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ABSTRACT Versatile Video Coding (VVC) introduces many advanced video coding techniques. These
advanced video coding techniques not only improve video compression efficiency and video quality, but
also greatly increase coding time and computational complexity. Therefore, this paper uses a fast CU
partitioning decision algorithm based on texture complexity and convolutional neural networks (CNN). First,
we performed statistics and analysis of CU segmentation patterns for videos in the standard training set,
then processed large blocks of CU based on texture complexity. To realize the purpose of fast partitioning,
we design different CNN models for CU with different segmentation modes. In the design of CNN model,
we use the symmetric convolutional kernel and asymmetric convolutional kernel to extract features in
different directions effectively. In the loss function, we used the cross-entropy function to train the CNN
model to improve the accuracy of the model. Finally, a double threshold is set in the candidate list to achieve a
compromise between coding performance and coding complexity. Experimental results show that, compared
to the VTM10.0 anchoring algorithm, our fast scheme, in terms of encoding time, decreases by 55.90% and
BDBR increases by 1.79%; our moderate scheme, in terms of encoding time, decreases by 47.90%. BDBR
increases by only 1.29%.

INDEX TERMS CNN, asymmetric convolutional kernel, symmetric convolutional kernel, VVC.

I. INTRODUCTION
With the pursuit of high-resolution video, full high definition
(FHD) video is no longer enough to meet people’s needs,
and 4K and 8K resolution videos have come into being.
The ensuing network transmission pressure is huge. In this
case, High Efficiency Video Coding (HEVC) is no longer
effective in compressing large amounts of data. Therefore,
the Joint Video Experts Group (JVET) of the Video Coding
Experts Group (VCEG) of the International Telecommuni-
cation Union - Telecommunication Standardization Sector
(ITU-T) and the Motion Picture Experts Group (MPEG)
of the International Organization for Standardization/
International Electrotechnical Commission (ISO/IEC)worked
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on the development of the next generation video coding
standard, namely the Versatile Video Coding (VVC) [1].

HEVC is based on the traditional macroblock encoding
method, which uses coding tree units. In efficient video cod-
ing, each frame of the picture is divided into coding units
(CTUs), which can be further divided into coding units (CUs)
by quadtree division, and CUs can also be divided into four
smaller sub-CUs by quadtree division. Both CTU and CU are
square. the maximum size of CTU is 64 × 64, the minimum
size is 16 × 16. the maximum size of CU is 64 × 64, the
minimum size is 8×8. Unlike HEVC, VVC uses a new block
division structure with a nested multi-type of tree (QTMT).
It is due to theQTMTdivision that CU can be divided not only
into squares but also rectangles to better accommodate video
content with different texture characteristics. As a result,
the encoding efficiency is greatly improved. Compared with
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FIGURE 1. Partition structure and six split modes.

HEVC, the QTMT division used in VVC can generate more
types of subunits and can better adapt to different video
contents. In VVC, there are six ways to classify CU, as shown
in Figure 1: Non-split (NS), quadrinomial tree (QT), vertical
binary tree (BTV), horizontal binary tree (BTH), vertical
trinomial tree (TTV), and horizontal trinomial tree (TTH)
[2]. These six division patterns can form a candidate list, and
the optimal pattern n∗ is the pattern with the smallest RDCost
in the candidate list n. The two calculation equations are as
follows:

RD Cost = SSE + λ × Bitmode (1)

n∗
= nminRDCost (2)

where SSE is the distortion of luminance and chrominance,
Bitmode is the cost of in-frame prediction, and λ is the
Lagrangian multiplier. n1 contains six division modes, NS,
QT, VBT, HBT, VTT, and HTT, and n2 contains five division
modes, NS, VBT, HBT, VTT, and HTT.

Since VVC adopts a new block partitioning structure of
nested multitype trees (QTMT), the segmentation structure is
optimized to better match the texture features of the image,
the video quality is significantly improved, and the prediction
residuals are reduced [2]. Compared to HEVC [3], VVC not
only provides improvements in video quality and reduces
the time used in the encoding process. Therefore, for the
new block partitioning structure of nested multi-type trees
(QTMT), we used a combination of traditional methods and
convolutional neural networks.

We used a gradient-based method and a neural network-
based method to realize the prediction of CU division
patterns. First, we now use an algorithm based on texture
complexity to determine whether CU is divided for CU with
large size, and then, we use a fast CNN-based CU division
algorithm for CU with multiple division patterns to accom-
modate fast CU division decisions for VVC. Then explain
the CNN model in detail, and finally select the optimal seg-
mentation mode by adjusting the threshold in the candidate

list. Our method guarantees both the reduction of the time of
the encoding process and the loss of video quality within an
acceptable range.

Section II reviews the related work of previous gener-
ations in reducing the computational complexity of VVC.
Section III presents a statistical kernel analysis on a standard
dataset. Section IV presents our pre-decision algorithm based
on neural networks using texture complexity-based algo-
rithms. In Section V, we detail the results of the experiments
with the standard training video set and an analysis of the
results, and Section VI summarizes the algorithms used in
this paper and the expected results achieved.

II. RELATED WORK
To achieve to computational complexity reduction in video
coding. In [4], Otsu’s method is used by measuring the com-
plexity of the LCU texture and deciding whether to skip the
CU depth level or not. Since the predicted patterns are related
to the gradient direction, the Sobel operator is improved
to achieve the purpose of measuring the gradient direction
of the PU to reduce the in-frame patterns in the candidate
list. In [5], two algorithms are used, in the VVC coding
process, by combining a multi-pair Bayesian algorithm and
an improved coding unit division decision algorithm with a
de-block filter, which can discard some unnecessary candi-
date patterns in advance to achieve a reduced complexity of
video coding. In [6], a fast decision algorithm based on vari-
ance and gradient is used with the aim of solving the asym-
metric partitioning problem in VVC by minimizing the time
used in the encoding process without losing video quality.
A method incorporating a fast texture energy-based CU parti-
tioning decision algorithm and a texture orientation-basedCU
segmentation pattern decision algorithm is proposed in [7].
The method uses texture features to predict the segmentation
mode of coding units and discards unnecessary candidate
patterns to achieve the goal of reducing the computational
complexity and computational effort of intra-frame coding in
VVC. In [8] the horizontal and vertical texture complexity is
evaluated based on the sum of the mean absolute deviation
(SMAD) of the sub-blocks, and then the ratio of the SMAD
of the threshold and texture direction is used to predict the
best segmentation pattern. In the literature [9], a novelmethod
of pattern decision making by inserting a decision tree is
proposed, which significantly reduces the encoding process
used is the traitor. In [10], it is proposed to divide CU blocks
into horizontal and vertical division methods based on texture
direction in advance based on gradient, skipping unnecessary
division patterns in advance. In the literature [11], 4K video
is first analysed and modelled, using a decision tree approach
that takes full account of its features to improve the accuracy
of the model predictions.

Deep learning provides an effective solution to the clas-
sification problem through deep convolutional neural net-
works (CNN) when it comes to CU segmentation decisions.
In the literature [12], the texture and gradient information of
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the CU is analysed to select the optimal division pattern to
end the division early. In the literature [13], a unique CNN
model is proposed which has the function of early exit from
coding unit division. The early exit mechanism is used to
speed up the coding process. In the literature [14], an intra-
frame pattern decision algorithm based on the random for-
est classifier model is designed to optimize the algorithm
for intra-frame pattern prediction. In the literature [15], the
probability of dividing a size 64 × 64CU into 4 × 4 is
calculated for its boundary vector, and then the probability of
dividing a size 64 × 64CU downwards is deduced in reverse.
In literature [16], an early termination is hierarchical CNN is
proposed instead of the process of searching RD Cost using
brute force. In the literature [17], coding units of different
sizes are classified and then CNN models are designed for
their unique features to improve the coding efficiency. In lit-
erature [18], a fast ResNet-based CU partitioning decision
algorithm is proposed to predict CU segmentation patterns
by CNN models to shorten the coding time. In [19], the
decision of whether to terminate the division early is made
by judging the extracted features and decidingwhether to skip
the horizontal or vertical partition early. In the literature [6],
texture complexity is used to detect whether CU is partitioned
or not. In the literature [20], the extraction of gradient fea-
tures with the Sobel operator was proposed to solve the non-
square classification problem in the coding process. In the
literature [21], the coding time is shortened by improving the
ETH-CNN model by terminating the block division earlier.
In the literature [22], a deep learning approach to drive CTU
partitioning is used instead of traditional algorithms to speed
up the encoding. In the literature [15], the difficulty of block
partitioning is reduced by predicting the probability vector
through neural networks.

III. STATISTICS AND ANALYSIS
The goal of this section is to statistically and analyse the clas-
sification patterns of different CUs. First, the video sequence
we used was the JVET test set, and we selected three standard
video sequences with different resolutions. Video sequences
include Johnny, Campfire, Basketball Drive and Basketball
Pass.We not only coded them, but also counted the proportion
of CU segmentation patterns. Detailed statistics and analysis
are performed through video sequences of different resolu-
tions and sequences of different video contents of the same
resolution.

We counted 4716524 CUs with CU size ranging from
32 × 32 to 16 × 16. From Table 1, we can visualize the
proportion of different CU segmentation patterns in the four
video sequences.

1) Among the CUswith different sizes, we can see that the
lowest percentage without division is 17.43% and the
highest percentage is 42.38%. Therefore, early termi-
nation of CU division not only reduces the complexity
in the coding process, but also saves the time used in
the coding process.

2) The size of 32× 32CU, HTT and VTT have the lowest
percentage among the six segmentation modes, with an
average of 8.27% and 7.34%, respectively. Therefore,
we focus our analysis on the other four segmentation
modes. Thus, CNN models are constructed for CU of
size 32 × 16 and 16 × 32.

IV. PROPOSED METHOD
A. THE OVERALL ALGORITHM
Unlike HEVC, VVC adopts the QTMT division, and VVC
contains 6 division modes. In VVC intra-frame CU division,
the division mode of each CU is determined using a brute
force search of the RD Cost. The search approach consists
of two parts: a top-down process of checking the RD Cost
of the child CUs and a bottom-up process of comparing the
RDC of the child CUs with the RDC of the parent CUs.
In this search approach, there will be many redundant com-
putations, therefore, we propose an early termination of CU
division and reduction of redundant coding computations by
predicting the CU division pattern. Compared with traditional
methods, CNN can effectively solve the classification and
prediction problems. Figure 2 shows the flowchart of the
algorithm, which firstly performs gradient checking for size
64 × 64CU to determine whether to divide, if not, it directly
exits the encoding, and if the division condition is satisfied,
then the division is performed. Then the sub-CU is predicted
by the CNN model for the division pattern, and the optimal
division pattern is selected by Equation 8. If the optimal
division pattern is NS, the encoding is ended, and if the
optimal pattern is not NS, the encoding continues to return
to the CNN model until the CU size and depth do not satisfy
the judgment condition, and the encoding is ended.

B. PRE-DECISION ALGORITHM WITH GRADIENT-BASED
TEXTURE COMPLEXITY
The purpose of the pre-decision method is to decide whether
to segment the CU by judging the texture complexity. Pro-
cessing and analysis of the trained dataset, a size of 64 x
64CU can only produce two division patterns. Therefore,
we will not use the neural network model to process them
to avoid wasting unnecessary time. We propose a gradient-
based approach to detect texture complexity and determine
whether CU is divided. the gradient of CU is calculated by
the Sobel operator with the following equation.

grad =

∑w
i=1

∑h
j=1

(
g2x + g2y

)
w× h

(3)

where, gx and gy are the gradients in the x and y directions
computed by the Sobel operator. Wand H denote the width
and height of the CU. After calculating the gradient, we can
need to determine whether the CU is divided according to the
size of the gradient by comparing the gradient with the square
of the quantization parameter, where the lower limit can be
found in the article [23] and the specific judgment condition
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TABLE 1. The proportion of different divisions in CUs of different sizes.

is known by Equation 4.

Result =

{
Nonsplit grad < 0.15 × QP2

split (other)
(4)

When the gradient is less than 0.15×QP2, the size is
64×64CU without division, and when the gradient is greater
than 0.15×QP2, the size is 64× 64CU for quadtree division.
Compared to neural network models, pre-decision algorithms
do not require a network model to be built or a model to be
trained, saving time in training the model compared to CNNs.

C. STRUCTURE OF CNN
Different from HEVC, VVC adopts a new block division
structure of nested multitype tree (QTMT). Based on the
asymmetry of MT division, we improve the CNN model to
improve the model’s ability to extract asymmetric features.
The model is used to predict the probability of dividing
patterns, which can effectively reduce the coding complexity.
First, we obtain the CU of the size we need to input into
the CNN, extract the features of the CU through different
convolutional layers, then stitch the extracted features into
a feature vector, and then perform feature fitting through
different connection layers, and finally output a 1×n pre-
diction probability vector, where the size of n is equal to
the number of CU division patterns, which correspond to
different patterns in the candidate list. In addition, since QP
also has an impact on the division mode of CU. Therefore,
we will add QP as an external feature to the fully connected
layer. Then the activation function we use is SoftMax. In this
section, we will introduce our neural network model and its
important structure.

FIGURE 2. The algorithm flow chart.

V. CONVOLUTION LAYER
The convolutional layers designed for different CU sizes
are different. There are six division modes for CU of size
32 × 32 and 16 × 16: no division, quadtree, vertical binary
tree, horizontal binary tree, vertical trinomial tree, and hor-
izontal trinomial tree. Therefore, we replace the symmetric
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convolution kernels with asymmetric convolution kernels to
be able to extract the features in different directions effec-
tively. 32 × 32 CNN model is shown in Figure 3(a), and
the structure contains three convolutional layers with three
branches in each layer. The size of the branch convolution
kernels in the first layer is 2×4, 4×4, and 4×2 (the number
of filters is 16), and the size of the convolution kernels in each
branch of the second and third layers is 1 × 2, 2 × 2, and
2 × 1 (the number of filters is 24 and 36), respectively. The
32×16 CNNmodel is shown in Figure 3(b), and the structure
contains two convolutional layers with three branches in each
layer. The size of the convolutional kernels in the first branch
of the layer is 2 × 4 and 4 × 2 (the number of filters is 16),
and the size of the convolutional kernels in the second and
third layers is the same, and the convolutional kernels in each
branch are 1 × 2, 2 × 2, and 2 × 1 (the number of filters is
24 and 36, respectively). While 32× 16 and 16× 32 have no
QT division and only five division patterns, so we use non-
pairwise convolutional kernels to extract features in different
directions. 16 × 16 CNN model is shown in Figure 3(c), and
the structure contains three convolutional layers with three
branches in each layer. The size of the convolutional kernels
of the first branch is 2 × 4, 4 × 4, and 4 × 2 (the number of
filters is 16), and the size of the convolutional kernels of the
second and third layers are the same, and the convolutional
kernels of each branch are 1×2, 2×2, and 2×1 (the number
of filters is 24 and 36), respectively.

VI. FULLY CONNECTED LAYER
The features extracted in the feature extraction stage are
stitched together and spliced into 1 × 2176, 1 × 1024, and
1 × 544 feature vectors. Feature vectors of size 32 × 32 CU
are then feature-fitted by fully connected layers of 2176 ×

128, 128 × 96, and 96 × 6. Feature vectors of size 32 × 16
CU are then feature-fitted by fully connected layers of 1024×

256, 256 × 128, and 128 × 5. The feature vectors of CU with
size 16 × 16 are then feature-fitted by fully connected layers
of 544 × 64, 64 × 48, and 48 × 6. Again, because QP has
a significant effect on the division of CU, QP is fused into
the feature vectors of the fully connected layer as external
features.

VII. LOSS FUNCTION
Cross-entropy can be used tomeasure the probability between
two probability distributions. CU classification is a multi-
classification problem, and there is an error between the pre-
dicted value and the true value generated by the CNN model,
and the greater the difference between the two probability
distributions, the greater the cross-entropy. Where p is the
prediction vector and q are the label vector, the loss function
is calculated as follows:

H (p, q) = −

n∑
i=1

p (xi) log (q (xi)) (5)

Loss = H (p, q) + H (1 − p, 1 − q) (6)

A. MODEL SELECTION
This section focuses on the pattern selection process, the
main purpose of which is to balance the time and coding
complexity used in the coding process. In VVC intraframe
coding, CU of size 32 × 32 and 16 × 16 will generate six
division patterns, while CU of size 16 × 32 will generate
five patterns with probability after CNN. Then, the division
pattern with higher probability is selected from the candidate
list. Therefore, we need to introduce a threshold ϕ to train our
CNN model. By using an appropriate threshold ϕ, the accu-
racy of our model in predicting split patterns is guaranteed
while allowing as few split patterns as possible to make it
into the final candidate list.

VIII. UPDATE CANDIDATE LIST
The CU passes through the CNN model will generate the
probabilities of the corresponding patterns that make up our
candidate list. To improve the accuracy of the model, we need
to update the candidate list. Therefore, the candidate list
is first sorted, and then the optimal division pattern in the
candidate list is decided by threshold.

For size 32 × 32 and 16 × 16CU, there are six division
patterns in the candidate list, while for size 32× 16CU, there
are five division patterns in the candidate list, so we introduce
a threshold ϕ to select the appropriate division patterns in n′.
The predicted probability vector P obtained from the CNN
model is called first, and then the candidate list is sorted
in descending order according to the size of the predicted
probability vector P. The formula is as follows:(

L1,P′
)

= sort (L,P) (7)

where L1 is the candidate list after descending order and P′ is
the predicted probability vector after descending order; after
sorting the candidate list, we need to set a threshold ϕ to select
n′ suitable division patterns and update the candidate list L ′

according to the obtained n. where L ′
= {Lj|1 ≤ j ≤ n},

Lj is denoted as the J element in L. The updated candidate
list is obtained by this method, and RD Cost comparison
is performed for n(n1 ≤ n ≤ n2) patterns in the updated
candidate list.

IX. THRESHOLD SETTING
Given the input to determine the size of the CU, the prediction
probability is obtained by the CNN model, and n division
patterns are selected to predict how the CU will be divided.
Specifically, when the n division modes of the CU of the
determined size satisfy

∑x
i=1 P

′
i ≥ ϕ, x ∈ {1, 2, 3, 4, 5, 6},

the candidate list is updated to compare the RD cost with the
parent CU to determine the final division mode, thus avoiding
the process of comparing all redundant RD costs and signifi-
cantly reducing the coding time and coding complexity.

After passing through the CNN model, the sum of the
vector probabilities of the resulting division pattern is 1.
When the probability of one vector is much greater than the
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FIGURE 3. Architecture of CNN models. (a) Architecture of CNN models for 32 × 32 CU. (b) Architecture
of CNN models for 16 × 32 CU. (c) Architecture of CNN models for 16 × 16 CU.

probability of other vectors, the candidate list discards the
other division patterns, leaving only the division patterns.
This case minimizes the coding complexity and coding time.
The accuracy of the model in predicting division patterns
may be reduced when the probability of having two or more
division patterns is close and relatively large. So, we test
different threshold judgment schemes tomeet different needs.
In equation 8, We set the threshold value as ϕ ∈ (0, 1). In the
JVET test set, we use seven official standard video sequences
to train our CNN model and set different thresholds to test
the accuracy of our CNN model under the standard video
sequence.

n = arg min x s.t.
x∑

k=1

P′
i ≥ ϕ, x ∈ {1, 2, 3, 4, 5, 6} (8)

In the JVET test set, we used video sequences of different
resolutions to train our models. By changing the threshold,
the prediction accuracy of our model is improved. When
the candidate list only outputs the pattern with the highest
probability by default, the CNN model of size 32 × 32 CU

has poor prediction accuracy, only about 72%. the prediction
accuracy of CNNmodels of size 16×32, 32×16CU is about
the same, and the model accuracy is slightly higher than that
of 32 × 32 CNN model. Therefore, we need to adjust the
parameter ϕ according to different requirements. when the
parameter ϕ is larger, the more patterns in the candidate list,
the more accurate the model prediction, the higher the video
quality, and the longer the coding time.

For this purpose, we designed different threshold schemes
to meet different requirements. Inspired by [24] at the time
of testing. Through experiments, we obtain different exper-
imental results, as shown in Figure 4. The size 32 × 32,
16 × 32 and 16 × 16CU are highly affected by the threshold
value. In Table 2, we have designed two scenarios to meet the
different requirements. The purpose of the express solution
is to speed up the encoding process and reduce unnecessary
calculations. The purpose of the modest scheme is to save
more time in the encoding process while ensuring that the
loss of video quality is within an acceptable range. Moderate
encoding schemes have a larger threshold, better encoding
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FIGURE 4. Relationship between the threshold ϕ and the accuracy of CNN
model prediction.

TABLE 2. Threshold values for the model under both scenarios.

performance, higher video quality, and more time savings
in the encoding process than fast encoding schemes. There-
fore, we can choose different schemes according to differ-
ent requirements to achieve a compromise between reducing
redundant computations in the encoding process and improv-
ing video encoding performance.

X. EXPERIMENTAL RESULTS
Firstly, the experimental equipment we used is described.
Second, we perform experiments on the dual-threshold
scheme and analyse the experimental results. Finally, the
experimental results are compared and analysed with those of
other algorithms to evaluate the proposed algorithm to reduce
the time used in the encoding process while still maintaining
a high-quality video picture. To demonstrate the feasibility of
our algorithm.

A. EXPERIMENTAL CONFIGURATION
The algorithm proposed in this paper is implemented in
VTM10.0, and both coding and CNN models are run on a
computer equipped with an 12th Gen Intel(R) Core (TM)
i9-12900H 2.50 GHz, 16GRAM andWindows OS. The video
sequences of the test set can be divided into six types based
on resolution. The resolutions of the six video sequences are
shown in Table 3. The video sequences of the test set were
encoded according to four quantization parameters QP (22,
27, 32, 37).

Compared to the BDBR and coding time savings (TS) of
VTM10.0 to evaluate the performance of our model, the TS
is calculated as follows:

TS =
1
4

∑
QPi∈{22,27,32,37}

TVTM10.0 (QPi) − TSC (QPi)
TVTM10.0 (QPi)

×100% (9)

TABLE 3. Resolution of six video sequences.

where TVTM10.0 is the anchor coding time of TVTM10.0
and TSC is the coding time of our proposed algorithm.
In VVC, a common metric used in evaluating an algo-
rithm is TS. The larger the TS, the shorter the coding
time and the better the algorithm. From Equation (9),
the shorter the encoding time of our proposed algorithm,
the larger the TS, the superior the performance. Therefore, the
larger the TS, the greater the performance improvement of the
algorithm.

B. ANALYSIS OF EXPERIMENTAL PERFORMANCE
We tested 22 standard video sequences using two thresh-
olding schemes to test the time of our algorithm during the
encoding process and the performance associated with the
encoding process. The statistical experimental results are
shown in Table 4, from which under the fast scheme, the
proposed algorithm saves 55.93% of the coding time and
BDBR increases by 1.81%. Under the moderate scheme, the
proposed algorithm saves 47.9% of the coding time and the
BDRD increases by only 1.29%.Analysis of the experimental
results shows that the fast scheme reduces the encoding time,
but the BDRD increases toomuch.When comparing the high-
resolution video, it can be found that the encoding time of the
moderate scheme is only 7.97% more than that of the fast
scheme, while the BDRD is reduced by 0.52%. The main
reason is that the high-resolution video tends to be divided
into smaller CUs when encoding, which leads to the growth
of encoding time and thus video performance improvement,
which is consistent with our experimental results. At low res-
olution video, the modest scheme increases the encoding time
by only 7.59% compared to the fast scheme, while BDRD
decreases by 0.47%. The main reason is that low-resolution
videos tend to divide into larger CUs more, which reduces the
coding complexity and coding time. In addition, the coding
time of different video sequences fluctuates under the same
resolution, for example: In the fast-encoding scheme, A1
takes 6.12% less time than the encoding process for A2
video sequences, while in the moderate encoding scheme,
A1 takes 1.16% less time than the encoding process for A2
video sequences. So, the performance of the two schemes is
about the same. In summary, the performance of the moderate
coding scheme is significantly improved, and the algorithm
can significantly reduce the time used for the coding pro-
cess and reduce the coding complexity, resulting in better
performance. Compare our proposed algorithmwith previous
Compare our proposed algorithm with previous algorithms,
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TABLE 4. Comparison results of the dual-threshold scheme with the VTM10.0 encode.

TABLE 5. Compare the performance of our algorithm with the performance of others’ algorithms.

it can be seen from Table 5 that the two metrics we use are
TS and BDRD.

In Table 5, comparing with BDRD, our algorithm sig-
nificantly outperforms Chen and Fan in terms of BDRD.
the experiments of Lin, Chen, and Fan were all conducted
on VTM5.0, while our experiments were conducted on
VTM10.0, which uses the same CU segmentation scheme as
VTM5.0 and VTM10.0. Therefore, our comparison is reason-
able. Overall, our algorithm has only 1.29% BDRD without
wasting much coding time, so our algorithm is moderate.
In encoding standard video sequences at different resolu-
tions, we can see that the new way of encoding structure
adopted by VVC is able to adapt to different video sequences.
Our algorithm is more adaptable and significantly faster

than the traditional VVC algorithm, saving more coding
time.

Further RD performance analysis is performed for the
algorithms we used. We compare our algorithm with the
VTM10.0 anchoring algorithm under two video sequences,
as shown in Figure 5, the video sequences are ‘‘FourPeo-
ple’’ and ‘‘Johnny’’, respectively. The video sequences are
‘‘FourPeople’’ and ‘‘Johnny’’ respectively. The horizontal
coordinates indicate the bit rate, and the vertical coor-
dinates indicate the Y-PSNR. At low QP, the difference
between the RD curves of our proposed algorithm and
the VTM10.0 anchoring algorithm is minimal and within
an acceptable range. The main reason for this deviation
is that a high-quality video picture is maintained while
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FIGURE 5. RD curves of ‘‘Johnny’’ and ‘‘FourPeople’’. (a) RD curves of
‘‘Johnny’’’. (b) RD curves of ‘‘FourPeople’’.

ensuring a reduction of the time used in the encoding
process.

XI. CONCLUSION
This paper uses a fast CU partitioning decision algorithm
based on texture complexity and convolutional neural net-
works (CNN). It is well known that VVC uses QTMT seg-
mentation, which improves the coding performance but also
significantly increases the computational complexity. First,
we perform statistics and analysis of CU segmentation pat-
terns on the standard training set of videos, then process the
size 64 × 64 CUs based on texture complexity, and then
design a CNN model for CUs with multiple segmentation
patterns in VVC to achieve fast segmentation. In the design
of CNN model, we use symmetric convolution kernel and
asymmetric convolution kernel in the convolution layer for
better feature extraction. On the loss function, we use a cross-
entropy function to train our model to improve the accuracy
of the predictive partitioning model. Finally, by setting an
appropriate threshold in the candidate list, the time spent in
the encoding process can be reduced and the efficiency of
the encoding process can be improvedwhile maintaining high
quality video. The experimental results show that, compared
with the VTM10.0 anchoring algorithm, our fast scheme,
in terms of coding time, decreases by 55.93% and BDBR

increases by 1.81%; our moderate scheme, in terms of coding
time, decreases by 47.9%. BDBR increases by only 1.29%.
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