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ABSTRACT Detecting objects remains one of computer vision and image understanding applications’ most
fundamental and challenging aspects. Significant advances in object detection have been achieved through
improved object representation and the use of deep neural network models. This paper examines more closely
how object detection has evolved in the era of deep learning over the past years. We present a literature
review on various state-of-the-art object detection algorithms and the underlying concepts behind these
methods. We classify these methods into three main groups: anchor-based, anchor-free, and transformer-
based detectors. Those approaches are distinct in the way they identify objects in the image. We discuss
the insights behind these algorithms and experimental analyses to compare quality metrics, speed/accuracy
tradeoffs, and training methodologies. The survey compares the major convolutional neural networks for
object detection. It also covers the strengths and limitations of each object detector model and draws
significant conclusions. We provide simple graphical illustrations summarising the development of object
detection methods under deep learning. Finally, we identify where future research will be conducted.

INDEX TERMS Object detection, deep learning, review, convolutional neural networks, transformers,

survey, neural networks.

I. INTRODUCTION

Research and breakthroughs in object detection fall into two
main periods. Before 2014, they were marked by traditional
detection models, and after 2014 by models based on deep
learning. Furthermore, due to the successful application of
deep neural networks (DNNs) and convolutional neural net-
works (CNNs) [1], especially in recent years, the situation in
many artificial intelligence fields has improved considerably.
As a result, significant progress has been made in computer
vision tasks such as classification, segmentation, and object
detection [2]. Object detection involves image classifica-
tion [1] and semantic and instance segmentation [2], [3].
Visual object detection is a process of image classification [3]
and localization. This task becomes more complex than sim-
ple image classification or classification with localization,
as an image usually contains several objects of different
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categories. It consists of locating the instances of an object in
a given image and assigning each object instance a matching
class label from a wide range of predefined classes. Deep
learning-based object detection models using convolutional
neural networks and transformers are now playing a pivotal
role in the evolution of this domain. These models can provide
vital information for the semantic understanding of images
and videos. It has experienced a rapid rate of adoption in a
variety of sectors. Examples include support for autonomous
cars to navigate safely in traffic [4], [5], [6], [7], detection of
abusive behavior [8], [9], facial detection [10], [11], human
behavior analysis [12], [13], and medical imaging such as
cancer detection [14], [15], robotics [16], [17], general image
processing techniques such as cropping, orientation detec-
tion, and contrast enhancement [18], [19], [20], [21], remote
sensing applications [214], [215], [216], and many other use
cases [217], [218], [219]. Regarding future use cases for
object detection, the possibilities are endless. To develop
algorithms that can detect objects in a scene, we need to look
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beyond shallow and deep CNNss. For a better understanding of
the dynamics and interactions between objects in these visual
scenes, it is necessary to use sequential and relational infor-
mation modeling to connect objects both in time and space.
However, before introducing and clarifying these advanced
techniques, it is worthwhile first to understand the evolution
of state-of-the-art object detectors, their limitations, and how
they can be addressed. This paper presents an in-depth review
of several approaches for solving the object detection task.
We will explore and discuss the different frameworks used
for object detection and the primary data sets and metrics
applied to evaluate the detection. We describe the advantages
and limitations of the most widely used convolutional neu-
ral networks, serving as a backbone for the leading object
detection models. Initially, we cover algorithms from the
anchor-based family for object detection, including two- and
one-stage object detectors. We also review more sophisticated
and faster algorithms based on anchor-free and transformer-
based object detection approaches. Next, we elaborate on
each approach’s strengths and weaknesses by comparing the
methods mentioned in the paper. Then, we shall provide a
discussion of some future directions and prospects.

A. COMPARISON WITH PREVIOUS REVIEWS

All previous studies [22], [35] were limited to an overview
and comparison of a limited number of object detection
models, although other models were available at their time.
Most previous surveys followed the same method of divid-
ing the models into two categories; two-stage and one-stage
detectors. Moreover, some have just focused on one aspect
of object detection. For example, some have studied the
detection of salient objects [26], [30]. Others have studied
the detection of small objects [33], [34], and others for tiny
objects [31]. In [32], they review the learning strategies of
object detector models. In this paper, we tried to cover all
the detection models and approaches that depended on deep
learning from 2013 to 2022, including the object detec-
tion models based on transformers published more recently.
No previous work has comprehensively covered and analyzed
the number of models we have listed. We also divided the
detection models into four categories. The first concerns two-
stage models based on anchors, the second relates to one-
stage models based on anchors, the third refers to anchor-free
methods, and the last category concerns transformer-based
models.

B. OUR CONTRIBUTIONS

The primary motivation of this work is to provide a compre-
hensive, detailed, and simplified overview through tables and
figures of the past and current state of the field of object detec-
tion. This paper can be a starting point for researchers and
engineers seeking to gain knowledge in this field, especially
for those beginning their careers. They can learn about the
current situation and contribute to advancing the field. Our
contribution differs from previous ones regarding its focus
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and the number of models mentioned and covered. How-
ever, understanding any domain and developing new concepts
necessitates knowledge of all existing concepts, including
their pros and cons, particularly in a fast-developing field
such as object detection. Our work brings some added value
to the field of object detection. Therefore, it will provide
researchers, especially those starting in this field or those
interested in applying these techniques in other specific disci-
plines, such as healthcare, with an up-to-date, state-of-the-art
overview of object detection.

1) We propose an up-to-date survey that covers older and
more recently published object detection models.

2) We present the first review, which covers almost all
object detection models based on deep learning.

3) We compare the different backbone networks object
detectors use through their strengths, features, and
limitations.

4) We suggest a research study outlining and investigating
generic object detection approaches from the perspec-
tive of anchors and transformers.

5) We summarise the evolution and categories of object
detection with deep learning in simplified charts, dia-
grams, and tables.

6) We outlined promising future directions in the field of
object detection.

Il. TRADITIONAL OBJECT DETECTION METHODS

The first notable strides in object detection and image recog-
nition began in 2001 when Paul Viola and Michael Jones
designed an effective facial detection algorithm [36], a robust
binary classifier built from multiple low classifiers. Their
demonstration of faces detected in real-time on a webcam was
the most impressive illustration of computer vision. In 2005,
anew paper by Navneet Dalal and Bill Triggs was published.
Their approach, based on the feature descriptor, Oriented
Gradient Histograms (HOG) [37], outperformed existing
pedestrian detection algorithms. In 2009 Felzenszwalb
et al. developed the Deformable Part Model (DPM) [38],
another crucial feature-based model. As a result, DPM has
proven to be highly successful in object detection applications
in which bounding boxes were applied to localize objects,
as well as in template matching and other well-known object
detection approaches used at the time. Several methods have
already been developed to extract patterns from images and
detect objects [39], [42]. All traditional methods tend to
involve three parts: 1) The first step consists in inspecting
the entire image at multiple positions and scales to generate
candidate boxes with the use of methods like sliding window
[43], [44], max-margin object detection, region proposal like
the selective search algorithm [45]. Usually, with sliding
windows, capturing several thousand windows in each image
is usually necessary. Any costly calculation method used at
this first level results in a prolonged process of scanning the
entire image. Especially during training, several iterations on
the training set are often necessary to include the selected
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FIGURE 2. Samples from Pascal VOC 12.

“hard” negatives. 2) The second step, feature extraction, ana-
lyzes the generated regions to extract visual features or image
patterns. With traditional object detection techniques, design-
ing these features for the algorithm’s performance is vital.
To do this, we apply methods such as Haar-Like features [46],
HOG [37], Scale-Invariant Feature Transform (SIFT) [47],
Speeded Up Robust Feature (SURF) [48], and Binary Robust
Independent Elementary Features (BRIEF) [49]. 3) Finally,
the last step consists in classifying these entities, regard-
less of whether they contain an object or not, by using
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classification algorithms such as Support Vector Machine
(SVM) [50], Adaboost [51], Deformable Part-based Model
(DPM) [46] and K-Nearest Neighbors [52]. Three essential
elements determine how well any object detection framework
performs: the feature set, the classifier, the learning method,
and the training set. In particular, most traditional meth-
ods that have been most efficient in recent PASCAL VOC
detection challenges [53] have used several feature channels
combined with detectors that include multiple aspects and
mobile parts.
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FIGURE 3. Samples from MS-COCO.

During 2008-2012, experiments conducted on PASCAL
VOC using these traditional methods had become marginal,
with minor improvements; this has highlighted the short-
comings of traditional detectors and the need to develop
more robust approaches. The issue with traditional techniques
such as those mentioned above that use sliding windows, for
instance, where a rectangle of various sizes slides across the
entire image trying to locate appropriate objects, requires a
high level of computation effort, and it generates more dupli-
cate windows. The work of the subjacent classifier crucially
influences the overall output. Traditional approaches in object
detection have been based on how we could manually design
the features or the model according to our understanding.
We attempt to search for patterns and edges through fil-
tered images to describe them as features and classify them.
Nevertheless, according to the most recent advances, it is
most efficient to delegate such tasks to the computer so that
they can learn for themselves. Following the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) launch in
2010 [54], the classification error rate for this competition
was approximately 26% in 2011. After one year, in 2012,
the error rate dropped to 16.4% due to a convolution neural
network model called AlexNet [3]. Its architecture is close
to Yann LeCun’s LeNet-5 [55]. As a result, this was a critical
opening for convolutional neural networks during this period.
In the coming years and since 2012, convolution neural net-
works have won the battle, and the classification error rate for
ILSRVC has been drastically reduced.

Ill. DATASETS AND EVALUATION METRICS
Several datasets are available to support object detection
challenges, and each object detection model is evaluated on

35482

these challenges’ datasets. These datasets vary according to
different perspectives regarding the number of images and
outputs per image, the number of labeled classes, and image
size. Some key performance metrics have been implemented
for the spatial position and the predicted classes’ accuracy.

A. DATASETS

This paper compares all the object detection algorithms
based on deep learning in the three most popular benchmark
datasets. PASCAL VOC 2007, PASCAL VOC 2012, and
Microsoft COCO, the ImageNet dataset, were not used due
to their huge size, which necessitates a very high computing
power for training.

1) PASCAL VOC

PASCAL Visual Object Classification (PASCAL VOC)
2007 and 2012 is a familiar and widely used dataset for object
detection with about 10,000 training and validation images
with objects and bounding boxes. There are 20 different
categories in the PASCAL VOC dataset.

2) MS-COCO

The common Objects in COntext (COCO) dataset was devel-
oped by Microsoft and described in detail [56]. The COCO
training, validation, and test sets include over 200,000 images
and 80 object categories.

3) ILSRVC

The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [220] is also one of the most well-known data sets
in the object detection field. It started in 2010 as an annual
challenge for object detection evaluation and continued
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Head
Faster R-CNN, R-FCN, SSD, YOLO,
CornerNet, ExtremeNet, FCOS, Swin,
DETR
Neck
SPP, FPN, SAM, ASFF, NAS-FPN, BiIFPN,
SFAM, RFB
Backbone
AlexNet, CoogleNet, VGGNet-16, ResNet-101,
DarkNet-19, EfficientNet-B7, CSPDarknet-53,
SpineNet, etc..

Input
Image, Patch, Image Pyramid

FIGURE 4. The components of an ordinary object detection model.

TABLE 1. An overview of methods, datasets, and evaluation metrics.

Dataset Total images | Classes Train/Images | Train/Objects| Validation/Images | Validation/Objects | Test/Images
Pascal VOC 07 5011 20 2,501 6,301 2,510 6,307 4,952
Pascal VOC 12 11,540 20 5,717 13,609 5,823 13,841 10,991
MS-COCO +328,000 80 118,287 860,001 5,000 36,781 40,670
ILSRVC +14M 200 456,567 478,807 20,121 55,501 40,152
Open Images +OM 600 1,743,042 14,610,229 41,620 204,621 125,436

until 2017. The dataset is composed of 1000 object classifi-
cation classes making a total of more than 1 million images,
of which half of which is dedicated to the detection task.
There are about 200 object classes for the detection task.

4) OPEN IMAGES

Open Images [221] is a dataset introduced by Google under
the Creative Commons Attribution license. It comprises about
9.2 million labeled and unified ground-truth images and seg-
mentation masks. This database has about 600 object classes
with almost 16 million bounding boxes. It is considered one
of the largest databases for object localization.

B. EVALUATION METRICS

To evaluate the performance of object detection models, sci-
entists have implemented several metrics to make the evalua-
tion and comparison between these models more relevant and
fairer. Several metrics, such as Intersection over Union (IoU),
Frame Rate per Second (FPS), Precision, Recall, AUC, ROC,
and RP curves, have been deployed. For example, a primary
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metric that is often expected in the field of object detection
is IoU. IoU is a metric designed to measure the detection
quality by calculating the difference between the ground
truth annotations and the predicted bounding boxes. Usually,
an object detection model generates several bounding boxes
for each detected object. Through IoU and the threshold we
set, we can eliminate some bounding boxes that fail to appear
more accurate. An IoU value close to 1 indicates that the
detection is more accurate.

Area of union
IoU

Area of intersection

As mentioned, Pascal VOC and MS-COCO are the ref-
erence datasets for testing and evaluating object detection
models. Both challenges rely on mean average precision as
the primary metric for evaluating object detector methods.
However, there are still several differences in their definitions
and implementations. An additional evaluation metric, mean
average recall, is also applied for the MS-COCO Object
Detection Challenge.
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1) MEAN AVERAGE PRECISION

The mAP value is the mean average precision of all K classes.
The average precision (AP) is derived from the precision-
recall curve, calculated for all unique recall levels. The
method of computing AP by the PASCAL VOC challenge
has changed since 2010. PASCAL VOC Challenge interpo-
lates through all data points, compared to only 11 equidis-
tant points. mAP evaluates the regression and classification
accuracies.

2) MEAN AVERAGE RECALL

The mAR value is the mean value of the RAs for all K classes.
As AP, the average recall (AR) also represents a numerical
metric to compare the detector’s efficiency. AR is the mean
recall on all IoU values within the [1, 0.5] interval and can be
calculated as twice the area under the IoU recall curve.

TABLE 2. An overview of methods, datasets, and evaluation metrics.

Ref Dataset Evaluation metric
[53] The PASCAL VOC Challenge mAP
[56] The COCO Object Detection Challenge mAP, mAR

A standard object detection model is divided into four main
parts: the input, the backbone, the neck, and the head. The
input can be represented by a single image, a patch, or a pyra-
mid of images. The backbone [57] can be a convolutional neu-
ral network like VGG [58], ResNet [59], EfficientNet [60],
SpineNet [61], CSPDarkNet [62], etc. Then there is the neck
which is a network found at the top of the backbone; this net-
work is usually composed of many downstream and upstream
paths such as FPN [63], NAS-FPN [64], ASFF [65], PAN [66]
and BiFPN [67] or in the form of additional blocks such as
SPP [68], RFB [69] and SAM [70]. As for the heads, they can
be classified into two categories: those responsible for dense
prediction, such as RetinaNet [71], YOLO [72], SSD [73],
CornerNet [74], and FCOS [75]. And those responsible for
sparse prediction like Faster R-CNN [76], Mask R-CNN [77],
and RepDet [78].

IV. BACKBONE NETWORKS FOR OBJECT DETECTION
Regarding object detection and building a robust object detec-
tor model, one of the most important factors that should be
considered is the backbone network design. The backbone for
object detection is a convolutional neural network designed to
provide the foundation for an object detector. The backbone
network’s primary purpose is to extract features from the
images before submitting them for further steps, such as the
localization phase in object detection. There are several stan-
dard convolutional neural network backbones used by object
detectors, including VGGNets, ResNets and EfficientNets,
etc., which are pre-trained for classification tasks.

A. ALEXNET
AlexNet [3] is a convolutional neural network (CNN) archi-
tecture developed in 2012. It consists of eight layers: five
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convolutional layers, two fully connected hidden layers, and
one fully connected output 1000-way softmax classifier layer.
AlexNet was the first CNN to win ImageNet Large Scale
Visual Recognition Challenge and is a leading architecture
for any object-detection task. It uses ReLL.U activation func-
tions and local response normalization layers.

B. VGGNETS

VGGNet [58] is a convolutional neural network architecture
developed in 2014. It uses profound architecture with mul-
tiple convolutional and fully connected layers. It consists of
five convolutional layers followed by three fully connected
layers. The VGGNet architecture is known for its use of
small convolutional filters (3 x 3) and a very deep network
with 16 to 19 layers. It uses ReLU activation functions and
finishes with a softmax classifier. The main idea behind this
architecture is to use very small filters (3 x 3) to capture fine
details in the images and stack multiple layers to increase the
depth of the network; this way, it can learn more complex
features.

C. RESNETS

ResNet (Residual Network) [59] is an architecture designed
and published in 2015. It is known for its ability to train pro-
found networks without the problem of vanishing gradients,
which is a common issue in very deep networks. The original
paper on ResNet proposed five different sizes of the model:
18, 34, 50, 101 and 152 layers. Since then, many other vari-
ants of ResNet have been developed, such as ResNeXt and
Wide Residual Networks (WRN). For example, ResNet-34
uses a plain network architecture inspired by VGG-19, adding
shortcut connections. These shortcut connections allow the
model to skip layers without affecting performance. The
critical innovation of ResNet is the introduction of residual
connections, which allow the network to learn the residual
mapping between the input and the output of a layer rather
than the original mapping. The residual connections allow the
network to propagate gradients more quickly and allow for
the training of much deeper networks. The resNet architecture
uses a building block called ‘“Residual Block,” which con-
tains multiple convolutional and batch normalization layers.
The final layer is connected to a fully connected layer to
classify the images.

D. INCEPTION-RESNET

Inception-ResNet [228] is a convolutional neural architecture
that builds on the Inception family of architectures developed
by Google in 2016 but incorporates residual connections
similar to the ResNet architecture to improve the flow of
gradients and allow for the training of deeper networks. The
Inception architecture is known for its use of multiple paral-
lel convolutional and pooling layers, also called ““‘Inception
modules.” Those modules extract features at different scales
and then concatenate them before passing them to the next
layer. It is 164 layers deep and trained on over a million
images from the ImageNet database. The final layers are
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TABLE 3. Advantages and limitations of the object detector backbone.
Year | Backbone Key features and advantages Limitations
2012 | AlexNet -Introduction of consecutive convolutional layers. -Using large receptive fields.
-Great use of the downsampling. -Low accuracy
-Non-linearity due to the use of Rectified Linear units. -Memory-intensive due to overlapping blocks of pixels.
-Fewer parameters and low computational complexity. -Specific to certain applications.
2014 | VGGNets -Deep networks compared to AlexNet. -A large number of parameters.
-Application of very small convolutional filters. -Large size.
-Generalizes well across different datasets. -Slower to train.
-Exploding gradient problem.
-Specific to particular applications.
2015 | ResNets -Introducing the identity and projection shortcut convolution | -Computationally heavy.
to address the vanishing gradient problem.
-Application of batch normalization. -Requires significantly more FLOPS than similar models.
-Application of skip connections. -Complex architecture compared to VGGnets.
-Fewer parameters. -Specific to particular applications.
-Faster and smaller size compared to VGG.
-Generalizes well across different datasets.
-Fast training.
2016 | Inception-ResNet | - Application of residual inception blocks rather than Incep- | - Computationally expensive.
tion modules.
- Combining the Inception architecture with residual connec- | - Specific to certain applications and use cases.
tions.
-Achieves better accuracy than Inception alone.
2019 | EfficientNets -Introduction of the compound scaling method. - One-dimensional scaling.
-Generalizes well across different datasets. -Higher computing and data movement costs.
-Improved accuracy.
-More efficient.
2015 | GoogLeNet -Faster. -Requires more time for training.
-Based on the Inception architecture [120][224] -Complex architecture.
-Application of dense modules. -Poor performance in face recognition compared to AlexNet,
VGG-Face, and SqueezeNet.
-Not using fully connected layers.
-Fewer parameters and low computational complexity.
-Smaller pre-trained size.
2019 | CSPResNeXt -Address the duplicate gradient information problem. -The CSP block is complex.
-Reduces the memory footprint. -More raining time.
-Fewer parameters and low computational complexity.
-Better inference rate.
-Improve accuracy.
2016 | DenseNet -Application of dense connections to improve the gradient | -Replication of data several times.
flow.
-Reduce the vanishing gradient problem. -More memory usage.
-Reuse of features.
-Strengthening feature propagation
-Fewer parameters and low computational complexity.
2018 | SENet -Introduction of the attention mechanism. -Slower than ResNets.
-Application of the dynamic channel-wise feature recalibra- | -Training time.
tion.
-Improve the representational capacity of the network. - Can be affected by noise in the input data.
-Feature Recalibration. -Not preserving the most activating pixels.
-Lightweight.
2016 | Hourglass -Stacked structure. -Complex architecture.
-Capturing both fine and coarse features -High computational cost.
-More accurate in human pose estimation. -Less accurate in some use cases.
-Have a lightweight version.
2020 | SpineNet -Preserving spatial information -Complex architecture.
-Application of a scale-permuted network. -Learning universal representations.
-Reduce the number of parameters. -Specific to certain applications and use cases.
-Detection of complex nonlinear relationships. -Needs more formal statistical training.
-More efficient. -Requires more evaluations across multiple applications and
datasets.
2020 | CSPDarknet -Capturing both fine and coarse features. -The CSP block is complex
-More efficient. -More training time.
-Lightweight. -Requires more evaluations across multiple applications and
datasets.
-Can be used in real-time applications
2022 | ConvNeXt -Better accuracy and scalability. -Slower and consume more memory.
- Fewer activation functions and normalization layers. -Depth-wise convolutions are slower and consume more
memory than dense convolutions.
-Simple to fine-tune at different resolutions.
-Fully convolutional network.
-Outperforms ViTs and Swin Transformers.
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connected to a fully connected layer to classify the images.
The network has a similar architecture schema to Inception-
v4, but the difference lies in their stems, Inception, and Resid-
ual blocks. The model has achieved excellent performance at
a relatively low computational cost.

E. EFFICIENTNETS

EfficientNet [60] is a convolutional neural network and scal-
ing method published in 2019 that uniformly scales all dimen-
sions of depth/width/resolution using a compound scaling
approach. This allows the network to balance accuracy and
computational efficiency better. It uses a building block called
mobile inverted bottleneck convolution (MBConv), which
combines depthwise and pointwise convolutional layers. It is
similar to MobileNetV2 and MnasNet but is slightly larger
due to an increased FLOP budget. The final layers are con-
nected to a fully connected layer to classify the images.
EfficientNet-B0 is the base model with a similar architecture
as other architectures such as ResNet and VGG, but as the
number increases, such as EfficientNet-B7, the architecture
becomes more complex, with more layers, more filters, and
higher resolution input images.

F. GOOGLENET

GoogLeNet [120], also known as Inception v1, is a con-
volutional neural network architecture based on the Incep-
tion architecture that Google developed in 2014. It utilizes
Inception modules, allowing the network to choose the best
filters for a given input. GoogLeNet is 22 layers deep, with
27 pooling layers, and consists of 9 inception blocks arranged
into three groups with max-pooling in between, also called
“Inception modules.” Those modules extract features at dif-
ferent scales and then concatenate them before passing them
to the next layer and global average pooling at the end. The
GoogLeNet architecture won the 2014 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) competition.

G. CSPRESNEXT

CSPResNeXt [62] is a convolutional neural network where
the Cross Stage Partial Network (CSPNet) approach is
applied to ResNeXt. CSPNet uses cross-stage partial connec-
tions to bypass some of the network’s layers, improve the flow
of gradients and allow for the training of deeper networks.
A residual Network with Extreme cardinality or ResNeXt is
an architecture that uses a building block called “ResNeXt
Block,” which contains multiple branches of convolutional
layers with different numbers of filters, allowing the network
to learn features at different scales and increases the capacity
of the network. CSPResNeXt is used as a feature extractor in
YOLO v4 and partitions the feature map into multiple stages,
allowing for better learning capability of CNNs.

H. DENSENETS

DenseNet [229] is a network that uses dense connections
between layers through Dense Blocks, which contain mul-
tiple convolutional layers, batch normalization, and ReL.U
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activation. The final layers are connected to a fully connected
layer for image classification. The architecture is character-
ized by its use of dense connections, which connect each
layer to every other layer in a feed-forward fashion, which
draws representational power from feature reuse instead of
extremely deep or wide architectures. Each layer is connected
directly with every other layer in the network, creating a
dense connectivity pattern that allows the network to prop-
agate the gradients through the network more efficiently and
effectively, enabling the training of deeper networks. The
architecture allows for a significant reduction in the number
of parameters compared to traditional architectures.

I. SENET

SENet [230] (Squeeze-and-Excitation Network) is a con-
volutional neural network architecture published in 2017.
The architecture employs squeeze-and-excitation blocks to
enable the network to perform dynamic channel-wise feature
recalibration. This feature improves the feature representa-
tion capabilities of CNNs. The architecture uses a building
block called “SE block,” which contains two sub-layers: a
“Squeeze” layer, which reduces the dimensionality of the
feature maps, and an “Excitation” layer, which adaptively
recalibrates the feature maps. The Squeeze layer applies
global average pooling to the feature maps to obtain a channel
descriptor, which is then passed through a fully connected
layer, also called a bottleneck layer, to reduce the dimension-
ality of the descriptor.

J. HOURGLASS

Hourglass [231] architecture is a convolutional neural net-
work (CNN) used for human pose estimation, object detec-
tion, and semantic segmentation tasks. The architecture is
characterized by its repeated bottom-up and top-down pro-
cessing, similar to an hourglass shape, which allows the
network to learn the input’s fine and coarse features. The
Hourglass architecture consists of several modules stacked on
top of each other. Each hourglass module is a sub-network
consisting of convolutional and pooling layers at the top,
followed by up-sampling and convolutional layers at the bot-
tom that reconstruct the input feature maps. These modules
are connected in a “‘skip” or “residual”’ connection fashion,
allowing information to flow from one module to the next.

K. SPINENET

SpineNet [61] is a convolutional neural network backbone
with scale-permuted intermediate features and cross-scale
connections learned on an object detection task developed
by Google AI in 2020. It typically encodes an input image
into a series of intermediate features with decreasing reso-
lutions. The architecture of SpineNet is based on the idea
of a “sparse backbone,” which is composed of a sequence
of sparse convolutional layers, called “spine layers,” that
are interleaved with dense layers called ‘“‘non-spine layers.”
The spine layers are lightweight, with fewer parameters and
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computation, while the non-spine layers are more complex,
with more parameters and computation.

L. CSPDARKNET

CSPDarknet [199] is a convolutional neural network and
backbone for object detection developed in 2020. It is based
on the architecture of the Darknet, and It employs a CSPNet
strategy to partition the feature map, which includes an activa-
tion function and attention mechanism. The architecture uses
a series of CSP blocks with an increasing number of layers;
the output of each block is concatenated with the output of
the corresponding block in the previous stage; this allows the
network to learn fine and coarse features the input. The final
output is obtained by applying convolutional layers on the
feature maps generated by the last CSP block.

M. CONVNEXT

ConvNeXt [232] is a pure convolutional model inspired by
the Vision Transformers design. ConvNeXt is built entirely
from standard ConvNet modules. It retains the efficiency of
standard ConvNet while being fully convolutional for learn-
ing and testing, making it simple to implement. ConvNeXt
has fewer activation functions and normalization layers than
other backbone networks and separates the downsampling
layer. The model was evaluated on various vision tasks such
as ImageNet classification and object detection. It showed
higher performance in all major benchmarks. ConvNeXt uses
convolutions that operate on a per-channel level by shuffling
only the information in the spatial dimension. Depth convolu-
tions are clustered convolutions where the number of clusters
equals the number of input channels. In ConvNext, depth
convolutions are used in MobileNet and later in EfficientNet.

V. DATA AUGMENTATION

During training, models adopt different learning strategies
such as localization refinement, data augmentation, cascade
learning, and Imbalance sampling. Those strategies help the
models work efficiently to improve the accuracy and execu-
tion time for both localization and classification tasks. For
example, data augmentation is one of the most efficient tech-
niques to improve model results because it does not add any
inference complexity. However, still not commonly used due
to the complexity of designing methods that can efficiently
handle both the localization and classification by transferring
strategies between the two. Several augmentation techniques
include color space, cropping, rotation, translation, Kernel fil-
ters, Random erasing, noise injection, color jittering, mixing
images, and flipping.

A. COLOR SPACE

Color space is a popular augmentation method when dealing
with digital RGB images. The augmentation is performed on
the R, G, and B channels by selecting a single channel and
adding two more zero matrices. It is also possible to apply
other color enhancements, such as contrast, brightness, and
saturation, by manipulating the values of the RGB matrices.
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B. ROTATION

The rotation method rotates the image to the left and right
at an angle between 1° and 359°. The degree of rotation is
an essential factor to consider in this method. The extent
of rotation is chosen according to the image type and the
problem to solve. For example, a slight rotation of about 20°
is used in applications related to number detection, such as
MNIST. Whereas using an extensive orientation, one risks
losing the label value of the image.

C. TRANSLATION

The basic concept of this augmentation is to shift the images
in four directions, top, bottom, right and left. This technique
allows the preservation of the spatial dimension of the image
by filling the remaining space after translation with constant
values like 0 and 255 or through random and Gaussian noise.

D. CROPPING

The cropping technique is often used when a data set has
different heights and widths. The technique is used to crop
the central patch of each image. Random cropping is almost
similar to the translation technique, except that translation
preserves the spatial dimension of the image, whereas random
cropping reduces the size of the image.

E. KERNEL FILTERS

This augmentation technique is commonly used to clean or
blur images by applying filters. The process of kernel filters
is similar to that of convolutional neural networks. The idea
is to either slide a matrix with a Gaussian blur filter onto the
image to produce a blurred image or to slide the matrix with
a high-contrast vertical or horizontal edge filter to produce a
sharper image.

F. RANDOM ERASING

Random erasing [222] is an augmentation method inspired by
the dropout regularization mechanism and aims to solve the
occlusion problem encountered in image recognition prob-
lems. Random erasing assists the model in avoiding the occlu-
sion problem and overfitting by forcing the model to learn the
defining features of the image. The operating mechanism of
this method involves randomly selecting a patch in the image
and masking it with average pixel values, zeros, or 255s.

VI. ANCHOR-BASED DETECTORS

The anchor boxes represent a predefined collection of bound-
ing boxes with selected widths and heights that reflect the
widths and heights of the objects in the training data set. They
also include, of course, various aspect ratios and scales found
in the dataset. When detecting, the predetermined anchor
boxes are arranged in a tiled pattern on the image. Moreover,
the same anchors are constantly proposed on each image.
Instead of predicting the boxes, the network predicts the
probability and other attributes, such as background, inter-
section on union (IoU), and offsets for each tiled anchor box.
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TABLE 4. Advantages and limitations of two-stage detectors.

-It has formed a foundation for future developments

Year Method Advantages Limitations
2013 | R-CNN -Simple to use. -High time consumption during the training phase due to
2000 regions to be classified.
-Application of convolutional neural networks for classifica- | -Duplicated computations.
tion.

. -Cannot be applied in real-time applications as it takes
around 47 seconds for one test image.

-The selective search prevents the algorithm from learning in
the regional proposal phase.

-The absence of an end-to-end training pipeline.

2014 | SPPNet -Multi-scale input to the feature extractor through applying | - It is time-consuming because of the selective search mech-
the spatial pyramid layer. anism.
-Faster than R-CNN due to the use of one convolutional layer. | -SPPNet does not provide an end-to-end learning architec-
ture.

-The fine-tuning algorithm does not update the convolutional
layers before SPP.

2015 Fast R-CNN -Faster than SPPNet.
sizes.

along with classification.
-The ability to use an RPN +CNN pattern.

-Introducing ROI pooling layer for mapping various input | - Region proposals turn into bottlenecks affecting its perfor-

-Multi-task model by integrating bounding box regression

-Selective search algorithm.

mance.

2015 | Faster R-CNN | -With RPN instead of selective search, generating
proposals requires significantly less time.
-Introducing anchor boxes.

-Multi-task loss.

-High performance in terms of accuracy.
-End-to-end learning.

regional | -The algorithm involves several passages through the image
to extract an object.

-Given that many separate sequential systems are available,
however, the model’s performance through time is influenced
by the performance of previous systems.

- Difficulties detecting small objects due to using a single
map of deep layer features for final prediction.

-The class imbalance needs to be correctly addressed.

tors

2016 | R-FCN -Good speed/accuracy trade-off compared t previous detec- | -It does not support the global average pooling because the

-Handles translation variance when detecting objects.

fully connected layer has been eliminated.

-Very fast and straightforward compared to Mask
G-RMI, and RetinaNet

2016 | FPN -Detecting objects on different scales. -It only supports one-way information flow.
-The class imbalance is well handled. -FPN is a partial object detection system.
2018 | PANet - Preserving spatial information accurately -It is limited in fusing high-level features due to its one top-

-Used in real-time detection models such as YOLOv4.

down and bottom-up pathway.
R-CNN,

2019 | TridentNet -Dealing with scale variation.
- The use of trident blocks and dilated convolutions
large receptive fields.

- Very Slow
produce

2020 | SpineNet -Great accuracy due to scale-permuted model.
-Can be used for image classification

SpineNet-49S.

- Can be used for real-time detection with SpineNet-49 and

-Large training time

2021 Copy-Paste -Greater accuracy

-Simple to integrate into any instance segmentation.

-Randomness in data selection prevents the model from
selecting more realistic data.

It returns a unique collection of predictions for each set
anchor box. Generating bounding boxes can be described
as follows: (1) Create thousands of candidate anchor boxes
that best describe the objects’ size, location, and shape.
(2) Predict the offset for each bounding box. (3) Compute
a loss function for each anchor box based on ground truth.
(4) For each anchor box, compute the Intersection Over
Union (IOU) to check which object’s bounding box has the
largest IOU. (5) When the probability is more significant
than 0.5, notify the anchor box that it should detect the
object with the highest IOU. and factor the prediction into
the loss function. (6) If this probability is marginally less
than 0.5, we instruct the anchor box not to learn from this
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sample since the prediction is ambiguous; otherwise, if the
probability is remarkably less than 0.5, then the anchor box
is likely to predict that no object is present. Finally, by using
this process, we ensure that the model learns to identify only
true objects. Using anchor boxes allows a network to detect
multiple objects, objects of different scales, and overlapping
objects. In object detection, anchor-based detectors define
anchor boxes at each position in the feature map. The net-
work predicts the probability of objects in each anchor box
and then fits the size of the anchor boxes to fit the object.
However, anchors require careful design and application in
object detection frameworks. (a) The coverage ratio of the
instance’s location space is among the most critical factors
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FIGURE 5. Accuracy evolution in the main object detection benchmarks.

in anchor design. To ensure a good recall rate, anchors
are thoroughly engineered based on the statistics computed
from the training/validation set [79], [80]. (b) Some design
choices based on a particular dataset may not apply to other
applications, which affects the generality [81]. (¢) During the
learning phase, the anchor-based approaches rely on intersec-
tion union (IoU) to define the positive/negative samples, thus
adding extra computation and hyper-parameters for an object
detection system [82]. Anchor-based object detection frame-
works generally fall into two sections: two-stage, proposition-
based detectors and one-stage, proposition-free methods.
1) Two-stage object detection. 2) One-stage object detection.
The anchors serve as regression references and classification
candidates for predicting proposals for two-stage detectors
and final bounding boxes for one-stage detectors.

A. TWO-STAGE METHODS

Region-based object detection algorithms were among the
most widely used techniques for detecting objects in images.
The first models in object detection start intuitively by
searching the regions and then performing the classification.
The two-stage methods are derived from the R-CNN meth-
ods that extract Rol using a selective search method [83]
and then classify and regress them. Faster R-CNN [76] is
the most well-known two-stage anchor-based detector ref-
erence. It uses a separate region proposal network (RPN)
that generates Rol by modifying predefined anchor boxes
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and a region-based prediction network (R-CNN) [84], [85] to
detect objects. Many models were subsequently introduced
to improve its performance. For example, using bilinear
interpolation, the Mask R-CNN [77] replaces the RolIPool
layer with the RoIAlign layer. Other models look at different
aspects to improve performance. For example, some target
the whole architecture, such as [86] and [89], some use multi-
scale learning and testing [90], [91], others feature fusion and
enhancement [63], [92], the introduction of the new loss func-
tion and training [93], [95], and some employ better proposal
and balance [96], [97]. In contrast, others apply context and
attention mechanisms. Specific models also employ different
learning strategies and loss functions.

1) REGION-BASED CONVOLUTIONAL NEURAL

NETWORKS (R-CNN)

Instead of processing many regions, the R-CNN [85] model
developed by R. Girshick et al. in 2014 proposes many boxes
in the image and checks whether one contains an object. The
R-CNN relies on a selective search [83] method developed by
J.R.R. Uijlings et al. in 2012, a variant of the exhaustive image
search to extract these boxes from an image. These boxes are
called regions. Selective search is used to extract 2000 region
proposals; those candidate region proposals are cropped and
resized to fit the input of the CNN feature extractor, where
they extract a 4096-dimensional vector of features transmit-
ted into several classifiers for class prediction. SVMs [50] are
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assigned to each class to classify the object’s occurrence in
the proposed candidate region under a given feature vector.
It also has a linear regressor that predicts four offset values to
enhance the selected bounding boxes’ accuracy and minimize
localization errors. The R-CNN consisted of three simple
steps: Scan the input image to detect objects that may be
present using the selective search algorithm by proposing
approximately 2000 candidate boxes. Then for every candi-
date box, we apply a CNN for feature extraction. The result of
each CNN is transmitted to an SVM for classification and for
a linear regressor to refine the object’s bounding box. R-CNN
is very easy to use but very slow.

2) SPATIAL PYRAMID POOLING NETWORK (SPPNet)

Based on the concept of spatial pyramid matching
(SPM) [98], SPPNet [68] is mainly an improved version
of R-CNN [85]. SPPNet has implemented a specific CNN
procedure known as Spatial Pyramid Pooling (SPP) during
the passage of the convolutional layer and the fully connected
layer. In transitioning from the convolutional layer to the fully
connected layer, it proposes having multiple pooling layers at
different scales instead of a single pooling layer often used as
a standard in other methods. A selective search algorithm is
applied by SPPNet to generate about 2,000 region proposals
per image, just like R-CNN. Next, it extracts features directly
from the whole image using ZFNet [99] only once. At the
final conv layer, the feature maps delineated by each region
proposal pass through the SPP layer, followed by the fully
connected layer. Each bounding box has its SVM and bound-
ing box regressor. SPPNet uses the SPP for every region pro-
posal to pool the features of that region from the global feature
volume to produce its fixed-length representation. SPP solves
the problem of cropping the image before entering CNN at a
fixed size, as in R-CNN with VGG [58], where image sizes
are fixed (224%224). Thus, with SPP, the images can be used
with different shapes. In contrast to R-CNN, SPPNet only
deals with the image at the convolutional layers once, whereas
R-CNN deals with the image at the convolutional layers at
least 2000 times. As shown in Table 4, SPPNet is much faster
and more accurate than R-CNN.

3) FAST REGION-BASED CONVOLUTIONAL

NETWORK (FAST R-CNN)

To solve some of the problems of R-CNN and SPPNet and
to develop a faster object detection algorithm, Ross Girshick
published a new paper named Fast R-CNN [84]. Comparing
Fast R-CNN with SPP-net, one can observe that the SVM
classifiers have been removed, and a regression and classi-
fication layer has been connected to the network. VGGNet
is used instead of ZFNet, the region of interest (RIO) poling
layer, rather than the SPP. On the other hand, Fast R-CNN
is similar to the original R-CNN in many ways. However,
two major additions have improved its detection speed: They
extract the image features before proposing regions rather
than forwarding the region proposals to the feature extractor.
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Thus, a single CNN is applied to the entire image rather
than 2000 CNNs on 2000 regions. The SVM is also changed
to a softmax layer, extending the neural network as a predic-
tion model rather than building a new one. The primary CNN
with several convolutional layers takes the entire image as
input rather than applying a CNN for every region proposal.
As aresult, the region proposals are based on the last feature
map. Therefore, they can build a single CNN for the entire
image. Regions of interest (Rol) are detected by applying the
selective search method to the feature maps produced. The
proposal region is formally resized using an Rol pooling layer
to obtain a valid region of interest that can be introduced
into a fully connected layer. Fast R-CNN uses a softmax
layer instead of many different SVMs to predict the class
directly for each region proposal and the offset values for the
bounding boxes. Therefore, we have only one neural network
to train, compared to one neural network and many SVMs.
Fast R-CNN uses a multi-task loss function that combines
classification and regression losses. The classification loss
is computed using the log loss function over two classes.
The regression loss is computed using the L1 smooth loss
function.

4) FASTER REGION-BASED CONVOLUTIONAL

NETWORK (FASTER R-CNN)

The three algorithms mentioned above, R-CNN, SPPNet, and
Fast R-CNN, are based on a selective search to identify region
proposals. Selective search is a slow and time-consuming
method that impacts network performance and was proven to
be the bottleneck of the entire process. Thus, the authors of
Faster R-CNN [76] proposed a framework for object detec-
tion to replace the selective search algorithm and allow the
network to discover region proposals. The Faster R-CNN
point was that the region proposals depended on the image
features previously calculated with the CNN forward passage
(the first step in the classification). They have developed
a region proposal network (RPN) [76] to generate region
proposals directly, then predict bounding boxes. An RPN and
Fast R-CNN model combined in Faster R-CNN [58]. Faster
R-CNN takes the CNN feature maps and forwards them to the
region proposal network. RPN utilizes a 3 x 3 sliding window
that moves across these feature maps. Each sliding window
location generates multiple potential regions and scores based
on k fixed-ratio anchor boxes. Now we have bounding boxes
in various shapes and sizes passed to the Rol pooling layer.
Consequently, it is possible that region proposals may have no
classes assigned to them after the RPN step. So, we can crop
each proposal to make each proposal region include an object.
That is what the Rol pooling layer is for. It extracts fixed-size
feature maps for each anchor. These feature maps are then
transmitted into a fully connected layer comprising a softmax
and a linear regression layer. It then classifies the objects and
predicts the bounding boxes for the detected objects. Only
one CNN is applied in Faster R-CNN for region proposals
and classification. Faster R-CNN is optimized for a multitask
loss function comprising classification and regression loss.
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TABLE 5. Advantages and limitations of one-stage object detectors.

Year | Method Advantages

Limitations

2016 | SSD -End-to-end training.

-Better accuracy than YOLO.

-Faster than Faster R-CNN.

-SSD512 outperforms Faster R-CNN.

-Multiple scale feature extraction.

-More time-consuming than YOLOv1.
-Less accurate than Faster R-CNN.

2016 | YOLOv2 -Fixed the limitations of yolov1.

-Multi-scale training.

-More efficient than Faster R-CNN and SSD in real-time applications.

- Less accurate than its competitors SSD and RetinaNet.

2017 | RetinaNet -Combine the power of Focal loss and FPN.
-Address class imbalance efficiently.
-Detecting objects of various scales.

-Faster than Faster R-CNN, R-FCN, and SSD.

-Slower than YOLOv1.

2018 | YOLOv3 -More apt to detect small objects.
-Multi-scale prediction.

-More efficient than SSD.

-Less efficient than RetinaNet.

2018 | MegDet -Less training time

-Cannot meet real-time detection requirements.

2020 | EfficientDet | - Fast fusion of multi-scale features.

-High efficiency due to the use of efficient backbones.

-Cannot meet real-time detection requirements.

2020 | PAA

-More accurate due to an optimized anchor assignment strategy.

-Cannot meet real-time detection requirements.

The Region Proposal Network (RPN) is a Convolutional
Neural Network that proposes regions. At the same time, the
second network is a Fast R-CNN for feature extraction and
outputting the Bounding Box and Class Labels. The RPN is
optimized for the given multitask loss function.

5) REGION-BASED FULLY CONVOLUTIONAL

NETWORK (R-FCN)

R-CNN-based detectors, such as Fast R-CNN or Faster
R-CNN, detect objects in two phases. First, generate region
proposals (ROI) and classify and localize objects from
the ROI. These detectors save valuable time by sharing
calculations of repeated convolutional features for object
classification and region proposals. However, Faster R-CNN
still contains several unshared R-CNN’s fully connected lay-
ers that must be calculated for each of the hundreds of
proposals. The Region-based Fully Convolutional Network
(R-FCN) [100] is a framework that combines the two main
phases in a single model to take into account both the detec-
tion of the object and its position simultaneously. It contains
only convolutional layers that provide complete backpropa-
gation for training and inference. As we have observed in
the methods mentioned above, that region proposal is mainly
generated by RPN. The ROI pooling is performed and passes
across fully connected (FC) layers to classify and regress
the bounding boxes. The post-ROI pooling is not shared
between ROIs and takes a long time. As a result, the FC
layers add more parameters to the model, which leads to
more complexity. In R-FCN, there is still RPN for region
proposals. However, unlike the R-CNN series, the FC layers
after ROI pooling are eliminated. As an alternative, the objec-
tive complexity is moved before the ROI pooling to generate
feature maps, each dedicated to detecting a category at a
specific location. For instance, a feature map is dedicated to
detecting a dog, another for detecting a car, Etc. These feature
maps rely on an object’s spatial localization, called position-
sensitive score maps. After the ROI pooling, all these regions’
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proposals will use the same score maps to carry out the
average voting, a simple computation. Consequently, there is
no learning layer after the ROI layer; in other words, R-FCN
is significantly faster than Faster R-CNN and has a highly
reliable mAP. R-FCN operates as follows; the input image
is processed by the backbone ResNet-101 [59] to generate
feature maps. These feature maps are transmitted on the one
hand to an RPN to produce Rol and, on the other hand, to a
fully convolutional layer for generating a bank of position-
sensitive score maps. To have a score map, k2 (C + 1), where
k? is defined as the number of relative positions used to
split an object in a grid. C + 1 is defined as the number of
classes with a background. Afterward, on each ROI, they split
it into the exact k? boxes or sub-regions as the scorecards.
They check the score bank for each bin to ensure that it
corresponds to the respective position of the object. In the
upper left bin, for instance, we will search for the score maps
that match the upper left corner of an object and average
these values in the Rol region. The system performs this
procedure for each class all over again. After each k? bin has
a corresponding object value in each class, the k* bins are
averaged to produce a unique score per class. They classify
the Rol with a softmax on the remaining dimensional vector
C + 1. They use convolution filters for the regression of
the selection framework to generate the k x k x (C + 1)
score maps used for classification purposes. An additional
convolution filter generates a four x k x k map based on the
same feature maps. The loss function for R-FCN is defined
on each Rol and is the summation of the cross-entropy loss
and the box regression loss. The classification loss (Lcls) and
bounding box regression loss (Lreg) are used in online hard
example mining (OHEM).

6) FEATURE PYRAMID NETWORKS (FPN)

The FPN [63] is not an object detector in itself. It is a feature
detector that operates in combination with object detectors.
For instance, with FPN, we can extract multiple feature map
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layers and feed them into an RPN to detect objects. Compared
to the feature extractor used in some frameworks like Faster
R-CNN, FPN generates more layers of feature maps, multi-
scale feature maps, and high-quality information than the
standard feature pyramid used for object detection. Using
FPN allows us to detect objects on various scales. The FPN
consists of a bottom-up and a top-down pathway. The bottom-
up pathway is the traditional convolution network for feature
extraction and uses a ResNet [59]. The spatial resolution
decreases as we move upwards; as more high-level features
are detected, each layer’s semantic value is enhanced. As a
reference set of feature maps, the output of the last layer
of each stage will be used to enhance the top-down path-
way through the lateral connection. The top-down pathway
allows for higher-resolution layers from a semantic-rich layer.
Whereas the reconstructed layers are semantic, the locations
of the objects after all sub-sampling and bottom-up sam-
pling are inaccurate. The authors include lateral connections
between the reconstructed layers and the associated feature
maps to address this problem to predict the most appropriate
locations. In the top-down pathway, an oversampling by a
factor of 2 is performed on the spatial resolution using the
nearest neighbor to simplify the process. For each lateral
connection, feature maps of the same spatial size are merged
from the bottom-up and top-down pathways. In more detail,
the feature maps of the bottom-up pathway are convolved at
1 x 1 convolutions to minimize the channel size. Moreover,
the bottom-up and top-down feature maps are combined by
element-wise addition. Then, a 3 x 3 convolution is applied
directly to each merged map to compute the final feature map,
designed to minimize the frequency folding effect of over-
sampling. The final set of feature maps is called P2, P3, P4,
P5, which refers to C2, C3, C4, C5, and both have the same
spatial size, respectively.

7) PANET

The Path Aggregation Network (PANet) [66] is a method
mainly developed, for instance, segmentation, which inserts
an additional upward path aggregation network above FPN.
They provide an adaptive feature pooling that shortens the
distance between the lower and topmost feature levels by
grouping the features of all feature levels and avoiding arbi-
trarily assigned outputs. PANet allows the network to decide
which features are useful. They use a complementary path to
enhance the feature of each proposal by providing accurate
localization signals in lower layers and generating a bottom-
up augmentation. The PANet obtained an accuracy of 41.4 on
the MS-COCO dataset compared to Mask R-CNN, which
achieved only 36.4%. PANet uses ResNeXt-101 as a
backbone.

8) TRIDENTNET

The TridentNet model [89] proposes an approach to deal
with the scale variations in object detection based on gener-
ating in-network scale-specific feature maps using uniform
representational power. They build a parallel multi-branch
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architecture and apply scale-aware training, where each
branch shares the same transformation parameters but with
different receptive fields. The model applies a fast infer-
ence method with only one major branch to boost the
model performance without using additional parameters and
computations. The authors TridentNet achieved an mAP
of 48.4 on the MS-COCO dataset with Resnet-101 as a
backbone.

9) SPINENET

SpineNet [61] is a classification and object detection
model that uses Neural Architecture Search for learning
in contrast to traditional encode-decoder architectures with
scale-decreased backbone leading to ineffectiveness in gen-
erating multi-scale features. The SpineNet proposed method
has a fixed stem network followed by scale-permuted inter-
mediate features and cross-scale connections. The authors
proposed many variants of SpineNet, such as SpineNet-49,
SpineNet-143, and SpineNet-190. The latter obtained an AP
of 52.2% on the MS-COCO dataset.

10) COPY-PASTE

In [101], the authors applied the copy-paste data augmenta-
tion strategy and proved its effectiveness for object detection
and instance segmentation. The copy-paste method chooses
two images randomly and applies a random scale jittering and
a horizontal flip. It generates new data by pasting objects
from one image to another. In the final stage, they tune the
ground truth annotations for the bounding boxes by eliminat-
ing all occluded objects. The authors provide a self-training
Copy-paste where a supervised model is trained on labeled
data, producing pseudo labels on unlabeled data. Combined
with Cascade Eff-B7 NAS-FPN, they achieved an AP of
55.9% on the MS-COCO dataset.

B. COMPARISON: TWO-STAGE DETECTORS

Table 4 lists a chronological comparison of the strengths and
limitations of the two-step anchor-based detection methods
mentioned earlier in this paper.

C. ONE-STAGE METHODS

One-stage anchor-based detectors are characterized primarily
by their computational and runtime efficiency. These mod-
els directly classify and regress predefined anchor boxes
instead of using regions of interest. The SSD was this cate-
gory’s first well-known object detector [73]. The major chal-
lenge encountered in this type of detector is the imbalance
between positive and negative samples. Several approaches
and mechanisms have been implemented to overcome this
problem, such as anchor refinement and matching [102],
training from scratch [103], [104], multi-layer context infor-
mation fusion [105], [107], and feature enrichment and align-
ment [69], [108], [111]. Other works have been directed
toward developing new loss functions [79], [112] and new
architectures [113], [114].
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TABLE 6. Advantages and limitations of anchor-free object detectors.

Year | Method Advantages Limitations
2016 | YOLOv1 -Very fast, it runs at 45 fps. -Dealing with small objects.
-End-to-end training. -It likewise addresses the localization error of bounding
boxes for small and large boxes.
-It has fewer localization errors compared to Faster R-CNN. | -Difficulties in generalizing due to unseen aspect ratios.
-Coarse Features.
2018 | CornerNet -Competitive with traditional two-stage anchor-based detec- | -Cannot meet real-time detection requirements.
tors.
2019 | ExtremeNet | -It can also be used in instance segmentation. -Cannot meet real-time detection requirements.
2019 | RepDet -End-to-end training. -Cannot meet real-time detection requirements.
-Effective and competitive with two-stage anchor-based de-
tectors.
2019 | FSAF -It can act as a module and be integrated with one-stage | -Cannot meet real-time detection requirements.
object detectors.
-Applies online feature selection instead to feature pyramids.
-Marginal computation cost
-Faster than RetinaNet
2019 | FCOS -Simpler compared to other one-stage detectors. -Cannot meet real-time detection requirements.
-It detects objects using a per-pixel approach, as in the case
of semantic segmentation.
-Can be used as a region proposal network i, Faster R-CNN
2020 | ATSS -Increase the performance via the introduction of the Adap- | -Cannot meet real-time detection requirements.
tive Training Sample Selection
-More accurate without using any overhead
2021 | OTA -Deals with the label assignment issue as an optimal transport | -Needs more time for training due to the Sinkhorn-Knopp
problem. Iteration algorithm
- More accurate than ATSS and FCOS -Cannot meet real-time detection requirements.
2022 | DSLA -Deals with the inconsistency in object detection. -Cannot meet real-time detection requirements.
-Smooth label assignment
-The most accurate anchor-free detectors
1) YOLOv2 the object. For this purpose, the one with the highest IoU

YOLOvV2, or YOLO9000 [80], published in 2017, is an object
detection model capable of detecting more than 9,000 object
categories in real-time. It has many updated features to
fix the problems of the first version. The main improve-
ments in YOLOv2 compared to YOLOv1 [72] are the
application of batch normalization over the entire convolu-
tional layers. Besides training 224 x 224 images, it uses
448 x 448 images to fine-tune the classification network over
ten periods on ImageNet [115]. Using 416 x 416 images
during training eliminates a pooling layer for better output
resolution, removes all fully connected layers, and replaces
them with anchor boxes for predicting bounding boxes.
The model achieved 69.2% mAP and 88% recall with the
anchor boxes; without them, it achieved 69.5% mAP and
81% recall. Although the mAP is slightly reduced, its recall
has a high margin increase. As with Faster R-CNN [76],
the anchor box sizes and scales were pre-set beforehand.
YOLO9000 relies on k-means clustering to achieve inter-
esting IOU scores because the standard Euclidean distance-
based k-means often have additional errors when dealing
with larger boxes. Using an IoU clustering approach with
nine anchor boxes, Faster R-CNN obtained 60.9%, whereas
YOLO900 achieved 67.2%. For YOLOvV2, the location is
defined by the logistic activation, thus reducing the value
between 0 and 1, compared to YOLOv1, which has no con-
straints on the location prediction. YOLOV2 predicts multiple
bounding boxes per grid cell. To compute the loss for the
true positive, only one of them should be responsible for
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(intersection over union) with the ground truth is selected.
YOLOV?2 loss function has three parts: finding bounding-box
coordinates, bounding-box score prediction, and class-score
prediction. All of them are Mean-Squared error losses and
are modulated by some scalar meta-parameter or IoU score
between the prediction and ground truth.

2) YOLO v3

The YOLO [72] algorithm uses a softmax function to convert
the scores into probabilities equal to one. YOLOv3 [116]
applies a multi-label classification, and the softmax layer is
substituted with an independent logistic classifier to calculate
the input’s probability of being part of a particular label.
Rather than applying the mean square error to compute the
classification loss, YOLOV3 applies a binary cross-entropy
loss for every label. In addition, it minimizes the cost com-
plexity of calculations by bypassing the SoftMax function.
It provides additional minor enhancements. It performs pre-
diction at three scales, precisely by downsampling the input
image dimensions by 32, 16, and 8, respectively. Darknet,
in this version, has been extended to include 53 convolutional
layers. Detections in several layers are a good solution for
solving the problem of small object detection, a common
concern with YOLOv2. YOLO v3 uses a total of 9 anchor
boxes. Three per each scale. It relies on K-Means clustering to
generate all nine anchors. Next, the anchors are identified in
descending order of one dimension. The first scale allocates
the three most prominent anchors, the second assigns the
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following three anchors, and the third one the last three.
YOLOv3 has more bounding boxes predicted than YOLOv2.
For the same 416 x 416 image, YOLOvV2 has 13 x 13 x
5 = 845 boxes; at every grid cell, a total of 5 boxes were
detected with the use of 5 anchors, as opposed to YOLO v3,
which predicted boxes at three distinct scales, totaling 10,647
predicted boxes for an image with the size of 416 x 416.
In other words, it predicts ten times more boxes than the
total predicted by YOLO v2. For each scale, every grid can
predict three boxes using three anchors. Since there are three
scales, nine anchor boxes are used. YOLOV3’s loss function
of YOLOV3 is defined from three aspects: the bounding box
position error, the bounding box confidence error, and the
classification prediction error between the ground truth and
the predicted boxes. YOLOV3 predicts an objectness score for
each bounding box using logistic regression. The first aspect
of the loss function is the bounding box position error. The
error is calculated by summing up the squared differences
between predicted and true values of a bounding box’s x, y,
w, and h coordinates multiplied by a lambda coefficient that
controls its importance to other losses. The second aspect is
the bounding box confidence error which measures how con-
fident YOLOV3 is that there is an object in a given bounding
box. This term uses binary cross-entropy loss to calculate
how well it predicts whether or not there is an object in a
given cell. Finally, classification prediction error measures
how well YOLOV3 predicts an object’s class. It uses binary
cross-entropy loss for each label.

3) SSD

Single Shot MultiBox Detector (SSD) [73] is an object detec-
tion framework published after R-CNN and YOLO. It was
developed by W. Liu et al. to predict bounding boxes and
class probability in a one-time process using an end-to-end
CNN architecture. It is typically faster than the faster R-CNN.
The SSD allows a one-time shot to detect several objects in
the image instead of the two shots required for the region
proposal network methods listed in the previous section. As a
consequence, SSD is considerably more time-saving com-
pared to region-based approaches. An image is introduced as
an input through a VGG-16 [58] network to extract feature
maps. Several convolutional layers are added with different
filter sizes (19 x 19, 10 x 10,5 x 5,3 x 3,and 1 x 1). These
and the 38 x 38 feature map produced by conv4_3 of VGG
are the feature maps that 3 x 3 convolution filters will process
for each cell to make predictions. There are k-bounding boxes
for each location in the feature maps. These k-boxes are of
various sizes and aspect ratios. On each bounding box, we cal-
culate the C class scores and four offsets about the original
shape of the default bounding box. Each box has four param-
eters and a probability vector corresponding to the confidence
given to each object class. SSD involves negative sampling
to determine poor predictions. It applies the non-maximal
suppression technique at the end of the model, like YOLO,
to maintain the more appropriate boxes. Afterward, the Hard-
Negative Mining (HNM) method is applied to ensure faster
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and more stable training. They select the negative examples
according to the highest confidence value assigned to each
default box and then select the high ones to ensure that the
negative and positive ratio is below 3:1.

The SSD loss function combines localization and confi-
dence loss. The localization loss is the mismatch between
the ground truth box and the predicted boundary box. SSD
only penalizes predictions from positive matches. Negative
matches can be ignored. The confidence loss is a softmax
loss over multiple confidence classes (c¢). During training, the
set of default boxes and scales for detection is essential. The
SSD uses smooth L1 loss as its regression loss function. It is
a particular case of Huber Loss with § = 1. Smooth L1 loss
combines L1 Loss and L2 Loss. When lal is less than or equal
to 1, it behaves like an L2 loss. One-hot encoding turns the
label y into a probability distribution.

4) RETINANET
RetinaNet [79] is a single-stage object detector such as SSD
and YOLO that offers almost the same performance as two-
stage detectors such as Faster R-CNN. This paper’s signif-
icant contribution is a new loss function called a focal loss
for classification, which has significantly increased accuracy.
RetinaNet is a single, composite network consisting of the
leading backbone network called Feature Pyramid Net, which
relies on ResNet (ResNet50 or ResNet101) and two task-
specific sub-networks. The backbone network calculates the
convolutional feature map for the entire input image. The
first subnetwork is used to classify the output of the back-
bone, while the second subnetwork network is used to per-
form bounding box regression using the backbone’s output.
Because of its fully convolutional structure, RetinaNet allows
the network to take an image of random size and generates
feature maps with proportional sizes at several levels in the
feature pyramid. In the classification sub-network, a fully
convolutional network is associated with each level of FPN.
For each anchor A and K object class, it predicts how prob-
ably there will be objects in each spatial position. There are
four 3 x 3 convolution layers with 256 filters in addition to
ReLU activation [117]. A further 3 x 3 convolutional layers
are applied with a K x A filter, followed by sigmoid activa-
tion at the outputs. Focal loss is applied as a loss function.
For the subnetwork, parameters are shared at all levels. As a
result, the shape of the output feature map has the following
dimensions (W, H, KA), which correspond to the feature map
width and height, and K. A denotes the object’s class and
anchor box values. The regression subnetwork is associated
with each FPN feature map parallel to the classification sub-
network. The regression subnetwork is designed the same
way as the classification subnetwork; the only difference is
that the parameters are not shared, with the last convolution
layer consisting of 3 x 3 and 4 filters. Therefore, the output
feature map would be in the shape of (W, H, 4A).

RetinaNet utilizes a focal loss function to address class
imbalance during training. RetinaNet’s focal loss function

VOLUME 11, 2023



A. B. Amjoud, M. Amrouch: Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review

IEEE Access

TABLE 7. Advantages and limitations of transformer-based object detectors.

-Good speed/accuracy trade-off

tation.

Year | Method Advantages Limitations
2020 | DETR -End-to-end training -Slow convergence
-Simple architecture -Cannot meet real-time detection requirements.
-It does not necessitate a dedicated library.
-Can be used in panoptic segmentation.
-It achieves better results on large objects compared to Faster
R-CNN due to the self-attention mechanism
2021 | SMCA -Improve the slow convergence of DETR by introducing the | -Cannot meet real-time detection requirements.
spatially modulated co-attention mechanism.
-More accurate than DETR
2021 | Swin -Great accuracy -Cannot meet real-time detection requirements.

-Can be used for image classification and semantic segmen-

2022 | Anchor DETR | -Better accuracy than DETR.
-Less training time than DETR

-Faster than other transformer-based detectors.

- Still cannot meet real-time detection requirements

2022 | DESTR -Outperforms transformer-based detectors that use single- | -Cannot meet real-time detection requirements.
scale features
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FIGURE 6. Accuracy evolution of the main object detector families in MS-COCO.

down-weights the loss assigned to well-classified examples,
focusing the training on a sparse set of hard examples and pre-
venting many easy negatives from overwhelming the detector
during training.

5) MEGDET

MegDet [118] is a model that tackles the object detec-
tion task from the batch size factor. The authors propose a
Large Mini-Batch size of 256 instead of 16 during training.
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They use a Cross-GPU batch normalization with 128 GPUs
and a warmup learning rate policy to train the whole network
in a suitable time. MegDet achieved an mAP of 50.6% on
the MS-COCO dataset using the ResNet-50 as a backbone
and the OHEM technique. They finished the model training
in four hours. The MegDet paper does not describe a specific
loss function by name. However, it mentions that the shape of
the regression loss function (parameters of SmoothLL1 Loss)
is used in MegDet.
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6) EFFICIENTDET

EfficientDet [67] is an object detection model that relies
on the pretrained EfficientNet [60] backbones, a weighted
bidirectional feature network, and a personalized compound
scaling technique. The bidirectional feature network takes
the level features 3 to 7 from the efficient net and applies
top-down and bottom-up bidirectional feature fusion. The
class and box network weights are shared between all lev-
els of features. EfficientDet7 achieved an AP of 52.2% on
the MS-COCO dataset using the EfficientNet-B7 as a back-
bone. EfficientDet uses a focal loss function for dense object
detection. However, the EfficientDet paper mentions that the
detection head and loss function are replaced with a seg-
mentation head and loss function to perform segmentation
tasks.

7) PAA

PAA [119], a model based on a new technique to
assign anchors based on the likelihood optimization of
the probability distribution, stands for probabilistic anchor
assignment. It consists of computing scores of anchors and
identifying positive and negative samples in a probabilistic
way compared to the heuristic IoU challenging assignment,
which makes the training process more difficult and time-
consuming. The authors propose a score voting method for
post-processing in dense object detection. PAA achieved an
AP of 50.8% on the MS-COCO dataset and 53.5% on the
same dataset for multi-scale testing. The authors tested the
model with many backbones and obtained the best results
using ResNeXt-32 x 8d-152-DCN.

8) YOLOv5

YOLOV5! is a model in the You Only Look Once (YOLO)
family. It is used for detecting objects and comes in four
main versions: small (s), medium (m), large (1), and extra
large (x), each offering progressively higher accuracy rates.
YOLOVS focuses on inference speed and accuracy, using
compound-scaled object detection models trained on the
COCO dataset for model ensembling and Test Time Aug-
mentation. The algorithm only looks at an image once and
detects all objects present and their location.YOLOVS was
introduced in 2020 by the same team that developed the
original YOLO algorithm as an open-source project. It builds
upon the success of previous versions and adds several new
features and improvements.YOLOV5 uses a Convolutional
Neural Network (CNN) backbone called CSPDarknet to form
image features. These features are combined in the model
neck, which uses a PANet (Path Aggregation Network) vari-
ant, and sent to the head. The model head then interprets the
combined features to predict the class of an image. It also
uses residual and dense blocks to enable information flow to
the deepest layers. The architecture consists of three parts:
backbone, neck, and head.

1 https://github.com/ultralytics/yolov5
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9) YOLOv7

YOLOv7 [233] is a faster and more accurate real-time
for computer vision tasks. Like Scaled YOLOv4 [199],
YOLOV7 backbones do not use ImageNet pre-trained back-
bones. YOLOvV7 weights are trained using Microsoft’s COCO
dataset, and no datasets or pre-trained weights are used. The
official paper demonstrates how this improved architecture
surpasses all previous YOLO versions and all other object
detection models in terms of speed and accuracy. YOLOv7
improves speed and accuracy by introducing several archi-
tectural reforms. The larger models in the YOLO7 family
are YOLOv7-X, YOLOv7-E6, YOLOvV7-D6, and YOLOV7-
E6E. Other variations include YOLOv7-X, YOLOv7-E6, and
YOLOV7-D6, which were obtained by applying the proposed
compound scaling method to scale up the depth and width of
the entire model.

D. COMPARISON: ONE-STAGE DETECTORS

Table 5 lists a chronological comparison of the strengths and
limitations of the one-stage anchor-based detection methods
mentioned earlier in this paper.

VIl. ANCHOR-FREE DETECTORS

A. YOLOvI

YOLO [72] has a different approach to object detection.
It captures the complete image in a single instance. It then pre-
dicts both the coordinates of the bounding boxes for regres-
sion and the class probabilities with only one network in one
evaluation. Thus, his name is YOLO; you only look once.
The power of the YOLO model ensures real-time predictions.
The input image is split into an SxS grid of cells to perform
detection. A single grid cell is supposed to predict every
single object in the image, and this is where the object’s center
falls. Each cell will predict B potential bounding boxes with
each bounding box’s C class probabilities value, with a total
of SxSxB boxes. Since the probability of most of these boxes
is relatively small, the algorithm excludes those boxes that
fall below a minimum specific probability threshold. A non-
maximal suppression procedure is applied to all left boxes,
removing all possible multiple detections and keeping the
most accurate objects. A CNN based on the GoogLeNet [120]
model, which includes the initial modules, has been applied.
The network architecture includes 24 convolutional layers
and two fully connected layers. The reduction layers of
1 x 1 filters, followed by convolutional 3 x 3 layers, replace
the primary inception modules. As a result of the final layer,
a tensor of S * S * (C + B * 5) is obtained that equals
the predictions of each grid cell. The total estimate of prob-
abilities for each class is called C. The number of anchor
boxes in each cell is indicated by B, with an additional four
coordinates and a confidence value for each cell. YOLO has
three loss functions, one for the abjectness score and two
others for the coordinates and classification errors. The latter
is calculated when the abjectness score is greater than 0.5.
YOLOVI loss function is divided into three parts: the one
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FIGURE 7. The number of state-of-the-art object detectors, by category, published in top

journals and evaluated on MS-COCO.

responsible for finding the bounding-box coordinates, the
bounding-box score prediction, and the class prediction. The
final loss function is a sum of these three parts.

B. CORNERNET

CornerNet [74] is an object detection model that uses key
points to detect the object bounding box. It uses a convolu-
tional neural network to detect objects as paired keypoints
from the top-left and bottom-right corners. Those corners
are represented as heatmaps, one for the top-left corners and
the other for the bottom-right corner. Each corner has only
one ground truth positive location, while all the remaining
locations are identified as negative. This technique prevents
the model from using traditional anchors employed in other
object detectors. The authors also propose a new type of
pooling layer named corner pooling that aims to localize
corners efficiently. CornerNet uses the Hourglass-104 back-
bone and achieved an accuracy of 40.5% in the MS-COCO
dataset and 42.1% using multi-scale training in the same
dataset. CornerNet uses associative embedding, where the
network predicts similar embeddings for corners belonging
to the same object and a loss function similar to the triplet
loss. In addition, it proposes a new variant of focal Loss as a
loss function, which dynamically adjusts the weights of each
anchor box.

C. EXTREMENET

ExtremeNet [121] uses a bottom-up approach to detect
objects. They use a standard keypoint estimation network
to identify the object’s center point and its four extreme
points: top, right-most, left, and bottom-most. These four
extreme vital points are used as the object bounding box in
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a purely geometric way. The model uses the Hourglass-104
as a backbone and obtained an accuracy of 43.7% and 40.2%
on the MS-COCO dataset for the single-scale and multi-scale
testing, respectively. The ExtremeNet paper does not describe
a specific loss function by name.

D. REPPOINTS

RepPoints [78] stands for representative points, a technique
representing objects as a set of sample points. Since the
traditional bounding boxes provide a coarse localization
and extraction, RepPoints use points to localize and iden-
tify objects. The reppoint technique does not use anchors
to sample the space of bounding boxes. Instead, it learns
to automatically process the ground truth localization and
recognition targets by limiting the spatial extent within
an object and identifying the semantically relevant local
areas. The authors proposed object detection model is
RPDet [78] based on the RepPoints representation combined
with deformable convolution. RPDet used ResNet-101-DCN
as a backbone and obtained an accuracy of 42.8% and 46.5%
in multi-scale training and testing. RepPoints paper describes
two sets of RepPoints, one driven by the points distance loss
alone and the other by a combination of the points distance
loss and the center-ness loss.

E. FSAF

The authors propose a Feature Selective Anchor-Free (FSAF)
module [122] to solve two problems faced in anchor-based
single-shot detectors with feature pyramids; the heuristic-
guided feature selection and the overlap-based anchor sam-
pling. While training multi-level anchor-free branches, the
FSAF module applies online feature selection while training

35497



IEEE Access

A. B. Amjoud, M. Amrouch: Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review

the multi-level anchor-free branches, improving baselines
with tiny inference overhead. Each instance is linked to the
appropriate feature level to optimize the network. The model
encodes those instances following an anchor-free approach
to learn the parameters for classification and regression. The
authors experiment with applying the FSAF module with
other anchor-based branches, such as the RetinaNet base-
line, and yield excellent results with free inference overhead.
The proposed model achieved a currency of 44.6% on the
MS-COCO dataset. The FSAF paper does not describe a
specific loss function by name. However, the FSAF module
uses focal loss for non-ignoring regions and a 4-channel
feature map for the bounding box regression subnet.

F. Fcos

In addition to being an anchor-free detector, the Fully Convo-
lutional One-Stage Detection (FCOS) [75] is also a proposal-
free detector. Similar to semantic segmentation, FCOS relies
on the per-pixel technique to detect objects, avoiding all the
hyperparameters and the complexity of overlapping in train-
ing. FCOS uses Non-maximum suppression (NMS) for post-
processing and filtering the bounding boxes, which improves
accuracy. FCOS achieves an accuracy of 44.7% in MS-COCO
using the ResNeXt-64 x 4d-101-FPN as a backbone. The
authors use the FCOS as a region proposal network in
two-stage object detectors, such as Faster R-CNN. The loss
function used in FCOS combines three losses: focal loss
for classification, IoU loss for regression, and center-ness
loss. The focal loss addresses the class imbalance problem
by down-weighting the easy examples and up-weighting
the hard ones. The IoU loss measures the overlap between
predicted bounding boxes and ground-truth boxes. The
center-ness loss encourages the network to predict more accu-
rate bounding boxes by penalizing predictions far from the
objects’ center.

G. ATSS

Adaptive Training Sample Selection (ATSS) [123] is a
method developed to deal with the gap between center-based
anchor-free and one-stage anchor-based detectors, depending
on how they define the positive and negative training samples.
The proposed model can automatically define the positive
and negative training samples based on the object’s statistical
characteristics. The positive and negative samples are used
for classification, while the negative ones are for regres-
sion. The Adaptive Training Sample Selection technique,
had no hyperparameters compared to previous techniques.
The authors also mentioned that tiling multiple anchors per
location is crucial during object detection. ATSS used the
ResNets as a backbone and obtained the highest accuracy
with ResNeXt-64 x 4d-101-DCN with 47.7% and 50.7% on
multi-scale. The Adaptive Training Sample Selection (ATSS)
method automatically selects positive and negative samples
based on object characteristics using statistical characteristics
to calculate dynamic thresholds. However, the ATSS paper
does not describe a specific loss function by name.
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H. OTA

The authors propose an Optimal Transport Assignment [124]
technique based on the optimization theory. The model deals
with the label-assigning stage in object detection as an
Optimal Transport problem by defining the transportation
between each anchor and ground truth pair. The technique
uses a cost-effective transport of labels from ground-truth
objects and backgrounds to anchors using the Sinkhorn-
Knopp Iteration [125]. Based on the Intersection-over-Union
values between the predicted bounding boxes and each
ground truth, they provide a new simple estimation strat-
egy to identify the positive labels each ground truth needs.
Compared to previous one-stage detectors, OTA can cope
with the assignment of ambiguous anchors by assigning them
manually using hand-crafted rules before applying the opti-
mal transport assignment. OTA achieves excellent results on
the MS-COCO dataset with an accuracy of 49% and 51.5%
on multi-scale testing. The authors tested their method with
several backbones and obtained the best results using the
ResNeXt-64 x 4d-101-DCN. The Optimal Transport Assign-
ment (OTA) loss function is a label-assigning procedure in
object detection that aims to transport labels from ground-
truth objects and assign them to anchor boxes.

I. DSLA

DSLA [126] stands for Dynamic Smooth Label Assign-
ment and is a recent anchor-free detector published to
solve the inconsistency problems in previous detectors. They
improve the transition between positive and negative sam-
ples by improving the centeredness representation suggested
in FCOS and providing an interval relaxation strategy. The
Intersection-of Union is coupled with the smooth label with
a value between 0 and 1 to supervise the classification
branch, which is merged with the quality estimation branch,
resulting in a more simplified anchor-free model with good
localization quality. The IoU is predicted dynamically during
training. The authors tested the DSLA model with several
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backbones, such as Resnet-50, Resnet-50-DCN, ResNeXt-
101-64 x 4d-DCN, and the Swin-S. With the Swin-S back-
bone, they achieved remarkable results on the MS-COO
dataset, reaching 49.2%. DSLA improves the performance of
detection models with adaptive label assignment algorithms
and lower bounding box losses for those positive samples
indicating more samples with higher-quality predicted boxes
are selected as positives.

J. YOLOvS

YOLOVS? is a state-of-the-art object detection, image clas-
sification, and instance segmentation model developed by
Ultralytics. It is designed to be fast, accurate, and easy to
use. YOLOVS builds upon the success of previous YOLO
versions and introduces new features and improvements to
boost performance and flexibility further. It can be trained
on large datasets and run on various hardware platforms,
from CPUs to GPUs. One key feature of YOLOVS is its
extensibility. It supports all previous versions of YOLO,
making it easy to switch between different versions and
compare their performance. This makes YOLOVS an ideal
choice for users who want to take advantage of the latest
YOLO technology while still being able to use their existing
YOLO models.YOLOvS includes numerous architectural and
developer-convenience features, making it an appealing
choice for a wide range of object detection and image seg-
mentation tasks. The architecture of YOLOVS changed from
a simple version to a more complex one, with new con-
volutional layers and a new detection head. Compared to
YOLOVS, it replaces the C3 module with the C2f module.

K. COMPARISON: ANCHOR-FREE DETECTORS

Table 6 lists a chronological comparison of the strengths
and limitations of the anchor-free object detection methods
mentioned earlier in this paper.

VIil. TRANSFORMER-BASED DETECTORS

A VIT

ViT, published in [127] and inspired by transformers in NLP
tasks [128], [129], was the first object detection model to
apply transformers directly to images instead of combining
convolutional neural networks and transformers. ViT splits
the image into patches by providing the sequence of linear
embeddings of these patches as an input to a Transformer.
The model processes the patches as a sequence of words like
tokens processed in Natural Language Processing. A constant
latent vector is used to flatten and map the patches to the
vector size dimension with a trainable projection in all the
transformer layers. They used an MLP with one hidden layer
during the classification during the pre-training time and one
single layer at the fine-tuning time. The ViT achieved the
highest performance when trained on larger datasets when
they were first published. The Vision Transformer (ViT)
paper does not describe a specific loss function by name.

2https://docs.ultralytics.com/
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However, the ViT model outputs hidden raw states without
any specific head on top. It can be used as a building block for
various computer vision tasks such as image classification.

B. DETR

The DEtection TRansformer (DETR) presented in [130] is
the first end-to-end object detection model based on trans-
formers. It consists of a pretrained CNN backbone and trans-
former. The model uses Resnets as a backbone to generate the
lower dimensional features, which will then be formatted into
a single set of features and added to a positional encoding,
fed into a Transformer. The transformer creates an end-to-end
trainable detector. The transformer is based on the original
transformer [131]. It consists of an Encoder and a Decoder,
removing hand-crafted modules like anchor generation. The
transformer encoder takes image features and position encod-
ings as input and directs the result to the decoder. The decoder
processes those features and transmits the output into a fixed
number of Prediction Heads, which consist of a predefined
number of feed-forward networks. Each prediction head’s
output has a class and bounding box. Multi-head attentions
in the decoder modify these object queries with encoder
embeddings to generate results passed through multi-layer
perceptrons to predict class and bounding boxes. DeTR uses
bipartite matching loss to find the optimal one-to-one match-
ing between detector output and padded ground truth. DETR
generates a predefined number of predictions, each computed
in parallel. DETR proposes a set-based global loss that forces
unique predictions via bipartite matching. The DETR model
approaches object detection as a direct set prediction problem
and consists of a set-based global loss, which is the sum of the
classification loss and the bounding box regression loss.

C. SMCA

The SMCA model [132], published in 2021, was an alterna-
tive to improve the DETR model convergence. To train DETR
from scratch, it needs about 500 epochs to achieve the best
results. SMCA proposes a mechanism called Spatially Modu-
lated Co-Attention to improve the convergence of DETR. The
SMCA model only replaces the co-attention mechanism in
the DETR decoder by applying location-aware co-attention.
This new feature constraints co-attention responses to be
high near initially estimated bounding box locations. Training
SMCA takes only 108 epochs and achieves better results than
the original DETR, and demonstrates potential processing of
global information.

D. SWIN

The Swin Transformer [133] seeks to provide a transformer-
based backbone for computer vision tasks. The word Swin
stood for Shifted window and was the first time to apply the
shifted window concept used in CNN in transformers. It uses
patches as in the ViT model by splitting the input images
into multiple, non-overlapping patches and converting them
into embeddings. Numerous Swin Transformer blocks are

35499



IEEE Access

A. B. Amjoud, M. Amrouch: Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review

TABLE 8. Comparative results on VOC 2007 test set (%).

method backbone data mAP Year
two-stage anchor-based

R-CNN[85] AlexNet 07 54.2 2013
R-CNN bb[85] AlexNet 07 58.5 2013
R-CNN bb[68] ZF5 07 59.2 2014
SPP-net[68] ZF5 07 60.9 2014
R-CNN [85] VGGNet-16 07 62.2 2013
HyperNet[92] AlexNet 07+12 65.9 2016
R-CNN bb[136] VGGNet-16 07 66.0 2016
G-CNN[94] VGGNet-16 07 66.8 2016
Fast R-CNN[76] VGGNet-16 07 66.9 2015
NoC[137] VGGNet-16 07+12 68.8 2015
Faster R-CNN[76] VGGNet-16 07 69.9 2017
Fast R-CNN[84] VGGNet-16 07+12 70.0 2015
NoC bb[137] VGGNet-16 07+12 71.6 2015
Faster R-CNN [76] VGGNet-16 07+12 73.2 2017
OHEM [138] VGGNet-16 07+12 74.6 2016
HyperNet [92] VGGNet-16 07+12 74.8 2016
SIN[139] VGGNet-16 07+12 76.0 2018
HyperNet [92] VGGNet-16 07+12 76.3 2016
Faster R-CNN [59] ResNet-101 07+12 76.4 2016
ION [140] VGGNet-16 07+12 76.5 2015
R-FCN [100] ResNet-101 07 76.6 2016
LocNet [141] VGGNet-16 07+12 71.5 2016
MR-CNN [142] VGGNet-16 07+12 78.2 2015
Faster R-CNN [76] VGGNet-16 07+12+COCO 78.8 2017
ION [140] VGGNet-16 07+12+S 79.2 2015
R-FCN [100] ResNet-101 07+12 79.5 2016
R-FCN multi-sc-train [100] ResNet-101 07+12 80.5 2016
CoupleNet [154] ResNet-101 07+12 82.7 2017
ACoupleNet [156] ResNet-101 07+124S 83.1 2019
R-FCN [100] ResNet-101 07+12+COCO 83.6 2016
DCN+R-CNN [157] ResNet-101+ResNet-152 07+12 84.0 2018
Faster R-CNN+++ [59] ResNet-101 07+12+COCO 85.6 2016
ACoupleNet [156] ResNet-101 07+12+COCO* 85.7 2019
SNIPER [158] ResNet101 07+12 86.9 2018
Copy-Paste [101] EfficientNet-B7 NAS-FPN 07+12 88.6 2021
Copy-Paste [101] EfficientNet-B7 NAS-FPN 07+12+COCO 89.3 2021
one-stage anchor-free

YOLOvV1[72] GoogLeNet[120] 07+12 63.4 2016
YOLOvV1[72] VGGNet-16 07+12 66.4 2016
one-stage anchor-based

SSD300[73] VGGNet-16 07 68.0 2016
SSD512[73] VGGNet-16 07 71.6 2016
YOLOV2 352 [80] Darknet-19 07+12 73.7 2016
SSD300[73] VGGNet-16 07+12 74.3 2016
RON384 [106] VGGNet-16 07+12 75.4 2017
Shrivastava et al. [138] VGGNet-16 07+12 76.4 2016
YOLOV2 416[80] Darknet-19 07+12 76.8 2015
SSD512 [73] VGGNet-16 07+12 76.8 2016
SSD321 [105] ResNet-101 07+12 77.1 2017
SSD300 [73] VGGNet-16 07+12 77.2 2016
RON384++ [106] VGGNet-16 07+12 77.6 2017
DSOD300 [103] DS/64-192-48-1[103] 07+12 71.7 2017
YOLOV2 480 [80] Darknet-19 07+12 77.8 2016
STDN300 [107] DenseNet-169 07+12 78.1 2018
Gidaris et al [142] VGGNet-16 07+12 78.2 2015
R-SSD300 [143] VGGNet-16 07+12 78.5 2017
YOLOV?2 544 [80] Darknet-19 07+12 78.6 2016
DSSD321 [105] ResNet-101 07+12 78.6 2017
StairNet [144] VGGNet-16 07+12 78.8 2017
FSSD300 [145] VGGNet-16 07+12 78.8 2017
BlitzNet300 [146] ResNet-50 07+12+4S 79.1 2017
RUN300[147] VGGNet-16 07+12 79.2 2018
ESSD300 [148] VGGNet-16 07+12 794 2018
SSD300 [73] VGGNet-16 07+12+COCO 79.6 2016
DFPR300 [114] VGGNet-16 07+12 79.6 2018
WeaveNet [149] VGGNet-16 07+12 79.7 2017
SSD512 [73] VGGNet-16 07+12 79.8 2016
RefineDet320 [102] VGGNet-16 07+12 80.0 2017
BPN320 [150] VGGNet-16 07+12 80.3 2018
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TABLE 8. (Continued.) Comparative results on VOC 2007 test set (%).
method backbone data mAP [ Year |
one-stage anchor-based [continued]
EFIPNet300 [151] VGGNet-16 07+12 80.4 2019
ScratchDet300 [104] Root-ResNet-34 07+12 80.4 2019
RFBNet300 [69] VGGNet-16 07+12 80.5 2018
ESCNet300 VGGNet-16 07+12 80.5
SSD513 [105] ResNet-101 07+12 80.6 2017
PFPNet-R320 [113] VGGNet-16 07+12 80.7 2018
R-SSD512 [143] VGGNet-16 07+12 80.8 2017
FSSD512 [145] VGGNet-16 07+12 80.9 2017
STDN513 [107] DenseNet-169 07+12 80.9 2018
RUNS512 [147] VGGNet-16 07+12 80.9 2018
SSD300 [73] VGGNet-16 07+12+COCO 81.2 2016
EFGRNet320 [110] VGGNet-16 07+12 81.4 2019
DSSD513 [105] ResNet-101 07+12 81.5 2017
BlitzNet512 [146] ResNet-50 07+12+S 81.5 2017
MSA-DNN300 [152] VGGNet-16 07+12 81.5 2018
SSD512 [73] VGGNet-16 07+12+COCO 81.6 2016
DSOD300 [103] DS/64-192-48-1 07+12+COCO 81.7 2017
DESS512 [108] VGGNet-16 07+12 81.7 2018
HSD512 [153] VGGNet-16 07+12 81.7 2019
RefineDet512 [102] VGGNet-16 07+12 81.8 2017
EFIPNet512 [151] VGGNet-16 07+12 81.8 2019
BPN512 [150] VGGNet-16 07+12 81.9 2018
RFBNet512 [69] VGGNet-16 07+12 82.2 2018
PFPNet-R512 [113] VGGNet-16 07+12 82.3 2018
DFPR512 [114] ResNet-101 07+12 82.4 2018
FSSD300 [145] VGGNet-16 07+12+COCO 82.7 2016
EFGRNet512 [110] VGGNet-16 07+12 82.7 2019
MSA-DNN512 [152] VGGNet-16 07+12 82.9 2018
HSD512 [153] VGGNet-16 07+12 83.0 2019
TripleNet512 [155] ResNet-101 07+12 83.0 2019
RefineDet320+ [102] VGGNet-16 07+12 83.1 2017
SSD512 [73] VGGNet-16 07+12+COCO 83.2 2016
PFPNet-R320+ [113] VGGNet-16 07+12 83.5 2018
RefineDet512+ [102] VGGNet-16 07+12 83.8 2017
RetinaNet500+AP-Loss [112] ResNet-101 07+12 83.9 2019
RefineDet320 [102] VGGNet-16 07+12+COCO 84.0 2017
ScratchDet300 [104] Root-ResNet-34 07+12+COCO 84.0 2019
PFPNet-R512+ [113] VGGNet-16 07+12 84.1 2018
ScratchDet300+ [104] Root-ResNet-34 07+12 84.1 2019
FSSD512* [145] VGGNet-16 07+12+COCO 84.5 2017
RetinaNet500+AP-Loss (MS) [112] ResNet-101 07+12 84.9 2019
DAFS320 [111] VGGNet-16 07+12+COCO 84.7 2019
DAFS320+ [111] VGGNet-16 07+12+COCO 86.1 2019
ScratchDet300+ [104] Root-ResNet-34 07+12+COCO 86.3 2019

then applied to the patches in 4 stages. Each successive
stage reduces the number of patches to maintain hierarchical
representation, compared to ViT, which uses patches of one
size. These patches are converted linearly into C-dimensional
vectors. It computes self-attention only within the local win-
dow as the transformer block comprises local multi-headed
self-attention modules based on alternating shifted patch win-
dows in successive blocks. Computation complexity becomes
linear with image size in local self-attention, while a shifted
window enables cross-window connection and reduces com-
plexity. Each time the attention window shifts concerning the
previous layer. Swin utilizes comparatively higher parameters
than convolutional models.

E. ANCHOR DETR

In [134], the authors propose an end-to-end object detection
model based on transformers with a novel query design. Their
novel query design is based on the anchor points to solve
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the absence of explicit physical meaning of learned object
queries, which makes the optimization process difficult. The
anchor points were used before in CNN-based detectors, and
applying this mechanism lets the object query focus on the
objects near the anchor points. The Anchor DETR model
can predict multiple objects at one position. To optimize
the complexity, they use an attention variant, Row-Column
Decoupled Attention, that reduces the memory cost without
sacrificing accuracy. The primary model uses ResNet-101 as
the backbone with a DC5 feature and achieves an accuracy
of 45.1% on MS-COCO with considerably fewer training
epochs than DETR. The authors proposed anchor-free, RAM-
free, and NMS-free variants.

F. DESTR

DESTR [135], published recently, proposed solving some
previous transformer problems, such as the Cross and self-
attention mechanisms and the transformer’s decoder content
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TABLE 9. Comparative results on VOC 2012 test set (%).

method backbone | data [ mAP [ Year |
two-stage anchor-based

R-CNN [85] AlexNet 12 49.6 2013
R-CNN bb [85] AlexNet 12 53.3 2013
R-CNN [85] VGGNet-16 12 59.2 2013
R-CNN bb [136] VGGNet-16 12 62.4 2016
Fast R-CNN [84] VGGNet-16 12 65.7 2015
G-RCNN VGGNet-16 07++12 66.4 2016
Faster R-CNN [76] VGGNet-16 12 67.0 2017
NoC [137] VGGNet-16 07++12 67.6 2015
Fast R-CNN [84] VGGNet-16 07++12 68.4 2015
NoC bb [137] VGGNet-16 07++12 68.8 2015
Faster R-CNN [76] VGGNet-16 07++12 70.4 2017
Fast R-CNN+YOLO [72] VGGNet-16 07++12 70.7 2016
MR_CNN_S_CNN [142] VGGNet-16 12 70.7 2015
HyperNet_SP [92] VGGNet-16 07++12 71.3 2016
HyperNet [92] VGGNet-16 07++12 71.4 2016
OHEM [138] VGGNet-16 07++12 71.9 2016
Shrivastava et al. [138] VGGNet-16 07++12 72.6 2016
SIN [139] VGGNet-16 07++12 73.1 2018
Faster R-CNN [59] ResNet-101 07++12 73.8 2016
MR CNN MORE DATA[142] VGGNet-16 07++12 73.9 2015
Gidaris et al [142] VGGNet-16 07++12 73.9 2015
Faster R-CNN [76] VGGNet-16 07+12+COCO 75.9 2017
R-FCN multi-sc-train [100] ResNet-101 07++12 77.6 2016
OHEM++ [138] VGGNet-16 07+12+COCO 80.1 2016
CoupleNet [154] ResNet-101 07++12 80.4 2017
ACoupleNet [156] ResNet-101 07+12+S 81.0 2019
DCN+R-CNN [157] ResNet-101+ResNet-152 07++12 81.2 2018
R-FCN multi-sc-train [100] ResNet-101 07++12+COCO 82.0 2017
Faster R-CNN+++ [59] ResNet-101 07++12+COCO 83.8 2016
one-stage anchor-based

RON320 [106] VGGNet-16 07++12 71.7 2017
SSD300 [73] VGGNet-16 07++12 724 2016
RON384 [106] VGGNet-16 07++12 73.0 2017
YOLOV2 544 [80] Darknet-19 07++12 73.4 2016
RON320++ [106] VGGNet-16 07++12 74.5 2017
SSD512 [73] VGGNet-16 07++12 74.9 2016
SSD321 [105] ResNet-101 07++12 75.4 2017
RON384++ [106] VGGNet-16 07++12 75.4 2017
SSD300 [73] VGGNet-16 12++07 75.8 2016
DSSD321 [105] ResNet-101 07++12 76.3 2017
DSOD300 [103] DS/64-192-48-1 07++12 76.3 2017
R-SSD300 [143] VGGNet-16 07++12 76.4 2017
StairNet [144] VGGNet-16 07++12 76.4 2017
WeaveNet [149] VGGNet-16 07++12 77.0 2017
SSD300 [73] VGGNet-16 07+12+COCO 71.5 2016
ION [140] VGGNet-16 07+12+S 76.4 2015
PFPNet-R320 [113] VGGNet-16 07++12 71.7 2017
RefineDet320 [102] VGGNet-16 07++12 78.1 2017
SSD512 [73] VGGNet-16 07++12 78.5 2016
DFPR300 [114] ResNet-101 07++12 78.7 2018
BlitzNet300 [146] ResNet-50 07++12 79.0 2017
MSA-DNN300 [152] VGGNet-16 07++12 79.2 2018
SSD300 [73] VGGNet-16 07+12+COCO 79.3 2016
DSOD300 [103] VGGNet-16 07+12+COCO 79.3 2017
SSD512 [105] ResNet-101 07++12 79.4 2017
DSSD513 [105] ResNet-101 07++12 80.0 2017

query initialization. The authors propose a new Detection
Split Transformer that divides the content embedding esti-
mation of cross-attention into two independent parts, one for
the classification and the other for box regression embedding.
By doing this, they let each cross-attention deal with its
specific task. For the content query initialization, they use a
mini-detector to learn the content and initialize the positional
embedding of the decoder. It is equipped with heads for clas-
sification and regression embeddings. Finally, to account for
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pairs of adjacent object queries in the decoder, they augment
the self-attention by the spatial context of the other query in
the pair.

G. COMPARISON: TRANSFORMER-BASED DETECTORS
Table 7 lists a chronological comparison of the strengths and
limitations of the two-step anchor-based detection methods
mentioned earlier in this paper.
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TABLE 9. (Continued.) Comparative results on VOC 2012 test set (%).

method backbone [ data [ mAP [ Year |
one-stage anchor-based [continued]

SSD512 [73] VGGNet-16 07+12+COCO 80.0 2016
RefineDet512 [102] VGGNet-16 07++12 80.1 2017
BlitzNet300 [146] ResNet-50 07++12+S+COCO 80.2 2017
DES512 [108] VGG-16 07++12 80.3 2018
PFPNet-R512 [113] VGGNet-16 07++12 80.3 2018
RON384++ [106] VGG-16 07+12+COCO 80.7 2017
ESCNet512 VGGNet-16 07++12 80.9 2019
DFPR512 [114] ResNet-101 07++12 81.1 2018
MSA-DNN512 [152] VGGNet-16 07++12 81.3 2018
TripleNet512 [155] ResNet-101 07++12 81.9 2019
FSSD300 [145] VGGNet-16 07++12+COCO 82.0 2017
ScratchDet300 [104] Root-ResNet-34 07++12+COCO 82.1 2019
SSD512 [73] VGGNet-16 07++12+COCO 82.2 2016
RefineDet320+ [102] VGGNet-16 07++12+COCO 82.7 2017
PFPNet-R320+ [113] VGGNet-16 07++12 83.0 2018
RetinaNet500+AP-Loss [112] ResNet-101 07++12 83.1 2019
RefineDet512+ [102] VGGNet-16 07++12 83.5 2017
PFPNet-R512+ [113] VGGNet-16 07++12 83.7 2018
BlitzNet512 [146] ResNet-50 07++12+S+COCO 83.8 2017
DAFS320 [111] VGGNet-16 07++12+COCO 83.9 2019
FSSD512 [145] VGGNet-16 07++12+COCO 84.2 2017
RetinaNet500+AP-Loss multi-sc-train [112] ResNet-101 07++12 84.5 2019
ScratchDet300+ [104] Root-ResNet-34 07++12+COCO 86.3 2019
RefineDet512 ++ [102] VGGNet-16 07++12+COCO 86.8 2017
DAFS320+ [111] VGGNet-16 07++12+COCO 86.9 2019
anchor-free

YOLOv1 [72] GoogLeNet | 07++12 | 579 | 2016 |

IX. PERFORMANCE ANALYSIS AND DISCUSSION

This section tests and compares all object detection models
in the three benchmark databases in the object detection
field. Pascal Voc 2007, Pascal Voc 2012 and MS-COCO. The
column ‘““data” in the following tables refer to training data.

A. PASCAL VOC 2007
The results of the tests are listed in Table 8.

B. PASCAL vVOC 2012
The results of the tests are listed in Table 9.

C. MS-COoCO
The results of the tests are listed in Table 10.

D. TESTING CONSUMPTION

All the frameworks listed below are tested using the
Nvidia Titan X GPU (Maxwell architecture) for all exper-
iments, facilitating speed comparison with earlier experi-
ments, as they used the same GPU.

1) PASCAL VOCO7
The results of the tests are presented in Table 11.

2) MS-COCO
The results of the tests are presented in Table 12.

E. DISCUSSION
As we can observe in this survey, most of the tests were
performed on the MS-COCO database. Indeed, its large size
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and rich annotations allow us to evaluate the models on a wide
range of images and give a clear picture of how the models
generalize. Tables 6 and 7 show that all the models that
achieved the highest mAP on Pascal VOC 2007 fall into the
anchor-based detectors. All the leading five models belong
to the two-stage approach, except for ScratchDet++-, which
follows the one-stage approach. Copy-Paste achieved an mAP
of 88.6% by combining EfficientNet-B7 and NAS-FPN as
a backbone. Moreover, it reached an mAP of 89.3% when
pre-training on MS-COCO. Copy and paste highlights the
importance of copy-and-paste data augmentation. SNIPER,
ScratchDet, ACoupleNet, and Faster R-CNN achieved the
following mAPs: 86.9%, 86.3%, 85.7%, and 85.6%. Except
for the Copy-Paste model, which uses EfficientNet-B7 NAS-
FPN as its backbone, all other leading models use one of the
following networks: ResNets, Root-Resnets, and VGGNets,
proving the powerful performance of these models.

From Table 8, we remark that anchor-based detection
methods are the models that scored the best mAPs on
Pascal VOC 2012. We also notice that the one-stage anchor-
based detectors surpass the two-stage anchor-based detec-
tors, which was the opposite in the past. RefineDet512+4+
achieved the best mAP of 86.8% with pretraining on the MS-
COCO dataset using VGGNet-16. In contrast, the highest
mAP without pretraining on MS-COCO belongs to Reti-
naNet500 using AP-Loss and ResNet-101 as the backbone,
with an mAP of 84.5% when applying the multi-scale testing.
ScratchDet3004, FSSD512, and BlitzNet obtained an mAP
of 86.3%, 84.2%, and 83.8%, respectively. Similar to Pascal
VOC 2007 results, the main backbones that achieved the best
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TABLE 10. MS COCO test-dev 2015 detection results.
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Method Backbone Data | mAP@.5 | mAP[5,.95] | Year |
two-stage anchor-based

Fast R-CNN [76] VGGNet-16 train 39.3 19.3 2015
Fast R-CNN [84] VGGNet-16 train 35.9 19.7 2015
Fast R-CNN [140] VGGNet-16 train 40.3 20.0 2015
Fast R-CNN [140] VGGNet-16 train 39.9 20.5 2015
Faster R-CNN [76] VGGNet-16 train 42.1 21.5 2017
Faster R-CNN [76] VGGNet-16 trainval 42.7 21.9 2017
OHEM [138] VGGNet-16 trainval 42.5 22.6 2016
SIN [139] VGGNet16 train 44.5 23.2 2018
ION [140] VGGNet16 train 43.2 23.6 2015
ION [140] VGGNet-16 train+S 46.3 24.6 2015
OHEM++ [138] VGGNet-16 trainval 459 25.5 2016
Faster R-CNN w Cascade RCNN [87] VGGNet-16 train 443 26.9 2018
Faster R-CNN [59] ResNet-101 train 48.4 27.2 2016
NoC [137] ResNet101 train 48.4 27.2 2015
R-FCN [100] ResNet-101 train 48.9 27.6 2016
R-FCN multi-sc-train [100] ResNet-101 train 49.1 27.8 2016
MLKP [160] ResNet101 trainval 35k 524 28.6 2018
R-FCN [100] ResNet-101 trainval 51.5 29.2 2016
R-FCN multi-sc-train [100] ResNet-101 trainval 51.9 29.9 2016
R-FCN w Cascade RCNN [87] ResNet-50 train 49.9 30.9 2018
R-FCN multi-sc-train, test [100] ResNet-101 trainval 53.2 31.5 2016
SMN [163] VGGNet16 trainval35k 52.2 31.6 2017
CoupleNet [154] ResNet-101 trainval 53.5 33.1 2017
ION [140] VGGNet-16 trainval35k+S | 55.7 33.1 2015
MPN [164] VGGNet16 train 51.9 332 2016
R-FCN w Cascade RCNN [87] ResNet-101 train 52.6 333 2018
ACoupleNet [156] ResNet-101 trainval+S 54.1 34.1 2019
CoupleNet msc train [154] ResNet-101 trainval 54.8 344 2017
Faster R-CNN G-RMI [23] Inception-ResNet-V2 trainval 55.5 34.7 2017
Faster R-CNN+++ [59] ResNet-101-C4 trainval 55.7 349 2016
ACoupleNet mst train [156] ResNet-101 trainval+S 55.7 354 2019
RDSNet 600 [167] ResNet-101 trainval35k 55.2 36.0 2019
Faster R-CNN w/ FPN [63] ResNet-101-FPN trainval35k 59.1 36.2 2016
FPN FRCN [63] ResNet-101 trainval 59.1 36.2 2016
TensorMask [168] ResNet-101 trainval35k 95.3 37.1 2019
Faster R-CNN w/ TDM [169] Inception-ResNet-v2-TDM trainval 57.8 37.3 2016
TDM [169] Inception-ResNet-v2-TDM trainval 57.8 37.3 2017
Deformable R-FCN [170] Aligned-Inception-Resnet trainval 58.0 37.5 2017
RDSNet 800 [167] ResNet-101 trainval35k 58.5 38.1 2019
Mask R-CNN [77] ResNet-101-FPN trainval 35k 60.3 38.2 2017
FPN [157] ResNet-101 trainval 61.7 38.8 2018
Gu et al [173] ResNet-101 trainval35k 63.1 399 2018
Relation Network [171] DCN-101 trainval35k 58.6 39.0 2018
DeepRegionlets [172] ResNet-101 trainval35k 59.8 39.3 2018
Mask R-CNN [77] ResNeXt-101-FPN trainval 35k 62.3 39.8 2017
DetNet [175] DetNet-59 trainval35k 62.1 40.3 2018
IoU-Net [176] ResNet-101 trainval35k 59.0 40.6 2018
FPN [157] ResNet-101+ResNet-152 trainval 64.4 40.7 2018
Soft-NMS [178] Aligned-Inception-ResNet trainval 62.8 40.9 2017
SOD-MTGAN [181] ResNet101 trainval35k 63.2 414 2018
LH R-CNN [182] ResNet101 trainval 35k - 41.5 2017
G-RMI [23] Ensemble of Five Models trainval32k 61.9 41.6 2017
FPN-DCN [157] ResNet-101 trainval 64.0 41.7 2018
Fitness-NMS multi-sc-train [185] ResNet-101 trainval35k 60.9 41.8 2018
C-Mask RCNN [186] ResNet-101 trainval35k 62.9 42.0 2018
Cascade R-CNN [87] ResNet101 trainval35k 62.1 42.8 2018
Libra R-CNN [97] ResNeXt101-FPN train 64.0 43.0 2019
Revisiting RCNN [157] ResNet-101+ResNet-152 trainval 66.1 43.1 2018
Revisiting RCNN [157] ResNet-101+ResNet-152 trainval35k 66.1 43.1 2018
Faster RCNN-FPN+ ResNet-101 trainval35k 63.9 44.0 2017
PANet [66] ResNeXt-101 trainval35k 65.0 45.0 2018
D-RFCN + SNIP [90] DPN-98 trainval 35k 67.3 45.7 2018
SNIPER [158] ResNet101 trainval35k 67.0 46.1 2018
TridentNet [89] ResNet101-DCN trainval35k 67.6 46.8 2019
Dynamic RCNN [205] ResNet-101-DCN trainval35k 56.9 46.9 2020
HTC [206] ResNeXt-101-FPN trainval35k 63.9 47.1 2019
HTC [206] ResNeXt-101-64x4d trainval35k 66.5 47.2 2019
PANet multi-sc-train [66] ResNeXt-101 trainval35k 67.2 474 2018
DCN-v2 multi-sc-test [223] ResNet-101 trainval35k 67.9 46.0 2019
D-RFCN + SNIP [90] Ensemble of three networks trainval35k 69.7 48.3 2018
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TABLE 10. (Continued.) MS COCO test-dev 2015 detection results.

method backbone | data [ mAP@5 [ mAP[5,95] | year |
two-stage anchor-based [continued]

TridentNet [89] ResNet101-DCN trainval35k 69.7 48.4 2019
Dynamic RCNN multi-sc-train-test [205] | ResNet-101-DCN trainval35k 68.6 49.2 2020
HTC + DCN multi-sc-train [170] ResNeXt-101-64x4d trainval35k 70.3 50.8 2017
TSD multi-sc-test [191] SENet154 trainval35k 71.9 53.3 2020
DetectoRS [225] ResNeXt-101-64x4d trainval35k 71.6 53.3 2021
CBNet multi-sc-test [226] ResNet-152 trainval35k 71.9 53.3 2022
DetectoRS multi-sc-test [225] ResNeXt-101-64x4d trainval35k 74.2 55.7 2021
SpineNet-190 (1536) [61] SpineNet-49 trainval35k - 52.5 2020
SpineNet-190 (1280) [61] SpineNet-49 trainval35k - 52.8 2020
Copy-paste [101] Cascade Eff-B7 NAS-FPN trainval35k - 56.0 2021
SoftTeacher [211] HTC++(Swin-L) trainval35k - 59.1 2021
SoftTeacher multi-sc-train [211] HTC++(Swin-L) trainval35k - 60.4 2021
one-stage anchor-based

YOLOV2 [80] Darknet-19 trainval 35k 44.0 21.6 2016
SSD300 [73] VGGNet-16 trainval35k 41.2 23.2 2016
RON?320 [106] VGGNet-16 trainval 44.7 23.6 2017
SSD300 [73] VGGNet-16 trainval35k 43.1 25.1 2016
RON?384 [106] VGGNet-16 trainval 46.5 254 2017
RON320++ [106] VGGNet-16 trainval 47.5 26.2 2017
SSD512 [73] VGGNet-16 trainval 35k 46.5 26.8 2016
DiCSSD300 [159] VGG-16 trainval35 46.3 26.9 2018
FSSD300 [145] VGGNet-16 trainval35k 47.7 27.1 2017
RON384++ [106] VGGNet-16 trainval 49.5 274 2017
SSD321[105] ResNet-101 trainval35k 45.4 28.0 2017
DSSD321[105] ResNet-101 trainval35k 46.1 28.0 2017
STDN300 [107] DenseNet-169 trainval 45.4 28.0 2018
YOLOvV3-320 [116] Darknet-53 trainval 51.5 28.2 2018
DES300 [108] VGG-16 trainval35 47.3 28.3 2018
DFPR300 [114] VGG-16 trainval 48.5 28.4 2018
SSD512 [73] VGGNet-16 trainval35k 48.5 28.8 2016
DSOD300 [103] DS/64-192-48-1 trainval 473 29.3 2017
RefineDet320 [102] VGGNet-16 trainval35k 49.2 29.4 2017
BPN320 [150] VGGNet-16 trainval35k 48.4 29.6 2018
PFPNet-S300 [113] VGGNet-16 trainval35k 49.6 29.6 2018
EFIPNet300[151] VGGNetl6 trainval35 48.8* 30.0 2019
RFBNet300 [69] VGGNetl6 trainval35 49.3 30.3 2018
RetinaNet400 [79] ResNet-50 trainval35k 47.8 30.5 2017
YOLOv3-416 [116] Darknet-53 trainval 55.3 31.0 2018
YOLACT-550[161] D-53-FPN trainval35 51.1 31.0 2019
BlitzNet300 [146] ResNet-50 trainval 49.7 31.1 2017
SSD513 [105] ResNet-101-SSD trainval35k 50.4 31.2 2017
Rev-Dense [162] VGGNetl6 trainval35 52.9 31.2 2018
DFPR300 [114] ResNet101 trainval 50.5 31.3 2018
FSSD512 [145] VGGNet-16 trainval35k 52.8 31.8 2017
PFPNet-R32 [113] VGGNet-16 trainval35k 52.9 31.8 2018
STDN513 [107] DenseNet169 trainval 51 31.8 2018
RetinaNet400 [79] ResNet-101 trainval35k 49.5 31.9 2017
RefineDet320 [102] ResNet-101 trainval35k 51.4 32.0 2017
RUNS12 [147] VGGNetl6 trainval35 53.5 324 2018
RetinaNet500 [79] ResNet-50 trainval35k 50.9 32.5 2017
ScratchDet300 [104] Root-ResNet34 trainval35k 52 32.7 2019
MSA-DNN320 [152] ResNet101 train2017 52.1 32.7 2018
DES512 [108] VGGNetl6 trainval35 53.2 32.8 2018
RefineDet512 [102] VGGNet-16 trainval35k 54.5 33.0 2017
YOLOvV3-608 [116] Darknet-53 trainval 579 33.0 2018
BPN512 [150] VGGNet-16 trainval35k 53.1 33.1 2018
DSSD513 [105] ResNet-101-DSSD trainval 35k 53.3 332 2017
EFGRNet320 [110] VGGNetl6 trainval35k 53.4 33.2 2019
DAFS320 [111] ResNet101 trainval 35k 52.7 332 2019
PFPNet-S512 [113] VGGNet-16 trainval35k 54.8 334 2018
M2Det320 [165] VGGNetl6 trainval 35k 524 335 2019
HSD320 [153] VGGNetl6 trainval35k 53.2 33.5 2019
YOLACT-700 [161] ResNet-101-FPN trainval 35k 54.3 33.7 2019
RFBNet512 [69] VGGNetl6 trainval35k 54.2 33.8 2018
EfficientDet-DO (512) [67] EfficientNet-B3 + BiFPN trainval 35k 52.2 33.8 2020
DRN512 [213] VGGNetl6 trainval35k 57.1 34.3 2018
LRF [109] ResNet-101 trainval 35k 54.1 343 2019
M2Det320 [165] ResNet-101 trainval35k 53.5 343 2019
RetinaNet500 [79] ResNet-101 trainval 35k 53.1 344 2017
RFBNet512-E [69] VGGNetl6 trainval35k 55.7 34.4 2018
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TABLE 10. (Continued.) MS COCO test-dev 2015 detection results.

method backbone | data mAP@.5 [ mAP[5,95] | year |
one-stage anchor-based [continued]

EFIP512 [151] VGGNetl6 trainval35k 55.8 34.6 2019
DFPR512 [114] ResNet-101 trainval35k 54.3 34.6 2018
EFIPNet512 [151] VGGNetl6 trainval35k 55.8 34.6 2019
EfficientDet-DO (512) [67] EfficientNet-BO trainval 35k 53.0 34.6 2020
RefineDet320+ [102] VGGNet-16 trainval35k 56.1 35.2 2017
PFPNet-R512 [113] VGGNet-16 trainval35k 57.6 35.2 2018
BPN320++ [150] VGGNet-16 trainval35k 55.3 354 2018
BlitzNet512 [146] ResNet-50 trainval 55.5 35.8 2017
YOLOvV3-SPP [116] Darknet-53 trainval35k 60.6 36.2 2018
RefineDet512 [102] ResNet-101 trainval 35k 57.5 36.4 2017
LRF 512 [109] ResNet-101 trainval35k 58.5 37.3 2019
RetinaNet500+AP-Loss [112] ResNet-101 trainval35k 58.6 374 2019
TripleNet [155] ResNet101 trainval35k 59.3 374 2019
MSA-DNN512 [152] ResNet101 train 55.0 37.5 2018
RefineDet512+ [102] VGGNet-16 trainval35k 58.7 37.6 2017
RetinaNet800 [79] ResNet-101 trainval 57.5 37.8 2017
PFPNet-R320+ [113] VGGNet-16 trainval35k 60.0 37.8 2018
BPNS512++ [150] VGGNet-16 trainval35k 58.0 37.9 2018
MetaAnchor [81] ResNet-50 trainval 35k - 37.9 2018
RefineDet320+ [102] ResNet-101 trainval35k 59.9 38.6 2017
DAFS512 [111] ResNet-101 trainval 35k 58.9 38.6 2019
EFGRNet512 [110] ResNet101 trainval 35k 58.8 39.0 2019
RetinaNet800 [79] ResNet-101-FPN trainval35k 59.1 39.1 2017
ScratchDet300+ [104] Root-ResNet34 trainval 35k 59.2 39.1 2019
PFPNet-R512+ [113] VGGNet-16 trainval35k 61.5 394 2018
ConRetinaNet [174] ResNet-101 trainval35k 59.6 40.1 2019
RetinaNet800 [79] ResNeXt-101-FPN trainval 35k 61.1 40.8 2017
M2Det 800 [165] VGGNetl6 trainval35k 59.7 41.0 2019
Cas-RetinaNet [179] ResNet101 trainval 35k 60.7 41.1 2019
YOLOvV4 [180] CSPDarknet-53 trainval35k 62.8 41.2 2021
GHM [183] RetinaNet-FPN-ResNeXt-101 trainval35k 62.8 41.6 2019
NATS [184] ResNeXt101-3274d train 64.3 41.6 2019
RefineDet512+ multi-sc-train [102] ResNet-101 trainval 35k 62.9 41.8 2017
RetinaNet500+AP-Loss multi-sc-train [112] ResNet101 trainval35k 63.5 42.1 2019
HSD768 [153] ResNet101 trainval35k 61.2 423 2019
RetinaMask800 [188] ResNeXt-101-FPN-GN trainval35k 62.5 42.6 2020
GFL [189] ResNet50 trainval35k 61.2 429 2020
EfficientDet-D2 [67] Efficient-B2 trainval35k 62.3 43.0 2020
YOLOV4 [180] CSPDarknet-53 trainval35k 64.9 43.0 2021
TSD [191] ResNet-101 trainval35k 64.0 43.2 2020
SABL [193] ResNet-101 trainval35k 64.7 43.2 2020
EFGRNet (MS) [110] ResNet101 trainval35k 63.8 43.4 2019
YOLOv4 608 [180] CSPDarknet-53 trainval35k 65.7 43.5 2021
MAL [194] ResNet-101 trainval35k 62.8 43.6 2019
ASFF (800) [65] Darknet-53 trainval35k 64.1 43.9 2019
M2Det512 multi-sc-train [165] ResNetl101 trainval 35k 64.4 439 2019
NoisyAnchor [195] ResNeXt101 trainval35k 63.8 44.1 2020
M2Det800 (MS) [165] VGGNetl6 trainval35k 64.6 44.2 2019
TSP-RCNN [196] ResNet101 trainval35k 63.8 44.8 2021
PP-YOLO 608 [198] ResNet50-vd-den trainval35k 65.2 452 2020
MAL [194] ResNeXt101 trainval35k 65.4 459 2019
ATSS[123] ResNet-101-DCN trainval35k 64.7 46.3 2020
TSP-RCNN+ [196] ResNet-101 trainval35k 66.0 46.5 2021
AutoAssign [204] ResNet-101 trainval35k 66.5 46.5 2020
TSP-RCNN [196] ResNet-101 trainval 35k 66.2 46.6 2021
TSP-RCNN [196] ResNet-101-DCN trainval35k 66.7 47.4 2021
ATSS [123] ResNeXt-64x4d-101-DCN trainval35k 66.5 47.7 2020
NAS-FPN 1280 [64] AmoebaNet-DropBlock trainval35k - 48.3 2019
MegDet [118] ResNet-50 trainval35k - 50.6 2018
GFLV2 [71] ResNet-101-DCN trainval35k 69 50.6 2021
ATSS multiscale testing [123] ResNeXt-64x4d-101-DCN trainval35k 68.9 50.7 2020
PAA [119] ResNeXt-32x8d-152-DCN trainval35k 69.7 50.8 2020
SEPC [227] ResNeXt-101 trainval35k 69.7 50.8 2020
EfficientDet-D7 [67] EfficientNet-B6 trainval 35k 71.4 52.2 2020
GFLV2 multi-sc-train-test [71] ResNet-101-DCN trainval35k 70.9 53.3 2021
PAAMS [119] ResNeXt-32x8d-152-DCN trainval35k 71.6 53.5 2020
EfficientDet-D7(1536) [67] EfficientNet-B6 trainval35k 72.4 53.7 2020
EfficientDet-D7x (1536) [67] EfficientNet-B7 trainval35k 74.3 55.1 2020
YOLOR [209] YOLOR-D6 trainval 35k 73.3 55.4 2021
DyHead [210] Swin-L trainval 35k - 58.7 2021
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TABLE 10. (Continued.) MS COCO test-dev 2015 detection results.

method backbone [ data [ mAP@.5 mAP [5,.95] [ year |
anchor-free

DeNet101(wide) [166] ResNet101 trainval 534 33.8 2017
GA-Faster-RCNN [82] ResNet-50 trainval35k 59.2 39.8 2019
ExtremeNet [121] Hourglass-104 trainval35k 55.5 40.2 2019
CornerNet511 [74] Hourglass104 trainval35k 56.5 40.5 2018
CenterMask-Lite 600 [177] VoVNet-39-FPN trainval35k - 40.7 2020
FSAF800 [122] ResNet-101 trainval35k 61.5 40.9 2019
RPDet [78] ResNeXt-101 trainval35k 62.9 41.0 2019
FoveaBox [187] ResNeXt-101 trainval35k 61.9 42.1 2020
CornerNet511 multi-sc-train [74] Hourglass104 trainval35k 57.8 42.2 2018
AB + FSAF 800 [122] ResNeXt-64x4d-101-FPN trainval35k 63.8 429 2019
FreeAnchor [190] ResNet-101 train 62.2 43.1 2019
FCOS [75] ResNeXt-64x4d-101 trainval35k 62.8 43.2 2019
Grid R-CNN[94] ResNeXt-101 trainval35k 63.0 43.2 2019
CornerNet-Lite [192] Hourglass-54 trainval35k - 432 2019
ExtremeNet multi-sc-train [121] Hourglass104 train 60.5 437 2019
FoveaBox [187] ResNeXt-101 trainval35k 63.5 43.9 2020
TSP-FCOS [196] ResNet-101 trainval35k 63.8 44 4 2021
FCOS [75] ResNeXt101-64?4d-FPN trainval35k 64.1 44.7 2019
FreeAnchor [190] ResNeXt101 train 64.3 44.9 2019
CenterNet511 [197] Hourglass-104 trainval 35k 62.4 44.9 2019
RPDet (MS) [78] ResNet-101-DCN trainval35k 66.1 45.0 2019
YOLOV4 [199] CSPDarknet-53 trainval35k 64.1 45.5 2021
CentripetalNet [203] Hourglass-104 trainval35k 63.1 46.1 2020
CenterMask [177] VoVNet-99-FPN trainval35k - 46.5 2020
SAPD [202] ResNet-101-DCN trainval35k 65.9 46.0 2020
RPDet multi-sc-test [78] ResNet101-DCN trainval35k 67.4 46.5 2019
CenterNet511 multi-sc-train [197] Hourglass104 trainval35k 64.5 47.0 2019
SAPD [202] ResNeXt-101-64x4d-DCN trainval35k 67.4 474 2020
YOLOV4-CSP [199] CSPDarknet-53s trainval35k 66.2 475 2021
CentripetalNet (MS) [203] Hourglass-104 trainval35k 65.1 48.0 2020
BorderDet [207] ResNeXt-64x4d-101-DCN trainval35k 67.1 48 2020
OTA [124] ResNeXt-64x4d-101-DCN trainval35k 67.6 49.2 2021
DSLA [126] Swin-S trainval35k 68.1 49.2 2022
BorderDet multi-sc-test [207] ResNeXt-64x4d-101-DCN trainval 35k 68.9 50.3 2020
OTA multi-sc-test [124] ResNeXt-64x4d-101-DCN trainval35k 68.6 51.5 2021
YOLOV4-P7 (1536) [199] CSP-P7 trainval35k 73.4 55.5 2021
transformer-based

DETR-DC5+ [130] ResNet101 trainval35k 64.7 44.9 2020
Anchor DETR-DCS5 [134] ResNet-101 trainval35k 65.7 45.1 2022
SMCA [132] ResNet-50 trainval35k 65.5 45.6 2021
SM-NAS: E5 [200] Searched Backbone trainval35k 64.6 459 2019
Conditional DETR-DC5 [201] ResNet101 trainval35k 66.8 459 2021
DESTR-DCS [135] ResNet-101 trainval35k 67.6 46.8 2022
MAL multi-sc-train [194] ResNeXt101 trainval35k 66.1 47.0 2019
Deformable DETR [208] ResNeXt-101 + DCN trainval35k 69.7 50.1 2021
Deformable DETR multi-sc-train [208] ResNeXt-101 + DCN trainval35k 71.9 52.3 2021
Swin-L [133] HTC++ trainval35k - 57.7 2021
Swin-L MS [133] HTC++ trainval35k - 58.7 2021
Swin V2-G [212] HTC++ trainval35k - 63.1 2022

results were VGG networks, residual networks, and Root-
ResNets.

For the models tested on the MS-COCO dataset, we can
notice the intense competition between different approaches.
The first four positions belong to different object detection
approaches. So far, the Swin V2-G model based on trans-
formers and the HTC++ backbone is the winner, with an
mAP of 63.1%. Ranking second, we find Copy-Paste, which
belongs to the anchor-based model family, with an mAP
of 56.0%. Copy-Paste uses a combination of Cascade Eff-
B7 and NAS-FPN. In third place, we find YOLOv4-P7,
which falls into the anchor-free detector family with an
mAP of 55.5%. YOLOv4-P7 uses the CSP-P7 network as
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its backbone. In fourth place, we have the EfficientDet-
D7x model, which achieved an mAP of 55.1% and used the
EfficientNet-B7 network as its backbone. EfficientDet-D7x
belongs to the one-step anchor-based object detector family.
In MS-COCO, the backbones that assisted in achieving an
mAP greater than 50.0% are ResNets, ResNeXts, Efficient
Nets, SpineNet, CSP, and HTC++.

Table 11 shows that all the fast object detection algorithms
belong to the one-stage anchor-based approach family when
implementing object detection models in a real-time environ-
ment. However, achieving high accuracy with many frames
per second is difficult, as in the case of Fast YOLO, which
achieved 155 FPS while obtaining only 55.7% mAP. We can
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TABLE 11. Comparison of testing consumption on VOC 07 test set.

method backbone [ data [ input size [ #boxes mAP fps
two-stage anchor-based

MR-CNN [142] VGGNet-16 07+12 1000 x 600 250 78.2 0.03
Fast R-CNN [84] VGGNet-16 07+12 1000 x 600 2000 70.0 0.5
HyperNet [92] VGGNet-16 07+12 1000 x 600 100 76.3 0.88
ION [140] VGGNet-16 07+12 1000 x 600 4000 76.5 1.25
Faster R-CNN [76] ResNet-101 07+12 1000 x 600 300 76.4 2.4
Faster R-CNN [76] VGGNet-16 07+12 1000 x 600 300 73.2 7
OHEM [138] VGGNet-16 07+12 1000 x 600 300 46.6 7
CoupleNet [154] ResNet-101 07+12 1000 x 600 300 82.7 8.2
R-FCN [41] ResNet-101 07+12 1000 x 600 300 80.5 9
Faster R-CNN ZFNet 07+12 1000 x 600 300 62.1 18
one-stage anchor-based

DSSD [105] ResNet-101 07+12 513 x 513 43688 81.5 5.5
SSD [105] ResNet-101 07+12 513 x 513 43688 80.6 6.8
DSSD [105] ResNet-101 07+12 321 x 321 17080 78.6 9.5
SSD [105] ResNet-101 07+12 321 x 321 17080 77.1 11.2
RON384 [106] VGGNet-16 07+12 384 x 384 30600 75.4 15
R-SSD [143] VGGNet-16 07+12 512x512 24564 80.8 16.6
DSOD300 [103] DS/64-192-48-1 07+12 300 x 300 8732 71.7 174
SSD512 [73] VGGNet-16 07+12 512 x 512 24564 79.8 19
SSD VGGNetl6 07+12 512x512 24564 76.8 19
BlitzNet [146] ResNet-50 07+12 512x 512 32766 81.5 19.5
PFPNet-R512 [113] VGGNet-16 07+12 512 x 512 16320 82.3 24
BlitzNet [146] ResNet-50 07+12 300 x 300 45390 79.1 24
RefineDet512 [102] VGGNet-16 07+12 512x 512 16320 81.8 24.1
ESSD [148] VGGNet-16 07+12 300 x 300 - 79.4 25
PFPNet-S512 [113] VGGNet-16 07+12 512x 512 24564 81.8 26
PFPNet-R320 [113] VGGNet-16 07+12 320 x 320 6375 80.7 33
R-SSD [143] VGGNet-16 07+12 300 x 300 8732 78.5 35
PFPNet-S300 [113] VGGNet-16 07+12 300 x 300 8732 79.9 39
RUN [147] VGGNet-16 07+12 300 x 300 - 79.2 40
RefineDet320 [102] VGGNet-16 07+12 320 x 320 6375 80.0 40.3
SSD300 VGGNet16 07+12 300 x 300 8732 74.3 46
SSD [73] VGGNet-16 07+12 300 x 300 8732 77.2 46
WeaveNet [149] VGGNet-16 07+12 320 x 320 - 79.7 50
DES [108] VGGNet-16 07+12 300 x 300 - 79.7 76.8
EFIPNet[151] VGGNet-16 07+12 300 x 300 - 80.4 111
YOLOV2 [80] Darknet-19 07+12 544 x 544 845 78.6 40
YOLOV2 [80] Darknet-19 07+12 480 x 480 - 77.8 59
YOLOV2 [80] Darknet-19 07+12 416 x 416 - 76.8 67
YOLOV2 [80] Darknet-19 07+12 352 x 352 - 73.7 81
YOLOV2 [80] Darknet-19 07+12 288 x 288 - 69.0 91
anchor-free

YOLO [72] GoogleNet [120] 07+12 448 x 448 98 63.4 45
Fast YOLO [72] GoogleNet [120] 07+12 448 x 448 98 52.7 155

spot, for example, that a model like EFIPNet managed to
have a balance. EFIPNet achieved an mAP of 80.4% and an
impressive FPS of 111 and used VGGNet-16 as its backbone.
RefineDet320 achieved an mAP of 80.0% and 40 FPS and
used VGGNet as a backbone.

According to Table 12, we can observe that all the
fast object detection models belong to the anchor-based
single-step object detection models. In addition, we can
see that some models have successfully balanced detec-
tion accuracy and runtime speed. For example, YOLOvV4,
which uses CSPDarknet-53, achieved an mAP of 41.2%
with 54 FPS. EfficientDet-D2, which uses the Efficient-B2
backbone, achieved an mAP of 43.0% with 41.7 FPS. Fur-
thermore, no two-stage object detector model has performed
well in real-time. (FPS > 30). RDSNet has 17 FPS and
an mAP of 36.0%. In comparison, the anchor-free detec-
tors such as CornerNet or ATSS could only attain 4.4 and
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7 FPS, respectively. Therefore, we conclude that the anchor-
based one-step detectors are still the fastest.

Figure 5, shows the evolution of the accuracy in the
three datasets: VOCO07, VOC21, and MS-COCO, between
2013 and 2022. The figure also displays the winning detec-
tion model for each year within each dataset. For VOC(07
and VOC12, the accuracy is presented by mAP, while for
MS-COCO, it is by mAP [.5,.95]. The chart shows that the
accuracy has evolved in VOCO07 from 58.5% in 2013 through
the Model R-CNN BB to 89.3% in 2021 through the Copy-
Paste model. This means an increase of more than 30%. The
same in VOC12, with an increase in accuracy of over 33%
during the same period. While in MS-COCO, there was an
improvement in accuracy of 40% between 2015, with a value
of 23.6 through ION and 63.1 in 2022 through the SwinV2-G
model. We also note that accuracy is improved every year in
the MS-COCO dataset. Thus, for example, in VOC12, the
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TABLE 12. Comparison of testing consumption on MS-COCO test set.

method backbone [ data mAP@.5 mAP [.5,.95] [ fps
transformer-based

DETR-DC5+ [130] ResNet101 [ trainval35k 64.7 44.9 [ 10
anchor-free

AB +FSAF 800 [122] ResNeXt-64x4d-101-FPN trainval35k 63.8 429 2.8
SAPD [202] ResNeXt-101-64x4d-DCN trainval35k 67.4 474 4.5
FSAF800 [122] ResNet-101 trainval35k 61.5 40.9 5.6
YOLOV4-P7 (1536) CSP-P7 trainval35k 73.4 55.5 17
CornerNet511 [74] Hourglass104 trainval35k 56.5 40.5 4.4
two-stage anchor-based

Mask R-CNN [75] ResNeXt-101-FPN trainval35k 62.3 39.8 33
Fitness-NMS multi-sc-train [185] ResNet-101 trainval35k 60.9 41.8 5.0
Faster R-CNN w/ FPN [63] ResNet-101-FPN trainval35k 59.1 36.2 6
OHEM++ [138] VGGNet-16 trainval 459 25.5 7
Cascade R-CNN[87] ResNet101 trainval35k 62.1 42.8 7.1
CoupleNet msc train [154] ResNet-101 trainval 54.8 34.4 8.2
R-FCN multi-sc-train [100] ResNet-101 trainval 51.9 29.9 9
SABL [193] ResNet-101 trainval35k 64.7 432 13
RDSNet 600 [167] ResNet-101 trainval35k 55.2 36.0 17
one-stage anchor-based

RetinaNet800 [79] ResNet-101 trainval 57.5 37.8 5.1
DSSD513 [105] ResNet-101-DSSD trainval35k 53.3 33.2 5.5
ATSS [123] ResNeXt-64x4d-101-DCN trainval35k 66.5 47.7 7
DSSD321 [105] ResNet-101 trainval35k 46.1 28.0 9.5
RetinaNet500 [79] ResNet-101 trainval35k 53.1 344 11.1
M2Det 800 [165] VGGNetl6 trainval35k 59.7 41.0 11.8
YOLOvV3-608 [116] Darknet-53 trainval 57.9 33.0 20
YOLOV3-SPP [116] Darknet-53 trainval35k 60.6 36.2 20
M2Det320 [165] ResNet-101 trainval35k 53.5 34.3 21.7
SSD512 [73] VGGNet-16 trainval35k 48.5 28.8 22
RefineDet512 [102] VGGNet-16 trainval35k 54.5 33.0 22.3
PFPNet-R512 [113] VGGNet-16 trainval35k 57.6 35.2 24
RFBNet512-E[69] VGGNetl6 trainval35k 55.7 344 24.3
ASFF (800) [65] Darknet-53 trainval35k 64.1 43.9 29
LRF 512 [109] ResNet-101 trainval35k 58.5 37.3 31.3
PFPNet-R32 [113] VGGNet-16 trainval35k 52.9 31.8 33
RFBNet512 [69] VGGNetl6 trainval35k 54.2 33.8 33.3
M2Det320 [165] VGGNetl6 trainval35k 52.4 33.5 334
EFIPNet512[151] VGGNetl6 trainval35k 55.8 34.6 34
DAFS512 [111] VGGNet-16 trainval35k 52.9 33.8 35
RefineDet320 [102] VGGNet-16 trainval35k 49.2 29.4 38.4
DiCSSD300 [159] VGGNet-16 trainval35k 46.3 26.9 40.8
EfficientDet-D2[67] Efficient-B2 trainval35k 62.3 43.0 41.7
SSD300 [73] VGGNet-16 trainval35k 43.1 25.1 43
LRF [109] ResNet-101 trainval35k 51.1 34.3 52.6
YOLOV4 [180] CSPDarknet-53 trainval35k 62.8 41.2 54
RFBNet300 [69] VGGNetl6 trainval35k 49.3 30.3 66.7

accuracy has stayed the same since 2017, remaining at the
value of 86.8% realized by RefineDet. Likewise, in VOCO07,
the accuracy has only increased by 2.4% since 2018 with the
introduction of Copy-Paste.

Figure 6 shows the evolution of different types of object
detection models in the MS-COO dataset between 2015 and
2022. It can be seen that anchor-based two-stage models were
the first to be evaluated in MS-COO in 2015, followed by
anchor-based one-stage in 2016, anchor-free in 2017, and
transform-based in 2020. So far, the most successful fam-
ily is the transform-based with SwinV2-G, followed by the
anchor-based two-stage with SoftTeacher, then the anchor-
based one-stage with DyHead, and finally, the anchor-free
one-stage detectors with YOLOv4-P7. We note a difference
of more than 7% between the best transformer-based detector,
SwinV2-G, and the best anchor-free detector, YOLOv4-P7.
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The anchor-based two-stage increased by 26%, starting with
ION with an accuracy of 33.1 in 2015, reaching 59.1 in
2021 with the SoftTeacher model. For the anchor-based one-
stage detectors, in 2016, SSD achieved an accuracy of 28.8%,
and in 2021 DyHead achieved an accuracy of 87.7%, repre-
senting an enhancement of 30%. DetNet101, a model of the
anchor-free detector family, reached an accuracy of 33.8%
in 2017, and in 2021 YOLOV4-P7 increased the accuracy by
more than 21%, reaching 55.5%. The most recently published
transformer-based detectors achieved the best results with
SwinV2-G in 2022 with an accuracy of 63.1%, while the
first pure model based on transformers, DETR, achieved only
44.9% in 2020.

Figure 7 illustrates the number of detection models evalu-
ated in MS-COCO by each detector family between 2015 and
2022. We find that 2018 was the most productive year with
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more than 30 published models, of which half were anchor-
based two-stage models, and the other half were anchor-
based one-stage methods, and with the publication of only
one anchor-free model. We also notice that anchor-based two-
stage methods dominated the literature between 2015 and
2018 with more than 36 published models, whereas between
2018 and 2020, more than 36 anchor-based one-stage models
were published. One can also spot that anchor-based mod-
els have evolved from 2015 to 2018. After 2018 they start
losing proportion towards other detection families, such as
anchor-free and transformer-based detectors. For example,
more than 15 different models of the anchor-based two-stage
family were introduced in 2018, while just one year later,
only five models were released. In 2020, only two models
were released, while more than six anchor-free detectors were
released in the same year. As soon as they appeared in 2020,
the transform-based detectors continuously expanded.

Figure 8 shows that about half of the detection models
based on deep learning and evaluated in the MS-COCO
dataset were introduced between 2018 and 2019. Then after
2019, the number of published models decreased yearly, with
a value of 14% in 2020, 11.6% in 2021, and 3.3% in 2022.

X. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented an overview of the current
state of object detection based on deep learning. We have
provided the most detailed survey covering dozens of
object detection models. We divided the models into four
main approaches: two-stage anchor-based detectors, one-
stage anchor-based detectors, anchor-free detectors, and
transformer-based detectors. We tested and evaluated all
models in major object detection databases such as Pas-
cal VOC and MS-COCO. We determined that single-stage
detectors have improved and rival two-stage detectors’ accu-
racy. Furthermore, with the emergence of transformers in
vision tasks, transformer-based detectors have achieved peak
results, such as Swin-L and Swin V2, which achieved an mAP
of 57.7% and 63.1%, respectively, in the MS-COCO dataset.

Object detection is an active area of research that is con-

stantly evolving, and there are several promising future direc-
tions that researchers are exploring.

1) Speed-accuracy trade-off: Increasing the accuracy of
an object detection algorithm requires more computa-
tional resources and longer processing times. Decreas-
ing the accuracy can lead to faster processing times but
lower detection performance. Therefore, researchers
consistently aim to improve the accuracy and speed
of object detection algorithms by using more efficient
architectures and training methods to enable real-time
and low-power applications, especially in complex
scenes with occlusions or cluttered backgrounds.

2) Tiny object detection: Tiny object detection is a spe-
cific case of object detection focusing on detecting
and localizing very small objects in images or videos.
It remains challenging because extracting information
from small objects with only a few pixels is difficult.
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These objects may be so small that they are barely vis-
ible or partially occluded by other objects in the scene.
Tiny object detection has many potential applications,
such as detecting small animals in wildlife monitoring,
identifying minor defects in manufacturing processes,
and medical imaging.

3) 3D object detection: With the increasing availabil-
ity of 3D sensors, there is a growing interest in 3D
object detection. Unlike 2D object detection, which
estimates the location and size of objects in a two-
dimensional image, 3D object detection involves esti-
mating objects’ position, orientation, and dimensions
in three-dimensional space. 3D object detection can
be helpful in applications such as augmented real-
ity, robotics, and autonomous driving, where accurate
knowledge of the 3D environment is necessary for
navigation and interaction with the physical world.

4) Multi-modal object detection: involves detecting
objects from multiple visual and textual sources, such
as images, videos, and audio, enabling more com-
prehensive and accurate object detection in complex
scenarios. Multi-modal detection can be helpful in
applications such as autonomous driving, where mul-
tiple sensors detect objects around a vehicle.

5) Few-shot learning: Few-shot learning is an area of
research that aims to develop algorithms to learn to
detect objects from just a few examples. This is partic-
ularly useful when collecting large amounts of labeled
data is difficult or expensive. Those models will work
with limited data or in low-resource settings.

Overall, the future of object detection using deep learning
is promising, with many exciting developments for future
research.
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