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ABSTRACT The development of deep learning-based biometric models that can be deployed on devices
with constrained memory and computational resources has proven to be a significant challenge. Previous
approaches to this problem have not prioritized the reduction of feature map redundancy, but the introduction
of Ghost modules represents a major innovation in this area. Ghost modules use a series of inexpensive
linear transformations to extract additional feature maps from a set of intrinsic features, allowing for a more
comprehensive representation of the underlying information. GhostNetV1 and GhostNetV2, both of which
are based onGhost modules, serve as the foundation for a group of lightweight face recognitionmodels called
GhostFaceNets. GhostNetV2 expands upon the original GhostNetV1 by adding an attention mechanism to
capture long-range dependencies. Evaluation of GhostFaceNets using various benchmarks reveals that these
models offer superior performance while requiring a computational complexity of approximately 60-275
MFLOPs. This is significantly lower than that of State-Of-The-Art (SOTA) big convolutional neural network
(CNN) models, which can require hundreds of millions of FLOPs. GhostFaceNets trained with the ArcFace
loss on the refinedMS-Celeb-1M dataset demonstrate SOTA performance on all benchmarks. In comparison
to previous SOTA mobile CNNs, GhostFaceNets greatly improve efficiency for face verification tasks. The
GhostFaceNets code is available at: https://github.com/HamadYA/GhostFaceNets.

INDEX TERMS ArcFace, attention mechanism, cheap operations, face recognition, GhostNet, lightweight.

I. INTRODUCTION
Over the past few years, accessing information through smart-
phones and tablets has become commonplace in both pro-
fessional and private settings. Mobile devices have become
indispensable tools in our daily lives as the use of these
devices for services like social networks, email, electronic
commerce, and banking has surpassed that of traditional
computers. Users and corporations may be subject to secu-
rity concerns and threats without the proper security options
[1]. Vision-based tasks such as Face Detection (FD), Face
Recognition (FR), and Face Verification (FV) are commonly
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used as an authentication option for protection purposes in the
smartphone [2]. Deep learning-based approaches have been
observed to deliver more satisfactory results and improve
State-of-The-Art (SOTA) compared to traditional ‘shallow’
schemes in most vision-based tasks [3], [4], specifically
in FR and FV tasks [5]. However, deploying FR deep
learning-based models on embedded domains such as mobile
devices is constrained by the computational resources and
the high throughput requirements [6], [7], [8], since FR deep
learning-based models rely on a huge number of parameters
[9], [10].

Recent developments in FR showed great progress in
overcoming these limitations. Some approaches utilized pre-
trained SOTA FR to transfer knowledge from big to small
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model by using Knowledge Distillation (KD) [11]. Others
used the quantization techniques to quantize their model,
hence reducing its size [12], and low-rank approxima-
tion which effectively reduces computations [13]. Creating
lightweight deep neural networks has emerged as one of
the most promising ways to improve speed-accuracy trade-
offs in recent years [14], [15], [16], [17], [18]. We use the
lightweight attribute to describe models that show computa-
tional complexity in the range of 1G floating point operations
(FLOPs). SqueezeNet [14], MobileNets [15], ShuffleNets
[16], [17], VarGNet [18], and MixNets [19] are exam-
ples of such networks that provide promising results in
image classification. Few works have proposed utilizing such
lightweight deep learning architectures as a backbone for FR
models. For example, MobileFaceNet [20], ShuffleFaceNet
[21], VarGFaceNet [22], and MixFaceNets [23] employed
MobileNetV2 [15], ShuffleNetV2 [17], VarGNet [18], and
MixNets [19] as FR model’s backbone respectively. Very
recently, extremely lightweight backbones namely Ghost-
NetV1 and GhostNetV2 were proposed for image classifi-
cation tasks [24], [25]. GhostNetV1 proposed a novel Ghost
module that generates more features by using fewer param-
eters, which were then extended in GhostNetV2 to incor-
porate long-range dependencies too. Experiments showed
that GhostNetV1 and GhostNetV2 frequently beat competi-
tors at various degrees of computational complexity [24].
GhostNetV1 specifically outperformed MobileNets [15],
ShuffleNets [16], [17], and many other models on image
classification tasks while GhostNetV2 outperformed the first
version.

In this work, we propose a new family of lightweight
architectures named GhostFaceNets that adopts GhostNetV1
and GhostNetV2 (referred to as GhostNets in this paper)
[24] as backbones in the FR field. We carefully designed
the output layer’s head termed modified Global Depthwise
Convolution (GDC) to be suitable for FR and FV tasks.
Firstly, we adjusted the Squeeze and Excitation (SE) mod-
ule [14] aiming at improving the discriminative power of
GhostFaceNets. Secondly, we replaced Rectified Linear Unit
(ReLU) in the GhostNets architectures with Parametric Rec-
tified Linear Unit (PReLU) as a nonlinear activation function
since the latter provides higher accuracy compared to the
former [26], [27]. Finally, we adopted the ArcFace loss func-
tion for the feedback signal thanks to its effective enhance-
ment of intra-class compactness and inter-class discrepancy
[9]. As a result, our GhostFaceNets achieved SOTA on the
most commonly used validation benchmarks, with a com-
putation complexity of approximately between 60 MFLOPs
and 275MFLOPs based on the width and strides (discussed in
Section IV). Also, our GhostFaceNets achieved comparable
results to the SOTA compact FR/FV models that have an
extremely higher computation complexity.

The paper is organized as follows. Section II provides
an overview of the existing lightweight models for FR/FV.
Section III briefly explains the SOTA GhostNetV1 and
GhostNetV2 architectures. Section IV illustrates in detail

the GhostFaceNets architecture proposed for FR. Section V
explains the experimental setup. Section VI shows the results,
and Section VII concludes our work.

II. RELATED WORK
Deep learning methods such as Convolutional Neural Net-
works (CNNs) have revolutionized and reshaped the FR
research landscape in all aspects, achieving a huge increase
in accuracy compared to ‘‘shallow’’ methods [5]. However,
these networks offer a poor trade-off between performance
and model complexity [9], [10]. A good trade-off between
performance and model complexity is a challenge for the
FR community and a requirement in real-world applications
and embedded devices [6], [7], [8]. In this section, we give
a brief overview of the most recent advances in develop-
ing lightweight deep learning models for FR. Furthermore,
we summarize (as long as available) the computational com-
plexity and FR accuracy on the Labeled Faces in the Wild
(LFW) dataset [28]. LFW is the most used dataset for report-
ing the accuracy of new FR models [29].

A CNN model was proposed in [30] as an attempt to
develop an efficient lightweight FR model. The authors pro-
posed an architecture to learn a compact embedding on the
massively noisy labels in large-scale face data. They designed
three lightweight networks (Light CNN-4, Light CNN-9, and
Light CNN-29) with the aim of reducing the number of
parameters and computational complexity. The authors used
Max-Feature-Map activation after each CNN convolutional
layer and proposed using a bootstrapping technique to over-
come the noisy labels issue. The best-reported accuracy on
the LFW dataset of the three networks was 99.33% with
12.637M parameters and around 3.9 GFLOPs [30]. Thus,
these models are considered computationally expensive and
not suitable for embedded devices.

In [31], the authors introduced a parameter- and FLOPs-
free ‘‘Shift’’ operation as a replacement for spatial convo-
lutions. The authors used the FaceNet [32] architecture that
is based on Inception-Resent V1 [33], [34] which contains
around 28.5M parameters and 1.6 GFLOPs. The proposed
ShiftFaceNet reduced the number of parameters by approxi-
mately 36.54 times. However, this architecture caused a drop
in accuracy of around 2 degrees compared to the original
FaceNet [31], [32].

The models that rely on image classification backbones
were then introduced to offer a better trade-off between
performance and model complexity [20], [21], [22], [23].
MobileFaceNets [20] employed MobileNetV2 [15] for high
accuracy and real-time FR and FV on mobile and embedded
devices. The authors finetuned the MobileNetV2 architecture
by using PReLU [27] as the nonlinear activation function and
replacing the Global Average Pooling (GAP) layer with a
GDC layer which demonstrated to provide more discrimina-
tive face representation [20], [21]. The model outperformed
many FR/FV SOTA models on the LFW dataset achieving
a best-reported accuracy of 99.55% with only around 1M
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parameters, 439.7 MFLOPs, and 4.0 MB model size, making
this model suitable for real-time embedded systems [20].

ShuffleFaceNet [21], proposed to improve the accuracy of
previous lightweight models, followed the same procedure
as in [20] by utilizing ShuffleNetV2 [17] as a backbone
and finetuning this by using GDC instead of the GAP layer
and PReLU as a nonlinear activation function [27]. The
authors designed four variants of the ShuffleFaceNet models
with different complexity levels. The best-reported accuracy
on the LFW dataset was 99.67% with 2.6M parameters,
557.5 MFLOPs, and a model size of 10.5 MB using the
variant ShuffleFaceNet 1.5× utilizing ArcFace loss func-
tion [9], [21]. ShuffleFaceNet is slightly larger than Mobile-
FaceNet in terms of complexity, parameters, and model size;
however, it offers better accuracy [20], [21].

Following a similar pattern as in [20] and [21],
VarGFaceNet [22] employed VarGNet [18] as its backbone.
In contrast to [20] and [21], the authors proposed a new
embedding block by first adding a SE module [14] and the
PReLU nonlinear activation function [27] to improve dis-
criminative ability. Secondly, the downsampling in VarGNet
[18] is removed to preserve face information. Third, variable
group convolution is used before the Fully Connected (FC)
layer to decrease the parameters. Finally, a recursive KD was
proposed to improve the generalization gap with SOTA FR
models. KD is the procedure of transferring knowledge from
a teacher (a deep neural network with high performance and
complexity) to a student (a small model with low complex-
ity) aiming to transfer the large knowledge capacity of the
teacher to the student to improve its performance [35]. The
model with recursive KD achieved 99.85% accuracy on the
LFW dataset with around 5M parameters and 1.022 GFLOPs
[22]. Although the model outperformed all SOTA FR mod-
els; however, its computational cost remained higher than
MobileFaceNet, ShuffleFaceNet [20], [21], [22].

Most recently, a new family of lightweight efficient FR
models was proposed namedMixFaceNets [23]. Almost sim-
ilar to [20] and [21], MixFaceNets employed MixNets [19]
as a backbone. To improve the discriminative ability of
MixNets, the authors modified the MixConv block [19] with
a channel shuffle operation [17]. The best-reported accuracy
on the LFW dataset was 99.68% using 3.95M parameters and
626.1 MFLOPs, which makes it highly efficient for real-time
embedded systems [23].

Due to the improved trade-off between performance and
model complexity, the MobileFaceNet architecture [20] was
adopted in a new FR model called AirFace [36]. The authors
modified the architecture by adding the convolutional block
attention module [36] to every bottleneck in the architecture.
In addition, the authors modified the ArcFace loss function
[9] by replacing the cosine function with a linear function
and introduced a new loss function named Li-ArcFace [36].
The proposed Li-ArcFace loss function showed a higher con-
vergence when training the model with a small embedding
size as compared with ArcFace [9], [36]. The best-reported

accuracy on the LFW dataset was 99.27% with 1 GFLOPs,
which makes the model expensive in terms of computational
complexity [36].

The model size, measured inMB, is a concern for real-time
embedded systems compatibility [6], [7], [8]. Quantization
methods have been shown to reduce the size of the model
as in [12]. QuantFace is probably the first model to use
quantization in the FR domain [12]. To avoid reducing the
accuracy, the authors also proposed using KD which modi-
fies the quantized model and its parameters using syntheti-
cally created face data by Generative Adversarial Networks
(GANs) [37]. Considering quantization applied on Mobile-
FaceNet model [20], the best-reported accuracy on the LFW
dataset was 99.43% with 1.1M parameters and model size of
1.1 MB [12].

A set of lightweight FR models, dubbed PocketNets, was
proposed in [11]. PocketNets utilized Neural Architecture
Search (NAS) [38], [39] to automatically create efficient
artificial neural networks. NAS automates the process of a
human designing a neural network and learning what works
effectively [38]. In addition, the authors proposed a novel
KD paradigm aiming to ease the challenges caused by the
significant gap between the teacher and student models [11].
The authors successfully achieved an improved trade-off
between model performance and compactness, achieving
99.58% accuracy on the LFW dataset with only 0.925M
parameters and 587.11 MFLOPs [11].

In this work, we propose a new set of lightweight archi-
tectures named GhostFaceNets, that extends two efficient
neural architectures, named GhostNetV1 and GhostNetV2
(we refer to them as GhostNets in this paper) [24] to the
field of FR and FV. First, we removed the GAP layer, the
pointwise convolution layer (1×1 convolution layer), and the
FC layer and replaced themwith our proposedmodified GDC
recognition head. Second, we replaced ReLU, which is used
in GhostNets, with PReLU as a nonlinear activation function
because PReLU eliminates the problem of the vanishing gra-
dient and its performance improvement over ReLU [26], [27].
Third, the conventional FC layers in the SE modules were
replaced by convolution layers to improve the discriminative
power of GhostFaceNets [14]. Finally, we employed the Arc-
Face loss function as a feedback signal used for training [9].
We choose the ArcFace loss function because it achieved a
superior accuracy boost when used with FR / FV models,
since it enforces intra-class compactness, inter-class discrep-
ancy, classification margin, and enhances the discriminative
power of learned features [9]. Moreover, we experimented
with the performance of the proposed GhostFaceNets under
different hyperparameters settings shown in Section V-C.
As a result, we designed a set of GhostFaceNets models
by changing the training dataset, the width of GhostNets
architectures, and the stride of the first convolution layer
(referred to as the stem of the model). The results show
that GhostFaceNets outperforms most lightweight SOTA
models on all validation/testing benchmarks as discussed in
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Section VI. The major contributions of this work are summa-
rized as follows:

• With two different levels of complexity, we create
lightweight FR architectures that are accurate and effi-
cient. The resultingGhostFaceNetsmodels are suited for
deployment on real-time applications as well as mobile
and embedded devices. We show that the models have
an actual model size of less than 13.8 MB and an actual
inference CPU time of roughly 50 ms using the TFLite
tool.

• We designed a modified GDC layer to generate a dis-
criminative feature vector and PReLU as a nonlinear
activation function to assure not only speed and little
storage space but also notable gains on FR/FV accuracy.

• We adjusted the SE module by replacing the conven-
tional FC layers in the SE modules with convolution
layers to improve GhostFaceNets’ discriminative power.

• We show that our GhostFaceNets outperform SOTA
CNNs on widely used FR/FV benchmarks.

• We determined the best model hyperparameters that
offer the best accuracy to computational complexity
trade-off by undergoing an extensive ablation study in
Section V-C.

• We determined the best loss function among three
well-known loss functions in FR/FVfield in Section V-C.
We believe that this will ease the choice of the loss
function for researchers when developing a new FR
model.

III. PRELIMINARIES
In this section, we briefly explain the SOTA GhostNetV1 and
GhostNetV2 that inspired our work for a better understanding
of GhostFaceNets.

A. GHOST MODULES − FEATURE MAP PATTERN
REDUNDANCY
In GhostNetV1, Ghost modules are employed to generate a
certain percentage, denoted as x%, of the feature maps, while
the remaining feature maps are generated using a low-cost
linear operation known as depthwise convolution (DWConv).
The resulting tensor of feature maps has C’ channels. This
approach differs from a traditional convolutional layer, which
generates a tensor of feature maps directly from an input
tensor of C channels, with C’ channels in the resulting tensor.
In particular, a 2Dfilter, i.e., kernel, is applied to a 2D channel
of the input tensor to generate a 2D channel of the output
tensor. This drastically reduces the number of parameters
and FLOPs without considerable impact on the performance.
The linear operation mimics intrinsic convolution in terms
of features. So, it can be learned from the input using back-
propagation in the backward pass. Note that the number of
channels in the input tensor and the resulting output tensor in
the specific layer must match for depthwise convolutions to
improve speed and decrease complexity.

FIGURE 1. Visualizing feature maps generated by the first block of VGG16
using two visualization settings. Very similar feature maps (annotated
with boxes of the same color) are generated and visualized using gray
visualization and Viridis visualization, which support the idea of
generating feature maps of one feature map using linear transformations
(cheap operations denoted by spanners and screwdrivers).

Many works designed a deep CNN [40], [41], [42] to
effectively address the image classification task. However,
these attempts have a poor trade-off between model perfor-
mance and compactness. Attempts were made to improve the
trade-off [15], [16], [17], [18], [19] by introducing operations
such as shuffle operation and depthwise convolutions, which
have significantly improved the trade-off. However, the use of
1×1 convolutions adds additional computational complexity.
Previous works [40], [41], [42] relied on the fact that the
deeper CNN is, the more features it will generate, and thus
the better the performance will be.

Ghost modules exploit the observation that multiple iden-
tical copies of unique intrinsic feature maps, which would
otherwise require computationally expensive convolutional
operations, can be identified within the set of feature maps
generated by the convolutional layer [24]. Taking the output
of the first block of VGG16 [40] as an example in Figure 1.
We used two visualization settings, namely the gray visual-
ization at the top displaying 8×8 featuremaps, and the Viridis
visualization at the bottom displaying 8 × 16 feature maps.
As shown below, there are clearly similar and redundant fea-
turemap pairs (we can keep only one pair) detonated as ghosts
which can be generated using linear operations. Furthermore,
it can be observed that there is sparsity in the output obtained
from the Viridis visualization settings, as shown in Figure 1.
This observation indicates that certain neurons are inacti-
vated and consequently, not useful. The results in Figure 1
stimulate the idea of generating other feature maps from a
single feature map using cheap operations which reduces the
computational complexity of the network. We believe that
these similar and redundant features denoted in colored boxes
in Figure 1 are crucial for a high-performing CNN. Hence,
these similar features are generated using cheap operations
rather than discarding them.
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FIGURE 2. (a) SE Module. (b) Ghost module structure without PReLU activation function. (c) Ghost module structure with PReLU activation function.
(d) DFC attention module. (e) Depthwise shortcut.

Based on the above, GhostNetV1 authors proposed to
replace the convolution layers in deep neural network designs
with an essentially freestanding replacement layer named
Ghost module. In Ghost modules, the output tensor for every
convolutional layer is formed by serialization of two pro-
cesses. 1) Create the first x% of the total channels of the
output tensor using a sequential stack of three layers that
includes standard convolution, batch normalization [43], and
a nonlinear activation function, which is by default specified
as a ReLU [26]. 2) The output from this is then sent to the
second block, which is once more a sequential stack of three
layers consisting of depthwise convolution, batch normaliza-
tion [43], and ReLU [26]. The output tensor is completed by
stacking the tensor from the first sequential block with the
output from the secondary sequential block.

Using the above fact, theGhostmodule can effectively gen-
erate the same number of feature maps as the ordinary convo-
lution layer. Therefore, it can be easily integrated (added) into
any existing neural networks such as [15], [16], [17], [18],
[19], [40], [41], and [42] to reduce computational complexity.
The structure of the Ghost module with and without the
activation function is depicted in Figure 2 (b) and (c).

B. GhostNetV1
Using Ghost modules, a novel backbone architecture called
GhostNetV1was proposed in [24] which is effectively amod-
ified version ofMobileNetV3 [44] with a Ghost bottleneckV1
in place of the former bottleneck. These Ghost bottlenecksV1
are essentially made up of Ghost modules which have the

same architectural design as a typical MobileNetV3 bottle-
neck [24], [44] as shown in Figure 3 (a), (b), (c), and (d).
After the input layer, which is a typical convolutional

layer (denoted as the stem of the model), GhostNetV1 is
constructed by stacking Ghost bottlenecksV1 with increasing
channels in the tensor in succession. Based on the dimension-
ality of the input feature map, a staged grouping of the Ghost
bottlenecksV1 is created. Except for the last bottleneckV1,
where the stride 2 design was employed, all the Ghost bottle-
necksV1were applied with a stride of 1. The SEmodules [14]
were also utilized in [24] to offer channel attention for a few
remaining connections in the Ghost bottlenecksV1, increas-
ing accuracy with a minimal computational cost. SE modules
are applied to the residual layer in some Ghost bottlenecksV1
with a SE ratio r = 0.25 [14], [24].

GhostNetV1 latency speed, model size, computational
cost, and accuracy are controlled by the width multiplier
factor denoted as α. A width multiplier can roughly regulate
the model size and computational cost by a factor of α2.
Smaller α leads to low performance and computational cost
and vice versa. A GhostNetV1 with a width multiplier is
denoted as GhostNetV1-α.

The hyperparameters of the GhostNetV1 architecture are
described in detail in Appendix Section-A. These hyperpa-
rameters are important to understand the proposed Ghost-
FaceNets.

C. GhostNetV2
Drawing inspiration from attention-based models [45], [46],
[47], [48], the authors of GhostNetV2 proposed to
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FIGURE 3. (a) Ghost bottleneckV1 structure without stride and SE. (b) Ghost bottleneckV1 structure with SE but without stride. (c) Ghost bottleneckV1
structure with stride and SE. (d) Ghost bottleneckV1 structure with stride but without SE. (e) Ghost bottleneckV2 structure with stride.

enhance the Ghost module of GhostNetV1 by incorporating
long-range dependencies [24], [25]. To achieve this, they
introduced a novel attention-based layer named the DFC
attention branch, shown in Figure 2 (d), which utilizes convo-
lutions to generate attention maps with global receptive fields
[25]. Unlike the self-attention layers employed in MobileViT
[49], [50], the DFC attention branch is highly efficient and
capable of capturing long-range dependencies between pixels
located in different spatial locations. It is noteworthy that
many prior attention modules are hardware-unfriendly due
to the extensive use of tensor reshaping and transposing
operations to implement feature splitting and attention cal-
culation [25]. To ensure hardware compatibility and avoid
slowing the inference time, the authors aimed to develop an
attention-based module that is computationally efficient and
requires minimal tensor operations.

Based upon the DFC attention branch, a new bottleneck
is created shown in Figure 3 (e) and (f). The Ghost module
and the DFC attention are two parallel branches, taking the
same input and collecting information from various view-
points, causing an information aggregation procedure. Their
element-wise product, which incorporates data from both the
Ghost module’s features and the DFC attention module’s
attentions, is the output. Each attention value is calculated
using patches over a wide range so that the output feature can
incorporate data from these patches [24], [25].

The DFC attention branch, shown in Figure 2 (d), consists
of five operations: 1) downsample, 2) Convolution, 3) Hori-
zontal FC, 4) Vertical FC, and 5) Sigmoid. To reduce the extra
computational cost of directly paralleling the DFC attention
module with the Ghost module, a native average pooling and
bilinear interpolation for downsampling and upsampling are
used, respectively. The horizontal FC consists of a batch nor-
malization layer and zero padding in the horizontal direction

(add 4 pixels to the width), followed by depthwise convolu-
tion in the horizontal direction to remove the newly added
4 pixels. And the same structure for the vertical FC but in
the vertical direction (height). Decomposing the FC layer into
horizontal FC and vertical FC has been shown to reduce com-
putational complexity compared to conventional FC layers
and, at the same time, capture long-range dependencies along
the two directions [25].

The hyperparameters of the new bottleneck architecture are
discussed in Appendix Section-A.

IV. GhostFaceNets
This section provides an explanation of the proposed
lightweight FR/FV models called GhostFaceNets. These
models draw inspiration from the SOTAGhostNets [24], [25],
see Figure 4. Three main modifications are proposed:

• Applying different output head settings (named modi-
fied GDC) shown in Figure 5.

• Replacing ReLU by PReLU as our networks’ activation
function.

• Adjusting the SE modules to improve the discriminative
power of GhostFaceNets, see Figure 2 (a).

• Employing the ArcFace loss function which is chosen
based on an extensive ablation study in Section V-C.

Most deep networks designed for image classification,
including GhostNets [24], [25], use the output of the GAP
layer as a feature vector in the embedding process. However,
this method has proven to be less successful when used for
FR/FV [9], [20], [30]. This is because the GAP layer treats
each unit of the output feature map equally, which conflicts
with the assumption that different types of units bring dif-
ferent amounts of discriminative information to the theory
when it comes to extracting a face feature vector. Instead,
we can learn various weights for these units using an FC
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FIGURE 4. (a) Proposed GhostFaceNetV1-1 architecture. (b) Proposed GhostFaceNetV2-1 architecture.

FIGURE 5. Modified GDC, Recognition Head.

layer, then project the knowledge into a small facial feature
vector. Nevertheless, the FC layer ended up having a lot of
weights, which not only makes the model bigger but also calls
for additional processing power. A GDC layer was recently
employed in [20] to treat various output feature map units
with varying degrees of relevance, demonstrating that it is an
effective structure for FR.

In this work, we modified the GDC layer and replaced
the GhostNets GAP layer with the modified GDC layer. The
modified GDC shown in Figure 5 consists of a GDC layer
of 7 × 7 kernel size followed by batch normalization layer
[43]. A convolution layer of size 1 × 1 × embeddingsize is
then applied to create the desired embedding vector (size).
A flattening layer, batch normalization layer [43], and a linear
activation function are then added to the top to produce a
compact 512-dimensional embedding vector (size).

GhostNets adopt the ReLU activation function, which only
permits non-negative activations, as their nonlinearity acti-
vation function [24], [25], [26]. However, various activa-
tion functions have been proposed to address this limitation
[27], [30], [36], [51], [52]. In this study, we opted to use
the PReLU activation function [27] over ReLU [26] inspired

Algorithm 1 |_MAKE_DIVISIBLE(V, D, MIN_VALUE)
Input: V: Input 1, D: divisor, min_value
Output: new_v

1 if min_value is None:
2 | min_value = divisor
3 new_v = max ( min_value, int (v + divisor / 2) // divisor
* divisor)
4 if new_v < 0.9 * v:
5 | new_v += divisor
6 return new_v

by related work and confirmed its empirically superior per-
formance in FR tasks [20], [21], [22], [23]. PReLU enables
negative activations, enhancing the network’s ability to learn
complex nonlinear functions, ultimately improving network
performance.

Additionally, conventional FC layers in SE modules [14]
are replaced by convolutions with the setup shown in Fig-
ure 2 (a). We use GAP followed by a reshaping operation to
convert the output shape to the format 1 × 1 × channel_axis
so that convolution can be applied to it. Then a convolution
is applied to the reshaped output with 1 × 1 kernel size and
reduction factor filters. The reduction factor is formulated as,

_make_divisible(channel_axis× r) ≈ channel_axis× r,

(1)

where r is the SE ratio, and _make_divisible is defined in
Algorithm 1 as pseudo code. The convolution is followed
by the PReLU activation function, which ends the squeeze
operation. A second convolution of kernel size 1×1 and chan-
nel_axis filter followed by the sigmoid activation function is
then applied for the excitation operation. The excitation oper-
ation basically multiplies the channel_axis by 1/r reshaping
it back to 1 × 1 × channel_axis. The output of the sigmoid
activation function is then rescaled by multiplying it by the
input of the SE module. We believe that using channel-wise
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TABLE 1. The performance of the proposed GhostfacenetV1-2 with
different α. The best performance in each benchmark is in bold.

TABLE 2. The perfromance of the proposed GhostFaceNetV1-2 with
different loss functions. The best performance in each benchmark is in
bold.

attention mechanism configuration will further improve the
channel interdependencies at almost no computational cost.
The network includes a parameter that adjusts each channel’s
weight in such a way that it is more responsive to important
features and less sensitive to unimportant features.

Lastly, we set a stride (st) hyperparameter that controls
the stride hyperparameter of the model’s stem (first convo-
lution in the network) that gives the option of applying a fast
downsampling strategy at the beginning of the network or not.
If st = 2, then the fast downsampling is activated with a stride
of 2.

For generalization, we designed GhostFaceNets variants
by changing: 1) the backbone, 2) the width multiplier α,
3) and the stem of the model stride (st) hyperparameter.
We then extensively studied the effect of different hyper-
parameters and training datasets; particularly, we used two
training datasets (MS1MV2 and MS1MV3) in an ablation
study in Section V-C. We denote GhostFaceNetVi i ∈ {1, 2}
of stride st and training dataset data as GhostFaceNeti-st
(MS1MVk) k ∈ {2, 3}. We used strides 1 and 2 for the stride
(st) hyperparameter creating GhostFaceNeti-1 (MS1MVk)
presented in Figure 4 and detailed in Appendix Section-B and
GhostFaceNeti-2 (MS1MVk). A GhostNets of width multi-
plier α = 1.3 (determined by ablation study in Section V-C)

TABLE 3. The performance of the proposed GhostfacenetV2-2 with
different α. The best performance in each benchmark is in bold.

TABLE 4. The performance of the proposed GhostFaceNetV2-2 with
different loss functions. The best performance in each benchmark is in
bold.

TABLE 5. The performance of the proposed GhostFaceNets with different
recognition heads. The best performance in each benchmark is in bold.

is kept the same in the architectures which are shown to
provide the best trade-off between performance and model
complexity.

The ArcFace loss function [9] is chosen as our train-
ing loss function since it minimizes intra-class gap and
exhibits clear inter-class differentiation, outperforming other
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TABLE 6. The performance of the proposed GhostFaceNets with different training datasets. The best performance in each benchmark is in bold.

techniques previously proposed [53], [54]. In the ablation
study, we conducted a set of experiments to determine the loss
function that best fits the FR field and our GhostFaceNets in
Section V-C.

V. EXPERIMENTAL SETUP
This section provides a comprehensive explanation of our
training setup, the datasets we used, and the extensive abla-
tion study that we performed to determine the optimal hyper-
parameters for our model and the FR/FV community.

A. DATASETS
We chose the MS1MV2 dataset, introduced in [9], and the
MS1MV3 dataset, presented in [6], to train our models, based
on prior works [9], [10], [11], [12], [20], [21], [22], [23].
Both MS1MV2 and MS1MV3 are cleaned versions of the
MS-Celeb-1M dataset [55], and contain approximately
5.8 million faces of 85,000 identities and 5.1 million faces
of 91,000 identities, respectively. We evaluate the perfor-
mance of the GhostFaceNets models using these datasets in
Section V-C.

During training, we continuously evaluate our model on
FR/FV benchmarks by using the trained model as a feature
extractor and computing the Cosine distance between feature
vectors in all verification experiments. The test sets employed
in this study cover a wide range of aspects and include LFW
[28], AgeDB-30 [56], CFP-FP [57], CFP-FF [58], CP-LFW
[58], CA-LFW [59], VGG2-FP [60], IJB-B [61], IJB-C [62],
and MegaFace [63].

B. TRAINING SETUP
The proposed models in this paper are implemented using
the Keras framework. Data preprocessing is performed using
theMulti-Task Cascaded Convolutional Networks (MTCNN)
solution [63] to detect and align face images. GhostFaceNets
output a 512 − d embedding after processing input face
images of size 112 × 112 × 3. We used Stochastic Gradient
Descent (SGD) optimizer with 0.9 momentum and cosine

learning rate decay, starting at 0.1 and ending at 10−5. The
models were trained for 50 epochs with three different loss
functions, namely ArcFace [9], CosFace [54], and Sub-center
ArcFace [64]. We added l2 regularization to the model’s out-
put layer with l2 = 1/2 to prevent overfitting. Cosine distance
is used for verification experiments. All experiments were
performed using Python 3.9.13 and Keras on a workstation
with a 1 Nvidia GeForce RTX 3080 GPU. Mixed precision
[65] is used for faster training and less memory usage. The
code will be made available upon publication.

The models in this study were trained using Keras mixed
precision training [65], which uses lower precision (such
as 16-bit) for certain parts of the model while maintain-
ing acceptable performance using higher precision (such as
32-bit) for other parts of the model. This reduces memory
usage and maintains numeric stability, resulting in faster
computations and a reduced time spent transferring data
between the CPU and GPU during training. The use of
Automatic Mixed Precision (AMP) [65] dynamically adjusts
the precision of computations to maintain numerical stabil-
ity, allowing the model to use lower precision when pos-
sible and automatically switching to higher precision when
necessary to avoid issues such as underflow or overflow.
Incorporating mixed precision training in the training of
GhostFaceNets on GPUs is motivated by practical considera-
tions surrounding available hardware resources. By reducing
memory requirements, mixed precision training allows for
the efficient exploration of the potential landscape of model
architectures and hyperparameters in numerous iterations and
variations, as shown in Section V-C.

C. ABLATION STUDY - DETERMINING MODELS
HYPERPARAMETERS
1) GhostFaceNetV1
Determining the width multiplier α is crucial for finding
the optimal model balance between model complexity and
performance. Therefore, five α values were tested and eval-
uated on the LFW, AgeDB-30, and CFP-FP testing datasets.
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TABLE 7. The achieved results on 8 benchmarks. The results are reported in %. The models are ordered on the basis of the number of flops. Our
GhostFaceNets-1 and GhostFaceNets-2 consistently extend the SOTA performance on all evaluation benchmarks for all models. All decimal points are
provided as reported in the respective works. The best performance in each category on each benchmark is in bold, and ∗ indicates the best performance
in all categories.

ArcFace loss function and a fixed stride of 2 were used in
the experiment. Models with different α, their corresponding
complexity, number of parameters, and accuracies on differ-
ent benchmarks are presented in Table 1. It should be noted

that all models in Table 1, 2, 4, 5, and 9 were trained on
MS1MV2 dataset.

The effectiveness of various loss functions was further
examined. In this experiment, three loss functions were
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utilized, namely, ArcFace [9], CosFace [54], and Sub-center
ArcFace [64], were utilized in this experiment. The width
hyperparameter was fixed at α = 1.3, as determined by the
results of Table 1. The stride hyperparameter was set to st = 1
and st = 2. The models’ loss functions and corresponding
benchmark accuracy are presented in Table 2.

2) GhostFaceNetV2
A different sequence of experiments was conducted to exam-
ine the impact of these hyperparameters. The width multiplier
hyperparameter α of the network was first determined by
testing five α values and evaluating their performance in the
LFW, AgeDB-30, and CFP-FP datasets. The ArcFace loss
function was used, and the stride hyperparameter was fixed
to 2 to accelerate training. Table 3 presents the various values
of the models α, the corresponding complexity, the number of
parameters, and the benchmark accuracy. In particular, these
models were trained on both the MS1MV2 and MS1MV3
datasets, unlike Table 1.
Performance was again evaluated after altering the loss

function. Similar to Table 2, in this experiment three loss
functions were used, namely ArcFace [9], CosFace [54],
and Sub-center ArcFace [64]. The width hyperparameter was
fixed at α = 1.3, as determined by the results of Table 3, and
the stride hyperparameter was set to 2 to speed up training.
The models were trained on the MS1MV2 dataset. Table 4
presents the models’ loss functions and corresponding bench-
mark accuracy.

An experiment was also performed to identify the opti-
mal recognition head settings. A conventional GDC head,
commonly used in [20], [21], [22], and [23], was com-
pared to our modified GDC. The width hyperparameter
was fixed at α = 1.3, as determined by the results
of Table 3, the stride hyperparameter was set at 2 for
faster training, and the ArcFace loss function was chosen
based on the results of Table 4. Table 5 presents the
model recognition heads and the corresponding benchmark
accuracy.

3) GhostFaceNets
After fixing the width (α = 1.3 based on the results of
Table 1, and 3), the loss function (ArcFace based on Table 2,
and 4 results), and the recognition head (ModifiedGDCbased
on Table 5), we used the two training datasets, namely
MS1MV2 and MS1MV3, to train GhostFaceNets. We list
down the performance comparison of our models with st = 1
and st = 2 in Table 6, along with their respective confi-
dence intervals. No statistically significant differences were
found between the models presented on the LFW, CFP-FF,
and VGG2-FP benchmarks. However, significant improve-
ments were observed in the CP-LFW, CFP-FP, AgeDB-30,
and IJB-B benchmarks when using MS1MV3 instead of
MS1MV2. The variation in performance on different testing
datasets may be attributed to differences in the size, quality,
and composition of the training dataset, as well as challenges
such as variations in pose, illumination, and expression.

TABLE 8. Comparison of the practical inference time and model size of
the GhostFaceNets.

TABLE 9. The performance of the proposed GhostFaceNets with width
α = 2.

Based on the ablation study, eight models were adopted.
These models have a stride of 1 and 2, a width of
α = 1.3, a modified GDC as recognition head, and
use the ArcFace loss function. These models were trained
on the MS1MV2 and MS1MV3 datasets. The notation
GhostFaceNetVi-st (MS1MVk) represents GhostFaceNetVi
of the stride st trained on MS1MVk, where i ∈ {1, 2},
st ∈ {1, 2} and k ∈ {1, 2}. The eight models are as fol-
lows: GhostFaceNetV1-1 (MS1MV2), GhostFaceNetV1-2
(MS1MV2), GhostFaceNetV1-1 (MS1MV3), GhostFaceNet-
V1-2 (MS1MV3), GhostFaceNetV2-1 (MS1MV2),
GhostFac-eNetV2-2 (MS1MV2), GhostFaceNetV2-1
(MS1MV3), and GhostFaceNetV2-2 (MS1MV3).

We also used the TFLite tool [65] to gauge the real infer-
ence speed of the proposed GhostFaceNets on an ARM-based
mobile phone because they are intended for mobile appli-
cations. Following the common settings in [24] and [25],
we use a single-threaded mode with batch size 1. Table 8
shows the inference time and model size of our proposed
GhostFaceNets.

As a side experiment (which will not be considered in the
selection of hyperparameters for our models), we designed
large GhostFaceNets-1 of width α = 2 to compare it with
large FRmodels.We trained the model onMS1MV2 utilizing
ArcFace as the loss function. The results of the analysis are
presented in Table 9, which demonstrates that even with an
increase in the size of the model, the performance remains
relatively consistent.

VI. RESULTS
This section presents the results of GhostFaceNets models
on various benchmarks and compares them with previous
studies. While adhering to the evaluation methodologies and
criteria of each benchmark and previous research, recognition
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FIGURE 6. Number of FLOPs (in millions) vs. performance on (a) LFW (accuracy), (b) AgeDB-30 (accuracy),
(c) CFP-FP (accuracy), (d) CA-LFW (accuracy), (e) CP-LFW (accuracy), (f) IJB-B (TAR at FAR1e-4), (g) IJB-C
(TAR at FAR1e-4), (h) MegaFace (TAR at FAR1e-6), and (i) MegaFace(R) (TAR at FAR1e-6). Our
GhostFaceNets are marked with a circle marker and red edge color and are placed repeatedly in the top
left corner, proving a SOTA trade-off between FR performance and computational complexity.

and verification performance are evaluated according to
ISO/IEC 19795-1 [66] to enhance reproducibility and
comparability.

Table 7 presents the FR/FV results of our proposed Ghost-
FaceNets models, comparing them to recent SOTA com-
pact models on nine benchmarks. The models are organized
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TABLE 10. The achieved results on MegaFace and refined MegaFace(R) Challenge1 using FaceScrub as the probe set. ‘‘Rank-1’’ refers to the accuracy of
Rank-1 face identification in reported % with 1M distractors, and ‘‘Ver.’’ refers to the face verification given in TAR at 10−6 FAR. All decimal points are
provided as reported in the respective works. The best performance is in bold.

into four groups based on complexity (FLOPs): above 1000,
500-1000, 100-500, and below 100 MFLOPs.

GhostFaceNetsV1 trained on the MS1MV3 dataset
achieved SOTA performance on most benchmarks. Start-
ing with the stride of 1. GhostFaceNetV1-1 (MS1MV3)
outperformed all lightweight SOTA models in groups
1-4 on 8 benchmarks, except for the LFW, AgeDB-
30, and CFP-FP benchmarks. It achieved 99.73% and
98% on LFW and AgeDB-30, respectively, only slightly
behind VarGFaceNet. On CFP-FP, it achieved 96.83%
accuracy, behind models with much higher FLOPs, such
as VarGFaceNet with 1022 MFLOPs, ShuffleFaceNet
1.5× with 577.5 MFLOPs, and ShuffleFaceNet 2×
with 1050 MFLOPs. Notably, GhostFaceNetV1-1 has only
215.658 MFLOPs, significantly lower than the models that
slightly outperformed it.

For stride 2, GhostFaceNetV1-2 (MS1MV3) outperformed
lightweight SOTA models in groups 3 and 4 on all bench-
marks, except for a 0.1% difference on AgeDB-30 against
ShuffleMixFaceNet-S. On CP-LFW and CFP-FF, it outper-
formed all SOTAmodels in groups 1 and 2. It achieved a com-
petitive accuracy on LFW, beating all SOTA models except
VarGFaceNet and MobileFaceNet. On CA-LFW, it achieved
95.6% accuracy, ranking third behind PocketNetM-128 and
PocketNetM-256. On CFP-FP and AgeDB-30, it achieved
93.3143% and 96.9167% accuracy, respectively, compared
to the best verification accuracy of 98.5% and 98.15%
achieved by VarGFaceNet. Notably, GhostFaceNetV1-2
has only 60.296 MFLOPs, which is even lower than
GhostFaceNetV1-1’s FLOPs.

GhostFaceNets trained on the MS1MV2 dataset achieved
relatively lower performance compared to GhostFaceNets
trained on MS1MV3. GhostFaceNetV1-1 (MS1MV2) and
GhostFaceNetV1-2 (MS1MV2) outperformed groups 3 and
4 on all benchmarks, and achieved competitive results against
groups 1 and 2, even outperforming them in some cases. For
example, GhostFaceNetV1-1 (MS1MV2) achieved SOTA

TABLE 11. Ghost bottlenecksV1 hyperparameters. exp means expansion
size, out means the number of output channels, d is the filter size in each
Ghost bottleneck, exp[new] is the modified expansion size, out[new] is
the modified number of output channels, and pre-out is the previous
number of output channels.

accuracy onCFP-FF, CA-LFW, andCP-LFWamong all mod-
els in groups 1 and 2, and GhostFaceNetV1-2 (MS1MV2)
achieved SOTA accuracy on CFP-FF among all models in
groups 1 and 2.

On the large-scale evaluation benchmarks IJB-B and
IJB-C, GhostFaceNetV1-1 (MS1MV3) achieved SOTA per-
formance with 93.116% and 94.943% TAR at FAR 10−4,
respectively. The other GhostFaceNets also achieved compet-
itive results on IJB-B and IVB-C, such as GhostFaceNetV1-2
(MS1MV3) achieving 91.246% and 93.45%,
GhostFaceNetV1-1 (MS1MV2) achieving 92.191% and
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94.058%,GhostFaceNetV1-2 (MS1MV2) achieving 90.526%
and 92.6574%. The best verification performance on these
benchmarks is 92.8% and 94.7% achieved by Mobile-
FaceNet, and 92.9% and 94.7% achieved by VarGFaceNet,
respectively.

Our GhostFaceNetsV2 models demonstrated even more
superior performance, particularly when using a stride
of 1. GhostFaceNetV2-1 (MS1MV3) achieved SOTA per-
formance on all benchmarks, outperforming all previous
FR models in the literature. GhostFaceNetV2-1 (MS1MV2)
also surpassed all FR models in the literature, though
not as well as GhostFaceNetV2-1 (MS1MV3). This shows
that GhostFaceNetsV2 models are highly effective for
FR tasks and represent a significant improvement over
GhostFaceNetsV1 models. A similar trend of improved
accuracy is observed when comparing GhostFaceNetsV2-
2 with GhostFaceNetsV1-2. However, it should be noted
that GhostFaceNetsV2-2 still performed lower than some
models with high computational complexity (above 1000
MFLOPs) on certain benchmarks, such as VarGFaceNet
on LFW (99.85% vs 99.72%). This suggests that the
GhostFaceNetsV2-2 models demonstrate an improvement in
performance over GhostFaceNetsV1-2models and are able to
achieve results that are comparable to or better than models
with higher computational complexity on all benchmarks.

Furthermore, our study evaluated the performance of
GhostFaceNets on MegaFace and its refined version (R),
comparing them to existing models in the literature.We chose
to show the latest top 5 SOTA models shown in Table 10.
Based on the results presented in Table 10, it is evi-
dent that GhostFaceNet outperforms the other methods on
both MegaFace and MegaFace(R) datasets. Specifically,
GhostFaceNetV2-1 achieves the highest Rank-1 face iden-
tification accuracy of 83.2% and the highest verification
rate of 97.5% at 10−6 FAR on MegaFace and achieves the
highest Rank-1 accuracy of 98.64% and verification rate of
98.72% at 10−6 FAR on MegaFace(R). These results demon-
strate that GhostFaceNetV2-1 is superior to other SOTA
models in terms of face recognition performance on large-
scale datasets, which is a crucial task for various real-world
applications.

To visually demonstrate the efficiency of our Ghost-
FaceNets, we compared the number of FLOPs with the
verification performance achieved in Tables 7 and 10 in
Figure 6, for our GhostFaceNets and the top five compact
models that perform best in the recent literature in each
benchmark. We chose the most effective GhostFaceNets,
trained on the MS1MV3 dataset, to convey the capabilities
of GhostFaceNets more effectively. Figure 6 shows that our
GhostFaceNets consistently appear in the upper left corner,
indicating a superior trade-off betweenmodel complexity and
FR performance compared to other approaches.

VII. CONCLUSION
In this paper, we introduced GhostFaceNets, highly accurate
and effective facial recognition models. Many experiments

TABLE 12. Proposed GhostFaceNetVi-1 architecture.

were conducted on well-known publicly available datasets
including LFW, AgeDB-30, and large-scale datasets such as
IJB-B, IJB-C, and MegaFace. The findings of the overall
study show that our proposed GhostFaceNets are effective
for applications with minimal computational complexity con-
straints. It has been found that among a range of models
with varying computational complexity, from 0 MFLOPs
to 1000 MFLOPs, the GhostFaceNets have demonstrated
exceptional performance on all the benchmarks used to
evaluate their capabilities. In particular, they have achieved
SOTA performance, indicating that they are among the most
advanced models in their field in terms of both efficiency and
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TABLE 13. Comparison between large SOTA FR models and our GhostFaceNets. The best performance in each benchmark is in bold.

effectiveness. This is a significant achievement, as it suggests
that the GhostFaceNets can deliver superior results while also
being efficient in their use of computational resources.

APPENDIX
A. GhostNets BOTTLENECK
At each stage of the stacked Ghost bottlenecksV1, the filter
sizes d, the expansion size exp, the number of output channels
out, and the previous number of output channels are summa-
rized in Table 11. The exp and out are obtained from [24]. The
new expansion size exp[new], and the new number of output
channels out[new] are computed using,

out[new] = _make_divisible(exp[i]×α, 4)i∈ [1, 2, . . . , 16],

exp[new] = _make_divisible(exp[i]×α, 4)i∈ [1, 2, . . . , 16],

(2)

where the width multiplier is α = 1.3. make_divisible func-
tion ensures that all layers have a channel number that is
divisible by 8. And the previous number of output channels
is basically given by,

pre− out[i] = out[new][i− 1]i ∈ [2, 3, . . . , 16],

pre− out[1] = 20, (3)

The Ghost bottlenecksV1’ hyperparameters are displayed
in Table 11. The hyperparameters described below are for
the stride of st = 1 Ghost bottleneckV1. Regarding the stride
of st = 2 Ghost bottleneckV1, a depthwise convolution with
a stride of (st = 2) is placed between two Ghost modules,
as shown in Figure 3 (c) and (d).

The hyperparameters Ghost bottleneckV2 are kept the
same as in Table 11 with a small modification of using the
parallel DFC attention branch and Ghost module branch from
bottleneck i = 3 till bottleneck i = 16.

B. GhostFaceNets ARCHITECTURE
The detailed architecture of the proposed GhostFaceNetVi-1
i ∈ {1, 2} is shown in Table 12 and Figure 4. In Table 12, the
BN denotes Batch Normalization [43], G-bneck Vi denotes

GhostVi bottleneck, and the Shortcut term denotes that the
concept of shortcut was used in the network to connect the
input to the output when out[new][i − 1] = pre − out[i]
& strides > 1. This is used to avoid degradation issue and
preserve information. The shortcut is basically a depthwise
convolution of d×d kernel size and stride of st = 2 followed
by batch normalization [43], convolution, and again batch
normalization [43] as shown in Figure 2 (e).

C. GhostFaceNet COMPARISON WITH OTHER SOTA
LARGE FACE RECOGNITION MODELS
In order to demonstrate the superiority of our proposed model
for FR, we conducted a comprehensive comparative study
with SOTA large models in the literature. This comparison
was made on nine benchmarks, including LFW [28], AgeDB
[56], and large-scale datasets, such as MegaFace [63], its
refined version (R), and the benchmarks IJB-B [61] and IJB-
C [62]. The main objective of this study was to evaluate the
performance of our model against existing SOTA approaches
and highlight its strengths and weaknesses compared to the
current SOTA.

The comparative study involved a detailed evaluation of
various FR models, including ArcFace [9], ElasticFace [10],
FaceNet [32], SphereFace [53], CosFace [54], Prodpoly [68],
SFace [69], and our proposed GhostFaceNets. The evaluation
was based on accuracy, TAR at 10−4 FAR, and TAR at 10−6

FAR.
Our approach outperformed all other models and achieved

SOTA results on all benchmarks except CA-LFW [59] and
the refined version of MegaFace [63] by a significant margin.
On CA-LFW and MegaFace refined, our approach achieved
an accuracy of 96.1167% and a Rank-1 accuracy of 98.64%,
and a verification TAR of 98.72% at a FAR of 10−6 compared
to the current SOTA model, Prodpoly, which achieved an
accuracy of 96.233%, a Rank-1 accuracy of 98.78%, and a
verification TAR of 98.95%.

Overall, the results of the comparative study demonstrate
the effectiveness of our proposed model and its superiority
over the existing SOTA models for FR tasks.
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