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ABSTRACT The rapid development of 5G and Artificial Intelligence (AI) has promoted the widespread
application of autonomous driving in various scenarios. Currently, autonomous vehicles (AVs) can
autonomously perform operations such as turning, lane changing, and acceleration in accordance with road
traffic rules. It is a challenge for autonomous vehicles (AVs) to plan a series of safe and efficient trajectories
on ice and snow covered road (ISCR). This paper proposes an optimal trajectory planning algorithm based
on the Frenet coordinate system, which ignores the influence of road curvature and improves the quality of
trajectory. Specifically, the vehicle motion is decoupled into two dimensions using the Frenet coordinate
system to build lateral and longitudinal trajectory planning models, respectively. Further, according to
the information on the initial and target configuration, the corresponding trajectory sets of lateral and
longitudinal motion were generated by sampling. Moreover, to improve the safety of autonomous vehicles
(AVs) on ice and snow covered road (ISCR), the cost of driving distance and ice-obstacle distance is used as
the core indicator to evaluate the trajectory planning cost, combined with the safe speed check. Simulation
results show that this algorithm can plan an optimal trajectory for autonomous vehicles (AVs) that combines
safety, comfort, and stability, especially on ice and snow covered road (ISCR).

INDEX TERMS Autonomous vehicles (AVs), ice and snow covered road (ISCR), simulation, trajectory
planning.

I. INTRODUCTION
The commercialized test points of autonomous driving have
been put into use one after another, which marks that the
autonomous driving industry has entered a new stage. With
the widespread application of autonomous driving technol-
ogy in various fields [1], a new scenario of autonomous
vehicles (AVs) driving on ice and snow covered road (ISCR)
emerges as the times require. When the temperature is low
after a snowfall, the road surface in some areas will always
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be covered with ice and snow. Studies [2] have shown that
ISCR is themost common and serious type of traffic accidents
caused by a variety of environments. The promotion of 5G
and Artificial Intelligence (AI) has accelerated the develop-
ment of AVs toward functionality and intelligence, but the
safety, comfort, and stability of Intelligent Driving System
still face challenges [3]. Therefore, planning the optimal
trajectory for AVs on ISCR is a technical problem that must
be solved.

At present, the algorithms of trajectory planning mainly
include graph search, sampling, numerical optimization, and
machine learning [4]. The graph-search-based algorithm is
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one of the most widely used and mature algorithms in tra-
ditional algorithms, which finds the optimal path from the
initial position to the target position in a completely open
environment, such as Dijkstra, A∗ and D∗, etc [5]. The
typical algorithm in graph search is Dijkstra, first proposed
by Lavalle, which is used to compute the shortest path
between any two nodes in a discrete space [6]. Kawabata pro-
posed the Rapidly-Exploring Random Tree algorithm (RRT)
based on the characteristics of the surrounding environment
under the AVs driving behavior. The main improvement of
this algorithm is to use the trajectory templates of other
motions during AVs operation as the a priori information
of RRT, which can significantly improve the computational
efficiency of RRT in planning calculations [7]. Since it is
not limited by the road environment, the algorithm is not
suitable for the research of dynamic trajectory planning of
AVs. The sampling-based algorithm plans a safe and com-
fortable trajectory through lateral and longitudinal sampling,
which is very dependent on the sampling accuracy. The low
sampling accuracy makes the trajectory planning deviation
larger, and the high sampling accuracy consumes a lot of
computing resources. Glaser proposes an optimal trajectory
algorithm that takes into account the road environment and
other AVs. The performance evaluation indicators of this
algorithm include risk, speed, consumption, and comfort [8].
Wonteak proposes a hierarchical trajectory planning method
for autonomous driving based on a combination of sampling
and numerical optimization [9]. The upper planner searches
to determine the macro-scale trajectory, and the lower plan-
ner obtains the optimal trajectory by discrete point fitting
optimization. In contrast to algorithms such as graph search
and sampling, numerical optimization describes trajectory
planning as a multi-objective optimization problem, which
is solved by quadratic programming to obtain the optimal
trajectory [10]. The biggest advantage of this algorithm is
that the optimal solution space is continuous and there is
no large jump in the optimal solution between adjacent
frames [11], [12]. However, the long time required for tra-
jectory point optimization iterations leads to a slow solution
speed for some frames, which cannot meet the real-time
requirements in autonomous driving scenarios. To address
the problem of poor applicability of reinforcement learn-
ing, LV improves deep reinforcement learning by building
an empirical value evaluation network to allow intelligent
products to understand environmental laws faster [13]. Schaul
uses deep reinforcement learning with a preferred experi-
ence playback mechanism instead of probability sampling,
which improves the utilization of effective samples [14]. The
machine learning algorithm requires a large sample space
and is prone to errors when faced with new scenarios and
problems [15]. However, trajectory planning on ISCR can-
not provide a large number of samples and has low fault
tolerance.

The difficulty of dynamic trajectory planning for AVs is
that the relative positional relationship between the AVs and

the road cannot be accurately represented. AVs generally
drive on structured roads such as highways and urban arterial
roads, which have clear road markings and distinct geometric
features [16]. Therefore, trajectory planning using the tra-
ditional Cartesian coordinate system has certain limitations,
which prevent AVs from acquiring road positions in real-
time, resulting in deviations from the center of lanes and
even traffic violations [17], [18]. Moreover, the Cartesian
coordinate system is difficult to represent the distance trav-
eled in a certain period due to the curvature of the road. For
structured roads, the Frenet coordinate system expresses the
distance that the trajectory deviates from the road center in
terms of the vertical distance relative to the base path. Since
the road centerline is used as the basic path, the relative
positional relationship between the AVs and the road is more
clear.

The core of the trajectory planning on ISCR is to reduce
the impact of ice and snow on AVs. Serious traffic accidents
on ISCR are mainly caused by two reasons. On the one
hand, ISCR has a serious impact on the driving environment.
Compared with ordinary asphalt pavement, the road adhe-
sion coefficient of ISCR asphalt pavement is significantly
lower, which prolongs the actual braking and deceleration
distance of AVs [19]. Secondly, the road surface covered
with ice and snow may cover the road markings to varying
degrees, which affects the identification of the lane lines
and road boundaries. On the other hand, ISCR has a serious
impact on the performance of AVs [20]. Driving on ISCR can
greatly reduce the starting and braking performance, stability,
and maneuverability of AVs [21]. To avoid traffic accidents
caused by ISCR, the fundamental solution is to reduce speed.
The lower speed allows the AVs driving system to have
enough time to brake within a safe distance after recognizing
the ISCR, and further plan the trajectory that can be passed
safely.Moreover, the lower speed can also ensure that the AVs
are within the controllable range in the face of emergency
braking, and there will be no steering wheel failure, tire side
slip, etc [22]. Therefore, the key to ensuring the safety of
AVs is to stay within the safe speed calculated from the road
adhesion coefficient.

The unique feature of ISCR as a new autonomous driv-
ing scenario is that AVs can pass through ice obstacles.
At present, the references related to automatic driving trajec-
tory planning only consider obstacles such as roadblocks and
AVs that need to be strictly avoided [23]. Such obstacles are
usually checked for collision in the two-dimensional plane
by means of circular detection, axis-aligned bounding box,
oriented bounding box, etc. However, ice and snow are spe-
cial road obstacles that can be considered for planning the
trajectory for AVs under the condition of reasonable speed
control.

In order to apply autonomous driving technology more
widely in various fields, this study mainly focuses on further
exploring and researching new scenarios of AVs driving on
ISCR. Compared to the existing references, this study offers
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the following three contributions to the dynamic trajectory
planning of AVs on ISCR:

1) ISCR has a significant impact on the driving environ-
ment and AVs performance. This paper determines the
safe driving speed based on the road adhesion coeffi-
cient and performs a safe speed check on the candidate
trajectory, which improves the safety of AVs on ISCR.

2) This paper proposes an optimal trajectory planning
algorithm based on the Frenet coordinate system,
which ignores the influence of road curvature and
improves the quality of trajectory. The algorithm
includes four processes: sampling, synthesis, inspec-
tion, and evaluation. only the sampled trajectories that
can pass the acceleration, curvature, collision, and safe
speed check are output as the optimal trajectory.

3) The dynamic trajectory planning model for AVs on
ISCR is formulated, which evaluates the trajectory cost
based on the total distance traveled by the left and right
front wheels of AVs on ISCR and the distance from the
ice obstacles. The model can help AVs plan an optimal
trajectory that combines safety, comfort, and stability,
especially on ISCR.

The remainder of this paper is organized as follows. Section II
provides problem descriptions and assumptions of this paper.
Section III introduces and analyzes the dynamic trajectory
planning model of AVs on ISCR. Section IV proposes a tra-
jectory optimization algorithm centered on sampling, synthe-
sis, inspection, and evaluation to improve the driving safety
of AVs. Section V presents simulation experiments of ISCR
to verify that the proposed trajectory planning algorithm is
safe, stable, and comfortable. The conclusion of the paper and
future research directions are summarized and discussed in
Section VI.

II. PROBLEM DESCRIPTION
This study focuses on the two-dimensional trajectory opti-
mization problem of AVs driving on ISCR without any
intersections. The automatic level of all AVs is higher than
the three-level set by the Society of Automotive Engi-
neers. Specifically, our planning target is to provide reliable
decision-making for AVs trajectory planning by building a
dynamic trajectory planning model, which can be executed
safely and stably on ISCR [24].When AVs drive in a complex
traffic scenario such as on a winding lane with or without a
potential obstacle, as shown in Fig. 1, an infinite number of
paths are possible for AVs, but not all alternative paths are
safe and comfortable.

This paper proposes a trajectory planning algorithm to
find the optimal path from an infinite number of alternative
paths in a very short time. The details of the hypothesis are
presented as follows:
Assumption 1: the AVs are treated as points.
Assumption 2: road attributes such as road boundary, lane

line, and traffic infrastructure are available from communi-
cating with roadside units.

FIGURE 1. Autonomous vehicles driving in snow and ice scenarios.

Assumption 3: the geometry and road adhesion coefficient
of ice obstacles can be obtained, and the road adhesion coef-
ficient of the same obstacle is unique everywhere.

III. METHODOLOGY
A. PROBLEM ANALYSIS
AVs are prone to sideslip when driving on ISCR, which
causes the tires to lose control and deviate from the original
driving trajectory [25]. The skid resistance of ISCR can be
directly reflected by the road adhesion coefficient. µ reflects
the adhesion of tires on different road surfaces, expressed
by the ratio of friction force to normal load. The research
show that the road adhesion coefficient is significantly cor-
related with safe driving speed [26]. The more slippery the
road surface, the smaller the road adhesion coefficient, the
smaller the friction force, the weaker the controllability of
AVs, and the smaller the safe driving speed [27]. It can be seen
that the road adhesion coefficient is one of the main factors
affecting safe driving speed, and the coefficient is positively
correlated with speed. The analysis results shows that there
is a linear functional relationship between safe driving speed
and the road adhesion coefficient. The mathematical model is
represented as follows:

v = f (µ) (1)

The model shows that each road state corresponds to a
unique safe driving speed. AVs determine the safe driving
speed according to the road adhesion coefficient obtained
from their sensors and select the trajectory that can pass the
safe driving speed check as the candidate trajectory.

1) FRENET COORDINATE SYSTEM
The Frenet coordinate system is used to easily determine the
position of the lane centerline, which significantly reduces
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FIGURE 2. Autonomous vehicle trajectory representation in the frenet
coordinate system.

computation and improves computing efficiency. The ref-
erence line is the vertical axis, and the longitudinal offset
(S) represents the distance the AVs travels along the road. The
direction perpendicular to the reference line is the horizontal
axis, and the lateral offset (L) represents the distance the
AVs deviates from the center of the road. The motion state is
described by the Frenet coordinate system, as shown in Fig. 2.
Make a smooth reference line. The AVs position are marked
as P, and the projection point of AVs on the reference line are
marked as R. S represents the path length from the starting
point of the reference line to the projected point. L represents
the distance from the AVs position to the projected point.

B. TRAJECTORY PLANNING MODEL
The beginning and end states of AVs correspond to posi-
tion, velocity, and acceleration, respectively, resulting in six
boundary conditions [28]. If the driving conditions such as
parking and following are not considered in the longitudinal
trajectory planning, the position s1 of the final state is not
required. In order to saturate the constraint, a quartic poly-
nomial curve is used to establish the longitudinal trajectory
planningmodel of AVs [29]. The longitudinal trajectory poly-
nomial is formulated as follows:

s(t) = a0 + a1t + a2t2 + a3t3 + a4t4 (2)

ṡ(t) = a1 + 2a2t + 3a3t2 + 4a4t3 (3)

s̈(t) = 2a2 + 6a3t + 12a4t2 (4)

When t = t0 = 0, a0 = s(t0), a1 = ṡ(t0), a2 = s̈(t0)
/
2;
(5)

when t = t1 > 0, the solution equation of coefficient a3 and
a4 is as follows:[

ṡ(t1)
s̈(t1)

]
=

[
1 2t1
0 2

] [
a1
a2

]
+

[
3t21 4t31
6t1 12t21

] [
a3
a4

]
(6)

The longitudinal offset, velocity, and acceleration of AVs
at t0 are s0, ṡ0, s̈0, respectively. Initial configuration is

S0 = [s0, ṡ0, s̈0]. The longitudinal offset, velocity, and
acceleration of AVs at t1 are s1, ṡ1, s̈1, respectively. Target
configuration is S1 = [s1, ṡ1, s̈1]. If the initial and target
configurations are known [30], the longitudinal trajectory
equation s(t) can be solved by combining (6)-(7).

The position, velocity, and acceleration of the beginning
and end states are all considered in lateral trajectory plan-
ning [31]. Therefore, the quintic polynomial curve is used to
establish the lateral trajectory planning model of AVs. Lateral
motion is induced by longitudinal motion, so the lateral offset
L is designed as a function of the longitudinal offset S. The
lateral trajectory polynomial is formulated as follows:

l(s) = b0 + b1s+ b2s2 + b3s3 + b4s4 + b5s5 (7)

l̇(s) = b1 + 2b2s+ 3b3s2 + 4b4s3 + 5b5s4 (8)

l̈(s) = 2b2 + 6b3s+ 12b4s2 + 20b5s3 (9)

When s = s0 = 0, b0 = l(s0), b1 = l̇(s0), b2 = l̈(s0)
/
2;
(10)

when s = s1 > 0, the solution equation of coefficient b3, b4,
b5 is as follows: l(s1)
l̇(s1)
l̈(s1)

 =

 1 s1 s21
0 1 2s1
0 0 2

  b0
b1
b2


+

 s31 s41 s51
3s21 4s31 5s41
6s1 12s21 20s31

  b3
b4
b5


(11)

The lateral offset, velocity, and acceleration of AVs at t0 are
l0, l̇0, l̈0, respectively. Initial configuration is L0 =

[
l0, l̇0, l̈0

]
.

The lateral offset, velocity, and acceleration of AVs at t1 are
l1, l̇1, l̈1, respectively. Target configuration is L1 =

[
l1, l̇1, l̈1

]
.

If the initial and target configurations are known, the lateral
trajectory equation l(s) can be solved by combining (12)-(13).

IV. TRAJECTORY PLANNING ALGORITHM
A. TRAJECTORY SAMPLING
The distance between the position and the look-ahead point
determined by the AVs speed is used as the longitudinal
sampling offset. If the sampling length is short, the AVs in an
emergency situation lacks sufficient safety distance to transi-
tion smoothly, resulting in dangerous behaviors such as sharp
turns or excessive acceleration. Moreover, too many times of
invalid planningwill result in a waste of computing resources.
The AVs visibility is so limited in the turning section that
it cannot accurately detect the road conditions ahead. If the
sampling length is too long, the environmental information
between the current AVs position and the sampling point
cannot be effectively identified. The accuracy measured by
the on-board sensor is higher only when it is within the effec-
tive detection distance. Therefore, too long sampling lengths
may lead to inaccurate information for decision-making and
trajectory planning. A reasonable lateral trajectory sampling
interval set by the lane width must include all possible lateral
motion states of AVs.
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FIGURE 3. Trajectory sets in the cartesian coordinate system.

FIGURE 4. Trajectory sets in the frenet coordinate system.

B. TRAJECTORY SYNTHESIS
Trajectory planning with too short time intervals do not have
enough ability to cope with unexpected situations, whereas
with too long time intervals are less reliable. Therefore, the
time interval is limited to the range Tmin to Tmax. Discrete the
lateral and longitudinal trajectories using time intervals.

According to the solved longitudinal trajectory equation
s(t) and lateral trajectory equation l(s), the corresponding
longitudinal offset s∗ = s(t∗) and lateral offset l∗ = l(s∗)
can be obtained at given t∗. A series of longitudinal and
lateral offsets are obtained at different times, corresponding
to the longitudinal and lateral trajectory sets. Finally, multiple
complete candidate trajectories are formed using the Frenet
coordinate system. Trajectory sets in the coordinate system
are shown in Fig. 3-4:
The AVs drive along the center of the lane as the reference

line. Fig. 3 is a set of trajectories in the Cartesian coordinate
system. Fig. 4 is a set of trajectories in the Frenet coordinate
system. It can be seen that the AVs ignore the influence of
curvature by using the Frenet coordinate system on curved
road sections. Compared with the Cartesian coordinate sys-
tem used in the traditional algorithm, the Frenet coordinate
system has more advantages in establishing a dynamic trajec-
tory planning model for AVs, which can effectively improve

the computing speed and reduce the trajectory planning
difficulty.

C. TRAJECTORY CHECK
AVs are subject to kinematics and dynamics constraints dur-
ing trajectory planning, such as curvature and acceleration,
which have limited conditions [9], [32]. AVs will increase
the risk of loss of control and collision when the curvature
and acceleration increase [33]. Moreover, AVs driving at high
speed on ISCR is prone to sideslip [34]. In order to obtain
an optimal collision-free smooth trajectory that satisfies the
constraints, the trajectory is checked for curvature limit,
acceleration limit, safe speed, and collision.

The curvature check is as follows:

q [i] ≤ qmax (12)

where q [i] represents the curvature of trajectory i and qmax
represents the maximum curvature that can be achieved by
the trajectory planning of AVs on ISCR.

The acceleration check is as follows:

a [i] ≤ amax (13)

where a [i] represents the acceleration of trajectory i and amax
represents the maximum acceleration that can be achieved by
the trajectory planning of AVs on ISCR.

The safe speed check is as follows:

v [i] ≤ vmax (14)

where v [i] represents the speed of trajectory i and vmax repre-
sents the maximum speed that can be achieved by the trajec-
tory planning of AVs on ISCR. The road adhesion coefficient
µ continuously provided by the AVs sensors is substituted
into (1) to obtain the safe speed vmax.

The collision check is as follows:

(xi − xobs)2 + (yi − yobs)2 > (ri − robs)2 (15)

where [xi, yi] represents the position of trajectory i and
[xobs, yobs] represents the obstacle position of trajectory i. ri
represents the radius of AVs and robs represents the radius of
the obstacles.

D. TRAJECTORY EVALUATION
Evaluation indicators such as safety, comfort, and effi-
ciency are usually considered in trajectory planning for
AVs [35], [36]. Improving trajectory security mainly includes
the following two aspects. Stay away from obstacles to reduce
the risk of collision and reduce the contact area with ice
obstacles to reduce the risk of sideslip. Trajectory comfort is
usually expressed in Jerk (changing rate of acceleration) [37].
The bigger the Jerk, the less comfortable the AVs are. The
planning period is the main measure of AVs efficiency. The
shorter the trajectory planning period, the more efficient
the AVs are.

The AVs may deviate from the road reference line due to
obstacle avoidance. However, proximity to road boundaries
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FIGURE 5. Trajectory planning algorithm process.

TABLE 1. Evaluation index for trajectory planning on ISCR.

creates a potential risk of AVs colliding with roadblocks.
The greater the degree of deviation, the higher the trajec-
tory cost. Moreover, approaching obstacles increases the risk
of collision, and the trajectory cost increases accordingly.
Obstacles that AVs may encounter on ISCR can be divided
into three categories: static obstacles, dynamic obstacles,
and ice obstacles. Static obstacles are mainly considered
as barricades, parked vehicles, etc. Dynamic obstacles are

TABLE 2. Simulation parameters for trajectory planning on ISCR.

mainly considered as moving vehicles, etc. Therefore, the
cost function for evaluating trajectory safety is as follows:

Ca = whch + wobs−scobs−s + wobs−dcobs−d (16)
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where ch represents the maximum distance between the
AVs and the reference line. cobs−s and cobs−d represent the
straight-line distance between the AVs and static and dynamic
obstacles, respectively. wh, wobs−s, wobs−d are the weight
coefficients of ch, cobs−s, cobs−d , respectively.
The road adhesion coefficient of ISCR is significantly

reduced, which may cause the AVs to slip out of control.
In order to ensure safe driving, the AVs should be kept away
from ice obstacles. If driving on ISCR cannot be avoided, the
AVs should minimize contact with ice obstacles. Therefore,
the cost function for evaluating ISCR is as follows:

Cice = wice−xcice−x + wice−zcice−z (17)

where cice−x represents the total distance traveled by the
left and right front wheels of the AVs on ISCR, and cice−z
represent the straight-line distance between the AVs and ice
obstacles. wice−x and wice−z are the weight coefficients of
cice−x and wice−z, respectively.
Research shows that Jerk can be used as an effective indi-

cator to describe AVs comfort. The cost of the longitudinal
trajectory comfort can be expressed by the integral of

...
s 2(t)

from t0 to t1, and the lateral trajectory can be expressed by
the integral of

...
l 2(s) from t0 to t1.

Therefore, the cost function for evaluating trajectory com-
fort is as follows:

Js =

∫ t1

t0

...
s 2(t)dt (18)

Jl =

∫ t1

t0

...
l 2(s)ds (19)

The total cost function of trajectory planning for AVs on
ISCR is as follows:

Ctotal [i] = kaCa [i] + kiceCice [i] + ksJs [i]

+ klJl [i] + kTCT [i] (20)

where i is the trajectory index; Ca and CT are cost-weighted
items for evaluating trajectory safety and efficiency, respec-
tively. Cice is the cost-weighted item for evaluating ISCR.
Js and Jl are cost-weighted items for evaluating the comfort
of longitudinal and lateral trajectories, respectively. ka, kice,
ks, kl , kT are the weight coefficients of Ca, Cice, Cs, Cl , CT ,
respectively.

The cost items and the weight coefficients together deter-
mine the trajectory cost function. Comfort and safety are
often not compatible. When the emphasis is on comfort,
the AVs tend to reduce lateral excursion, which decreases
the risk of a collision. When focusing on safety, the vehi-
cle tends to stay away from obstacles, which can increase
discomfort.

The trajectory planning algorithm process of AVs driving
on ISCR includes four parts: equation, synthesis, inspec-
tion, and evaluation, as shown in Fig. 5. First, the initial
and target configuration information of AVs is obtained,
specifically the position, velocity, and acceleration. Then,
the quartic and quintic polynomial curves are used to

FIGURE 6. Ice obstacles schematic. (a) Triangular ice obstacles.
(b) Rectangular ice obstacles. (c) Polygonal ice obstacles. (d) Round ice
obstacles.
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FIGURE 7. Impact of lateral sampling interval on trajectory planning. (a) 1d = 0.5 m. (b) 1d = 0.8 m. (c) 1d = 1.5 m. (d) 1d = 2.0 m. (e) Speed-Time.
(f) Acceleration-Time.

establish the longitudinal and lateral trajectory planning
equations, respectively. The longitudinal and lateral tra-
jectories are synthesized at the corresponding moments.
Finally, multiple complete candidate trajectories are formed
using the Frenet coordinate system. The candidate trajec-
tories are checked for collision, curvature, acceleration,
and safe speed in turn. Only candidate trajectories that
pass each check can proceed to the trajectory evaluation
stage.

The trajectory planning of AVs usually considers evalua-
tion indicators such as safety, comfort, and efficiency. Safety
is one of the most important indicators. Trajectory safety
is expressed by the distance of AVs from the road center-
line, static obstacles, and dynamic obstacles. In particular,

trajectory safety in snow and ice scenarios is represented by
the distance traveled on ISCR and the distance between the
AVs and the ice obstacles.

V. SIMULATION RESULTS ANALYSIS
A. SIMULATION SCENE
Ice obstacles are generally distributed on the road in an
irregular shape. However, irregular shapes cannot be accu-
rately described by simple curve equations, which increases
the difficulty of obtaining information such as the distance
between the AVs and the ice obstacles and the AVs travel
on ISCR. Moreover, the boundaries of ice obstacles in
real situations are often blurred and cannot be accurately
identified. Therefore, this study considers an approximate
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FIGURE 8. Impact of time sampling interval on trajectory planning. (a) 1T = 0.12 m. (b) 1T = 0.2 m. (c) 1T = 0.35 m. (d) 1T = 0.425 m. (e) Speed-Time.
(f) Acceleration-Time.

alternative treatment for irregular ice obstacles. Common reg-
ular shapes such as triangles, rectangles, polygons, and circles
can be used as an approximate substitute for all irregular
ice obstacles. The selected shape is required to completely
cover the ice obstacle and conform to its original shape to
the greatest extent possible. As shown in Fig. 6, the travel
distances of candidate trajectories on ISCR are different.
The longer the vehicle drives, the higher the safety cost.
In addition, the melting of the ice surface caused by the rising
temperature makes it difficult to identify the boundaries of
ice obstacles. The candidate trajectories that have a shorter
driving distance on ice obstacles and are farther away from
them are preferentially selected as optimal trajectories.

B. SIMULATION PARAMETERS
Assuming that the minimum turning radius is 2 m, the maxi-
mum curvature qmax is 0.5 m−1. The maximum acceleration
of the vehicle is 4.6 m/s2. In order to facilitate the simulation,
the vehicle is covered with a circle with a radius of 2 m,
and the circle radius is the collision radius of the AVs. The
collision parameters of the environmental and the experimen-
tal vehicles are consistent. Lateral trajectory planning cannot
exceed the road width limit. In order to clearly show the
visualization effect of vehicles passing through ice obstacles,
the road width is 12 m, and the lateral sampling interval
is 0.8 m. The longitudinal velocity sampling interval is
5.0 km/h ≈ 1.39 m/s. This paper uses the optimal parameters
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to solve the problem through data analysis. The specific
simulation parameters are shown in Table 2:

C. SAMPLING ACCURACY ANALYSIS
Sampling parameters play a decisive role in the trajectory
planning of AVs. Improving the sampling accuracy can
enhance the richness of candidate trajectories and improve
the optimal trajectory quality. The key sampling parameters
mainly include the lateral sampling interval 1d and the time
sampling interval 1T .
The width of the road is constrained by environmental

factors, and the lateral sampling interval 1d can only be
changed within the range of the road width. 1d mainly
affects the number of lateral trajectory sets. Fig. 7 shows the
simulation results of trajectory planning when 1d is 0.5 m,
0.8 m, 1.5 m, and 2.0 m respectively. It can be seen that the
larger the sampling interval, the sparser the sampling trajec-
tory. Sparse sampling trajectories cannot accurately describe
the state of vehicles passing through ice obstacles, which
reduces the quality of trajectory planning on ISCR. As the
sampling interval increases, the velocity variation is gener-
ally smooth, but the acceleration fluctuates significantly. The
vehicle acceleration varied considerably at sampling intervals
of 0.5 m, 1.5 m, and 2 m when the vehicle passed the ice
obstacle. The candidate trajectories with a sampling interval
of 0.5 m have a relatively gentle change in acceleration, with
no drastic changes.

1T mainly affects the frequency of trajectory planning.
Fig. 8 shows the simulation results of trajectory planning
when 1T is 0.12 s, 0.2 s, 0.35 s, and 0.425 s, respectively.
It can be seen that the larger the sampling interval, the
more drastic the acceleration fluctuation. When the sampling
interval is greater than 0.2 s, the number of drastic accelera-
tion changes becomes increasingly apparent. If the trajectory
planning frequency is low, the AVs need to consume time
to track the optimal solution of the last trajectory planning,
which will lead to AVs instability. If the trajectory plan-
ning frequency is high, the vehicle may suddenly find an
ice obstacle at the corner, which cannot be avoided in time
because it is too close. Therefore, an appropriate increase
in sampling accuracy helps AVs plan an optimal trajectory
that combines safety, comfort, and stability in ice and snow
scenarios.

D. ICE AND SNOW SCENARIO ANALYSIS
AVs are prone to skidding on ISCR, with a high risk of loss of
control. This paper proposes to use the distance the AVs travel
on ISCR as an evaluation index to measure the trajectory
planning cost, and the longer the distance, the higher the
cost. Fig. 9 shows that if the cost of driving distance is not
considered, the vehicle will move forward along the reference
line, which has a large contact area with the ice obstacle.With
the effect of driving distance cost, the trajectory cost is higher
near the ice obstacle in the center of the road, whereas the
trajectory cost is lower from the obstacle to the road boundary
range. Candidate trajectories immediately adjacent to the

FIGURE 9. Impact of driving distance on trajectory planning. (a) Not
considering the driving distance. (b) Consider the driving distance.

boundary of the obstacle are selected, as shown in Fig. 9(b).
The obstacle boundary trajectory has the smallest deflection
angle compared with other candidate trajectories within the
obstacle and road boundary. Therefore, the trajectory with a
short driving distance and a small deflection angle is selected
as the optimal trajectory.

If only the driving distance cost is considered, the planning
algorithm will choose the trajectory close to the ice obsta-
cle, whereas the ice obstacle boundary cannot be accurately
identified due to easy melting, which has certain dangers.
Therefore, obstacle distance is also an important indicator
for cost assessment of trajectory planning on ISCR. Fig. 10
shows that if the obstacle distance cost is not considered,
the AVs drive along the road center reference line close
to the ice obstacles. With the effect of obstacle distance
cost, the AVs deflect in the direction away from the obstacle
due to the higher cost near the obstacle, which improves
the trajectory safety. Figure 10(c) shows more concisely the
trajectory planning process of in the two cases of consider-
ing the obstacle distance and not considering the obstacle
distance.
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FIGURE 10. Impact of obstacle distance on trajectory planning. (a) Not considering the obstacle distance. (b) Consider the obstacle
distance. (c) Optimum trajectory display.
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FIGURE 11. Impact of safe speed check on trajectory planning. (a) Not
considering safe speed check. (b) Consider safe speed check.

E. SAFE SPEED ANALYSIS
The main reason why AVs are prone to slipping on ISCR
is the low road adhesion coefficient. The more slippery the
road, the slower the safe driving speed. This shows that
safe driving speed is positively related to the road adhe-
sion coefficient. Assuming that the adhesion coefficient of
ISCR is known, the safe driving speed of the vehicle is
17 km/h ≈ 4.7 m/s. As shown in Fig. 11, this paper enhances
trajectory safety through the safe speed check. If there is no
safe speed check, the vehicle accelerates toward the target
speed 30 km/h ≈ 8.3 m/s and passes the second obstacle at
a speed of 4.83 m/s, exceeding the safe speed. However,
after considering the safe speed check, the planning algorithm
screens out trajectories that exceed the safe speed and outputs
trajectories that pass the second obstacle with speed 3.77 m/s,
which meets the safe speed requirement.

VI. CONCLUSION
Autonomous driving technology is divided into four core
modules: perception, cognition, decision-making, and execu-
tion. The decision-making module is a direct factor in deter-
mining the safety and comfort of AVs, which mainly includes

two parts: behavior decision-making and motion planning.
Trajectory planning as amajor component ofmotion planning
needs to be completed more accurately and efficiently to
serve the safe driving for AVs in snow and ice scenarios.
Firstly, the current position, velocity, and acceleration state
of the AVs are determined. Then, after getting the target
state command from the decision-making module, the road
environment information such as lane line and ice obstacle
position is obtained based on sensors and radars. Finally,
a safe and executable trajectory sequence is planned for
the purpose of controlling the AVs to complete the target
motion. This paper proposes an optimal trajectory planning
algorithm based on the Frenet coordinate system, which pro-
vides reliable decisions for AVs trajectory planning in snow
and ice scenarios. The main conclusions are summarized as
follows:

1) The Frenet coordinate system expresses the distance
that the trajectory deviates from the road center in terms
of the vertical distance relative to the base path. This
allows for an accurate representation of the relative
position relationship between the AVs and the road.
Moreover, compared to the Cartesian coordinate sys-
tem, the Frenet coordinate system ignores the influence
of road curvature and reduces the trajectory planning
difficulty.

2) Evaluation indicators such as safety, comfort, and effi-
ciency are usually considered in trajectory planning
for AVs. The trajectory comfort is usually expressed
in Jerk (changing rate of acceleration). The trajectory
safety is expressed by the distance of the AVs from the
road centerline, static obstacles, and dynamic obsta-
cles. In particular, the safety of the trajectory in the
snow and ice scenario is expressed by the distance
traveled on ISCR and the distance between the AVs and
the ice obstacles.

3) To reduce the impact of ISCR on trajectory planning,
AVs must control the speed within a safe range. The
road adhesion coefficient is one of the main influencing
factors of safe speed. AVs determine the safe driv-
ing speed according to the road adhesion coefficient
obtained from their sensors and select the trajectory that
can pass the safe driving speed check as the candidate
trajectory.

4) The sampling accuracy affects the richness as well as
the quality of the trajectory. The key sampling parame-
tersmainly include the lateral sampling interval1d and
the time sampling interval 1T . 1d mainly affects the
number of lateral trajectory sets.1T mainly affects the
frequency of trajectory planning. A reasonable increase
in sampling accuracy can plan an optimal trajectory
for AVs that combines safety, comfort, and stability,
especially on ISCR.

Simulation results show that this algorithm provides a
reference on how to plan a safe, comfortable and stable
trajectory for AVs on ISCR. This study broadens the appli-
cation scenario of AVs and has practical significance for the
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development of intelligent transportation technology.
In future work, it is proposed to apply temperature, humidity,
and tire parameters in trajectory cost assessment to construct
a more accurate trajectory planning algorithm.
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