B/A}
) ≤ log2(1 + E{A}/E{B})

≤ log2{1 + E{A/B}}. (4)

The comparison of equations (2) and (4) show thatE{log2(1+
A/B)} and log2(1 + E{A}/E{B}) have the same upper and
lower bounds. We can obtain E{log2(1 + A/B)} = log2(1 +

E{A}/E{B}) = 0 when A = 0,B > 0 occurs. Consequently,
there are similar results expressed by equation (20).

36724 VOLUME 11, 2023



L. Xue et al.: Resource Configuration for Throughput Maximization in UAV-WPCN With IRS

REFERENCES
[1] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, ‘‘Internet

of Things (IoT) for next-generation smart systems: A review of current
challenges, future trends and prospects for emerging 5G-IoT scenarios,’’
IEEE Access, vol. 8, pp. 23022–23040, 2020.

[2] T. Nguyen, V. Nguyen, J. Lee, and Y. Kim, ‘‘Sum rate maximization for
multi-user wireless powered IoT network with non-linear energy harvester:
Time and power allocation,’’ IEEE Access, vol. 7, pp. 149698–149710,
2019.

[3] D. Xu and H. Zhu, ‘‘Secure transmission for SWIPT IoT systems
with full-duplex IoT devices,’’ IEEE Internet Things J., vol. 6, no. 6,
pp. 10915–10933, Dec. 2019.

[4] L. R. Varshney, ‘‘Transporting information and energy simultaneously,’’
in Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON, Canada, Jul. 2008,
pp. 1612–1616.

[5] Y. Shen, K. Kwak, B. Yang, and S. Wang, ‘‘Subcarrier-pairing-based
resource optimization for OFDM wireless powered relay transmissions
with time switching scheme,’’ IEEE Trans. Signal Process., vol. 65, no. 5,
pp. 1130–1145, Mar. 2017.

[6] Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, ‘‘An overview of
sustainable green 5G networks,’’ IEEE Wireless Commun., vol. 24, no. 4,
pp. 72–80, Aug. 2017.

[7] Q. Wu and R. Zhang, ‘‘Weighted sum power maximization for intelligent
reflecting surface aided SWIPT,’’ IEEE Wireless Commun. Lett., vol. 9,
no. 5, pp. 586–590, May 2020.

[8] M. Hua and Q. Wu, ‘‘Joint dynamic passive beamforming and resource
allocation for IRS-aided full-duplex WPCN,’’ IEEE Trans. Wireless Com-
mun., vol. 21, no. 7, pp. 4829–4843, Jul. 2022.

[9] H. Cao, Z. Li, and W. Chen, ‘‘Resource allocation for IRS-assisted wire-
less powered communication networks,’’ IEEE Wireless Commun. Lett.,
vol. 10, no. 11, pp. 2450–2454, Nov. 2021.

[10] H. Ju and R. Zhang, ‘‘Throughput maximization in wireless powered
communication networks,’’ IEEE Trans. Wireless Commun., vol. 13, no. 1,
pp. 418–428, Jan. 2014.

[11] Q. Wu, X. Zhou, W. Chen, J. Li, and X. Zhang, ‘‘IRS-aided WPCNs: A
new optimization framework for dynamic IRS beamforming,’’ IEEE Trans.
Wireless Commun., vol. 21, no. 7, pp. 4725–4739, Jul. 2022.

[12] S. Zhang, Q. Wu, S. Xu, and G. Y. Li, ‘‘Fundamental green tradeoffs:
Progresses, challenges, and impacts on 5G networks,’’ IEEE Commun.
Surveys Tuts., vol. 19, no. 1, pp. 33–56, 1st Quat., 2017.

[13] T. Cui, M. Qi, and X. Wan, ‘‘Coding metamaterials, digital metamaterials
and programmablemetamaterials,’’ Light, Sci. Appl., vol. 3, no. 10, p. e281,
Oct. 2014.

[14] Q. Wu and R. Zhang, ‘‘Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,’’ IEEE Commun.
Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.

[15] W. Tang, ‘‘Wireless communications with reconfigurable intelligent sur-
face: Path loss modeling and experimental measurement,’’ IEEE Trans.
Wireless Commun., vol. 20, no. 1, pp. 421–439, Jan. 2021.

[16] P. S. Bithas, V. Nikolaidis, A. G. Kanatas, and G. K. Karagiannidis, ‘‘UAV-
to-ground communications: Channel modeling and UAV selection,’’ IEEE
Trans. Commun., vol. 68, no. 8, pp. 5135–5144, Aug. 2020.

[17] Q. Wu, Y. Zeng, and R. Zhang, ‘‘Joint trajectory and communication
design for multi-UAV enabled wireless networks,’’ IEEE Trans. Wireless
Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018.

[18] W. Wang, ‘‘Joint precoding optimization for secure SWIPT in UAV-aided
NOMA networks,’’ IEEE Trans. Commun., vol. 68, no. 8, pp. 5028–5040,
Aug. 2020.

[19] J. Park, H. Lee, S. Eom, and I. Lee, ‘‘UAV-aided wireless powered
communication networks: Trajectory optimization and resource allo-
cation for minimum throughput maximization,’’ IEEE Access, vol. 7,
pp. 134978–134991, 2019.

[20] L. Xie, J. Xu, and R. Zhang, ‘‘Throughput maximization for UAV-enabled
wireless powered communication networks,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 1690–1703, Apr. 2019.

[21] J. Xu, Y. Zeng, and R. Zhang, ‘‘UAV-enabled wireless power transfer: Tra-
jectory design and energy optimization,’’ IEEE Trans. Wireless Commun.,
vol. 17, no. 8, pp. 5092–5106, Aug. 2018.

[22] Z. Chen, K. Chi, K. Zheng, G. Dai, and Q. Shao, ‘‘Minimization of
transmission completion time in UAV-enabled wireless powered commu-
nication networks,’’ IEEE Internet Things J., vol. 7, no. 2, pp. 1245–1259,
Feb. 2020.

[23] B. Lyu, P. Ramezani, D. T. Hoang, S. Gong, Z. Yang, and A. Jamalipour,
‘‘Optimized energy and information relaying in self-sustainable IRS-
empowered WPCN,’’ IEEE Trans. Commun., vol. 69, no. 1, pp. 619–633,
Jan. 2021.

[24] Z. Li, W. Chen, Q. Wu, H. Cao, K. Wang, and J. Li, ‘‘Robust beamforming
design and time allocation for IRS-assisted wireless powered communi-
cation networks,’’ IEEE Trans. Commun., vol. 70, no. 4, pp. 2838–2852,
Apr. 2022.

[25] T. Li, P. Fan, Z. Chen, and K. B. Letaief, ‘‘Optimum transmission poli-
cies for energy harvesting sensor networks powered by a mobile control
center,’’ IEEE Trans. Wireless Commun., vol. 15, no. 19, pp. 6132–6145,
Sep. 2016.

[26] J. Tang, J. Song, J. Ou, J. Luo, X. Zhang, and K.-K. Wong, ‘‘Minimum
throughput maximization for multi-UAV enabled WPCN: A deep rein-
forcement learning method,’’ IEEE Access, vol. 8, pp. 9124–9132, 2020.

[27] Z. Li, W. Chen, H. Cao, H. Tang, K. Wang, and J. Li, ‘‘Joint communi-
cation and trajectory design for intelligent reflecting surface empowered
UAV SWIPT networks,’’ IEEE Trans. Veh. Technol., vol. 71, no. 12,
pp. 12840–12855, Dec. 2022.

[28] B. Zheng and R. Zhang, ‘‘Intelligent reflecting surface-enhanced OFDM:
Channel estimation and reflection optimization,’’ IEEE Wireless Commun.
Lett., vol. 9, no. 4, pp. 518–522, Apr. 2020.

[29] N. Senadhira, S. Durrani, X. Zhou, N. Yang, andM. Ding, ‘‘Uplink NOMA
for cellular-connected UAV: Impact of UAV trajectories and altitude,’’
IEEE Trans. Commun., vol. 68, no. 8, pp. 5242–5258, Aug. 2020.

[30] X. Chen, J. Shi, Z. Yang, and L. Wu, ‘‘Low-complexity channel estimation
for intelligent reflecting surface-enhanced massive MIMO,’’ IEEE Wire-
less Commun. Lett., vol. 10, no. 5, pp. 996–1000, May 2021.

[31] S. Liu, Z. Gao, J. Zhang,M. D. Renzo, andM.-S. Alouini, ‘‘Deep denoising
neural network assisted compressive channel estimation for mmWave
intelligent reflecting surfaces,’’ IEEE Trans. Veh. Technol., vol. 69, no. 8,
pp. 9223–9228, Aug. 2020.

[32] K. Xiong, B. Wang, and K. J. R. Liu, ‘‘Rate-energy region of SWIPT
for MIMO broadcasting under nonlinear energy harvesting model,’’ IEEE
Trans. Wireless Commun., vol. 16, no. 8, pp. 5147–5161, Aug. 2017.

[33] J. Bezdek and R. Hathaway, ‘‘Some notes on alternating optimization,’’ in
Proc. AFSS Int. Conf. Fuzzy Syst., Feb. 2002, pp. 187–195.

[34] C. James and J. Richard, ‘‘Convergence of alternating optimization,’’ Neu-
ral, Parallel Sci. Computations, vol. 11, no. 4, Dec. 2003, Art. no. 351368.

[35] M. Grant, S. Boyd, (2014). CVX: MATLAB Software for Disciplined Con-
vex Programming, Version 2.1. [Online]. Available: http://cvxr.com/cvx/

[36] S. Sun, M. Fu, Y. Shi, and Y. Zhou, ‘‘Towards reconfigurable intelligent
surfaces powered green wireless networks,’’ in Proc. IEEE Wireless Com-
mun. Netw. Conf. (WCNC), May 2020, pp. 1–6.

[37] X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, ‘‘Robust and secure
wireless communications via intelligent reflecting surfaces,’’ IEEE J. Sel.
Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.

[38] Y. Lu, K. Xiong, P. Fan, Z. Ding, Z. Zhong, and K. Letaief, ‘‘Global energy
efficiency in secure MISO SWIPT systems with non-linear power-splitting
EH model,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 216–232,
Jan. 2019.

[39] J. Lu, Y. Wang, Y. Chen, and H. Jia, ‘‘Joint UAV deployment and
energy transmission design for throughput maximization in IoRT net-
works,’’ in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Jul. 2021,
pp. 236–241.

LIANG XUE (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in control theory and engi-
neering from Yanshan University, Qinhuangdao,
China, in 2006, 2009, and 2012, respectively. He is
currently a Professor with the School of Infor-
mation and Electrical Engineering and the Chair
of the Department of Internet of Things, Hebei
University of Engineering, Handan, China. He is
also the Outstanding Young Scholar of Hebei Edu-
cation Department and Hebei new century ‘‘333

Talent Project’’ third-level suitable person. From June 2017 to June 2018,
he was a Visiting Scholar with the Cyber Network Security Group, Arizona
State University, USA. He is currently in charge of several research projects,
including the National Natural Science Foundation of China, the Natural
Science Foundation of Hebei Province, and the Scientific Research Plan of
Hebei Education Department. His research interests include the clustering
design, hierarchical topology control, data routing in wireless sensor net-
works, and wireless cognitive radio networks.

VOLUME 11, 2023 36725



L. Xue et al.: Resource Configuration for Throughput Maximization in UAV-WPCN With IRS

XUAN GONG (Student Member, IEEE) received
the B.S. degree in computer science and tech-
nology from Taishan University, Tai’an, China,
in 2020. He is currently pursuing the M.S. degree
in computer science and technologywith theHebei
University of Engineering, Handan, China. His
research interests include wireless powered com-
munication networks, intelligent reflecting sur-
face, and simultaneous wireless information and
power transfer.

YANYAN SHEN (Member, IEEE) received the
B.S. and M.Eng. degrees in electrical engi-
neering from Yanshan University, Qinhuangdao,
China, in 2006 and 2009, respectively, and the
Ph.D. degree from the Department of Mechanical
and Biomedical Engineering, City University of
Hong Kong, Hong Kong, SAR, China, in 2012.
From 2013 to 2014, she was a Postdoctoral
Research Fellow with the School of Information
and Communication Engineering, Inha University,

South Korea. She is currently an Associate Professor with the Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen,
China. She has been the principal investigator/the co-investigator in several
research projects funded by NSFC and Shenzhen Basic Research Foun-
dation. Her current research interests include wireless energy harvesting,
UAV communications, mobile edge computing, and intelligent resource
management in next generation networks.

BALAJI PANCHAL received the Ph.D. degree
in biochemistry from Dr. Babasaheb
Ambedkar Marathwada University, Aurangabad,
Maharashtra, India, in 2016. Hewas a Postdoctoral
Scientist with the Key Laboratory of Resource
Exploration Research of Hebei Province, Hebei
University of Engineering, Handan, Hebei, China.
His current research interests include biomedical
signal measurement, biomedical signal process-
ing, and ecological resources and materials.

CHUN-JIE WANG received the B.S. degree in
computer science and technology from the Henan
Institute of Engineering, Zhengzhou, China,
in 2021. He is currently pursuing the M.S. degree
in computer science and technology with the
Hebei University of Engineering, Handan, China.
From June 2022 to June 2024, he was a Visiting
Scholar with the Institute of Advanced Comput-
ing and Digital Engineering, Shenzhen Institute
of Advanced Technology, Chinese Academy of

Science. His research interests include intelligent reflecting surface, simulta-
neous wireless information and power transfer, and unmanned aerial vehicle
communication.

YAN-LONG WANG received the B.S. degree in
computer science and technology from the Hebei
University of Architecture, Zhangjiakou, China,
in 2011, and the M.S. degree in information and
electric engineering from the Hebei University of
Engineering, Handan, China, in 2015. He is cur-
rently pursuing the Ph.D. degree with the Key
Laboratory of Trustworthy Distributed Comput-
ing and Service, Beijing University of Posts and
Telecommunications, Beijing, China. His research

interests include simultaneous wireless information, power transfer, and
network security.

36726 VOLUME 11, 2023


