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ABSTRACT Tomato fruits are consumed worldwide owing to their health benefits, taste, and flavor.
In tomato cultivation, seed viability is directly related to crop productivity. Currently, the methods used to
evaluate seed viability involve destructive sampling tests; accordingly, nondestructive methods for predicting
seed viability are urgently required. This study aimed to develop X-ray imagery-based models capable
of predicting the viability of tomato seeds. Particularly, X-ray-imaged seeds were grown to the seedling
stage, and seedlings were classified following their condition. The structural integrity of the seeds was
calculated from the X-ray image processing, and an integrity-based viability prediction model was evaluated.
Furthermore, convolutional neural network (CNN)-based viability prediction models were developed and
evaluated. Both models showed strong performance in distinguishing germinated and non-germinated seeds.
However, the CNN-based model revealed greater accuracy in seed viability prediction than the image-
processing-based model. The CNN-based model accuracy was 86.01%, with an F1 score of 92.11%,
indicating the usefulness of the developed nondestructive testing approach for evaluating tomato seed
viability.

INDEX TERMS X-ray image, tomato, seed viability, deep learning, convolutional neural networks.

I. INTRODUCTION

Tomatoes (Solanum lycopersicum L.) are consumed in dif-
ferent forms worldwide, including curries, sauces, and salads.
Tomato consumption is associated with health benefits owing
to its anti-inflammatory, antigenotoxic, antimutagenic, and
antiproliferative properties [1], [2], [3], [4], [5]. In partic-
ular, lycopene, which is found at high levels in tomatoes,
is a highly effective antioxidant known to reduce the risk of
certain cancer types [6].
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Seed quality directly affects crop yield and is vital for opti-
mizing crop production costs [7]. Seed viability is a critical
factor affecting seed quality, which varies following genetic
variation and can deteriorate during seed storage and distribu-
tion. Several methods, including standard germination, elec-
trical conductivity, accelerated aging, and tetrazolium tests,
have been proposed for assessing seed viability [8], [9], [10].
However, these methods have several drawbacks, including
being invasive and labor intensive and having long testing
periods [10]. Additionally, only a sampling test is possible
through these destructive methods, and sorting low-quality
seeds remains impossible. Therefore, an automated method
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of sorting seeds using nondestructive viability assessment
technology is highly necessary.

Nondestructive testing of agricultural products is a growing
area of interest in the agricultural industry, and research
is being conducted using various nondestructive measure-
ment technologies. In particular, X-ray imaging technology
has been used to evaluate the internal structures of various
agricultural products. Notably, it has been applied for fish
bone detection [11], tenderness measurement for meat [12],
detection of seed infection [13], internal defect detection in
nuts [14], [15], [16], [17], and fruits [18], [19], [20], [21], fruit
water content measurement [22], and fruit microstructure
measurement [23].

The internal structures of seeds, including the endosperm
and embryo, are associated with seed viability [24]. Accord-
ingly, X-ray images have been used to assess the internal
structures of seeds for viability prediction. For example,
Burg et al. [25] predicted the morphology of seedlings based
on the X-ray analysis of tomato seeds, Silva et al. [26] studied
the association between X-ray imaging and tomato seed ger-
mination, and Gomes-Junior et al. [27] analyzed seed density
using X-ray images to assess melon and watermelon seed
quality. Notably, these previous studies’ findings revealed
that seeds’ internal cavity space is closely related to seed
viability.

Prediction modeling is required for quantitative predictions
from X-ray images. Conventional image-based modeling
approaches are based on feature-extraction methods, includ-
ing pixel intensity [28], [29], [30] and edge features [14], [20],
[31]. Recently, deep neural networks that learn appropriate
features from data have been widely used in vision research.
Convolutional neural networks (CNNs) have been state-of-
the-art in image classification tasks for many years since
Alexnet [32] took first place at ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2012. After the proposal
of the vision transformer [33] in the image classification on
ImageNet, models using a vision transformer or a combi-
nation of CNN and a vision transformer show higher per-
formances than CNN models. However, because of the low
inductive bias of the vision transformer, CNNss are still widely
applied to vision tasks with low complexity and a limited
amount of data. For example, Ahmed et al. [34] compared tra-
ditional machine learning and a CNN-based model for water-
melon seed viability assessment, and Medeiros et al. [35]
used X-ray images and a CNN to predict the seed vigor of
the oilseed crop Crambe abyssinica.

Several previous studies reported the relationship between
the internal structure and viability of seeds, but most of
them analyzed only the qualitative relationship. In particular,
in studies analyzing the relationship between X-ray images
and the viability of tomato seeds, internal structures such as
cotyledon configuration or internal cavity area were inves-
tigated without prediction modeling [25], [26]. There are
several factors to be considered in the internal structure of
tomato seeds, such as cavity area, embryo configuration,

38062

and damage. Additionally, tomato seed embryos can exhibit
diverse forms, such as ‘coiled’ and ‘spectacles’ structures
[25]. Considering the intricate internal structure of tomato
seeds, it is imperative to develop prediction models that can
account for multiple internal features to achieve accurate
predictions of seed viability.

The development of normal and vigorous seedlings is
an important factor in evaluating seed quality [36]. In fact,
even if the seeds germinate, seedlings that are not vigor-
ous or have defects are not commercially viable. However,
several nondestructive seed viability prediction studies have
been conducted based only on seed germination, often using
paper-based germination tests. Since seed viability can be
assessed using a range of criteria, the performance of pre-
diction methods can be assessed using multiple criteria.
Therefore, it is necessary to analyze which viability crite-
rion is most applicable to the applied nondestructive testing
technology.

This study aimed to evaluate tomato seeds’ quality by
assessing the seed’s internal morphology using X-ray images.
X-ray images were obtained for tomato seeds in their natural
state, which had not been artificially aged, and seed viabil-
ity was tested using multiple criteria. The image process-
ing method was designed to quantify the internal integrity
of seeds, and an integrity-based viability prediction model
was developed. Furthermore, CNN models were trained and
evaluated, and their performances were compared with that of
the integrity-based model. Through these processes, our study
attempted to quantitatively analyze the relationship between
the internal cavity area and the viability of tomato seeds,
which had been qualitatively studied in previous studies.
Furthermore, we aimed to improve the accuracy of predicting
seed viability by developing CNN-based models that can use
multiple features other than the cavity area.

II. X-RAY IMAGING AND SEED VIABILITY TEST

A. SAMPLE PREPARATION

In total, 1,152 tomato seeds of the “TY sweetiny” culti-
var and 576 seeds of the “Tiniup” cultivar were used for
X-ray imaging and viability test experiments. According to
a previous study [24], the internal structure of seeds related
to viability became clear after seed priming. Therefore, the
tomato seeds in this study were used after seed priming.

B. X-RAY IMAGE ACQUISITION

An X-ray imaging device (X-eye SF160NCT, SEC Co. Ltd.,
Suwon, Republic of Korea) was used for image acquisition.
The tube voltage and current of the X-ray imaging device
were set at 70 kV and 300 pA, respectively. The prepared
tomato seeds were placed in an 8 x 8 square-well plate,
as shown in Fig. 1(a). The size of one well was 7 mm x
7 mm, and the plate material was acrylic with high X-ray
transmittance to prevent interference during x-ray imaging.
Images were acquired at a resolution of 1,280 x 1,280 pixels,
and the field of view was set to 20 mm x 20 mm so that four

VOLUME 11, 2023



S.-). Hong et al.: Application of X-Ray Imaging and CNNs in the Prediction of Tomato Seed Viability

IEEE Access

B

1

FIGURE 1. (a) Seed samples prepared on an acrylic plate; (b) an acquired
X-ray image of tomato seeds.

wells could be measured in one image. Therefore, four tomato
seeds were captured in one image, as shown in Fig. 1(b).

C. VIABILITY TEST

After X-ray imaging, the prepared tomato seed samples were
sown in the soil in seedling trays. The samples were grown
for two weeks in a greenhouse at 25-30°C, and the condition
of the seedlings was classified into the following four classes
by quality inspectors working at a seed company: first-grade
(with a size >70%), second-grade (with a size of 50-70%),
abnormal (with a size of <50% or having defects), and non-
germinated (when germination did not occur). Percentages
of size were calculated based on the size of the well-grown
seedling, considered to be of the highest quality. In seed qual-
ity studies, the viability evaluation criteria are often divided
into normal seedling, abnormal seedling, and non-germinated
seed [37], [38], [39], [40]. However, there can be differ-
ences in the degree of vigor among normal seedlings. There-
fore, normal seedling was also divided into first-grade and
second-grade to verify the possibility of distinguishing vigor
through X-ray imaging. The criteria for classifying the via-
bility class followed the criteria used for product evaluation
by Pan Pacific Seed (PPS), a seed company in the Republic
of Korea.

Ill. MODELING FOR VIABILITY PREDICTION

A. INTEGRITY QUANTIFICATION

Previous studies have reported that the structural integrity of
a seed can be associated with seed viability [26], [27], [35],
[37]. Seed with a smaller cavity area has a higher amount
of space occupied by the embryo and endosperm, indicat-
ing high germination potential. Therefore, to quantify the
integrity of the seeds and compare it with the viability test
result, an image-processing algorithm was developed to quan-
tify the internal cavity space of the seeds using the X-ray
images. First, a Gaussian blur method was employed to
reduce errors during binarization. Each image was inversely
binarized using the Otsu threshold, and a closing transfor-
mation was applied to the binarized image to reduce noise.
Subsequently, the flood fill method was applied to fill the
internal area of the seed, and erosion transformation was used
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FIGURE 2. Image-processing workflow for the quantification of seed
integrity.

to remove the boundary of the foreground object to determine
the area of the whole seed. For extraction of the whole area
of the seed, the Gaussian blurred images were binarized with
the Otsu threshold minus 5. Next, the internal area images
of the seeds were derived using an “AND” operation for the
binarized images and the whole seed area image. Finally, the
integrity of the seeds was calculated using (1). A visualization
of the image processing procedure for seed integrity quantifi-
cation is shown in Fig. 2.

1 — cavity area of seed

Seed integrity (%) = x 100 (1)

whole area of seed

B. CNN MODELING

CNN models were customized and optimized using two base
models, ResNet [41] and VGGNet [42], which are the rep-
resentative CNN structures frequently used in vision studies.
CNN models have different model sizes depending on their
structure, and some models have deep and large structures for
complex features. However, the benefits of training large-size
models on small datasets are limited [43]. In this study, the
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optimization results showed that smaller-sized models tended
to perform better that the larger-sized models. Therefore, the
adopted optimized models had fewer layers than the original
models.

Each convolution layer in the VGGNet architecture has
a 3 x 3 convolution kernel. VGGNet can construct deeper
layers with small parameters without excessive image size
reduction due to its small convolution kernel size. Our
VGGNet-based model adopted this 3 x 3 convolution kernel
witha 1 x 1 stride in all convolution operations. A 2 x 2 max-
imum pooling layer was added to each of the two convolution
layers. Additionally, one dense layer, with 512 nodes, was
used (Fig. 3(a)).

The deep layers of a neural network enrich the feature
levels, and as such, the depth of a network is considered
a crucial factor for improving model performance. When a
CNN layer becomes deeper, gradient vanishing and explod-
ing issues may occur. Accordingly, the training of deep con-
volutional networks becomes challenging. Therefore, a deep
plain network induces increased training and testing errors.
To overcome these issues, He et al. [41] suggested adding
skip connections, whereby the input skips layers and is added
to the output of that layer or layers. Residual learning from
such skip connections reduces the degradation of deep net-
works, leading to the effective training of deeper models.
A key feature of ResNet is its bottleneck architecture, which
uses 1 x 1, 3 x 3, and 1 x 1 convolution layers instead
of two 3 x 3 convolution layers to reduce the amount of
computation. In this study, a ResNet-based model was opti-
mized based on skip connections and bottleneck architec-
tures, as illustrated in Fig. 3(b).

C. DATASET SEGREGATION

X-ray images and seedling class data were divided into train-
ing, validation, and test sets at a ratio of 3:1:1. Of the 1,723
data points, 1,037 were included in the training set, and
343 were included in the validation and test sets. The training
set was used for model training, and the validation set was
used for model optimization. The evaluation metrics of the
model were calculated using the test set.

D. MODEL TRAINING AND EVALUATION

In our study, binary classification models were trained
and evaluated on multiple viability criteria. In the viability
test, the seeds were classified into four classes (first-grade,
second-grade, abnormal, and non-geminated). The criteria
for classifying the first-grade class from the other classes
were named ‘“‘cutl”, the criteria for classifying the first-
and second-grade classes from the other classes were named
“cut2”, and the criteria for classifying the non-germinated
class from the other classes were named “cut3”’. These three
criteria were based on seed companies’ standards for deter-
mining the seed lot quality. Table 1 summarizes the binary
classification criteria. The CNN-based binary classification
models trained for the cutl, cut2, and cut3 criteria were also
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evaluated for each test criterion of cutl, cut2, and cut3. It is
not appropriate to use a 50% confidence classification thresh-
old as the optimal threshold when evaluating the usage of cri-
teria other than the trained criteria. Therefore, the area under
the curve of the receiver operating characteristic (ROAUC),
which is independent of the confidence score threshold, was
used as an evaluation metric. The cutl, cut2, and cut3 models
in this study refer to models trained and optimized with
training and validation datasets based on cutl, cut2, and
cut3 criteria, respectively. Similarly, cutl-, cut2-, and cut3-
tested results mean that the results were evaluated on the
test dataset classified based on cutl, cut2, and cut3 criteria.
Horizontal/vertical flip, rotation, brightness adjustment, and
zoom in/out were used as the data augmentation methods.

The class imbalance problem can affect model training
and evaluation. Here, because the seeds were not artificially
degraded, the number of seeds in the non-germinated and
abnormal classes seeds was lower than in the other classes.
The class balance was achieved via data oversampling during
the training, and weighted metrics were calculated during
the evaluation to prevent bias towards the majority class
during training and evaluation. The imbalance ratio (IR) was
calculated using Equation (2) and used as balancing weight.
Equations (3)-(11) describe the evaluation metrics used in
this study, where TP is the number of true positive samples,
FP is the number of false positive samples, TN is the number
of true negative samples, and FN is the number of false
negative samples.

number of positive samples

Imbalance ratio (IR) = -
number of negative samples

@)
TP + TN
Accuracy (%) = x 100
TP + FN + FP + TN
(3)
. TP 4+ TN x IR
Weighted accuracy (%) =
TP + FN + (FP + TN) x IR
x 100 @)
. TP
Precision (%) = ——— x 100 5)
TP 4 FP
Weighted ision (%) P 100 (6)
i recision = —— X
CIENIEC PIECISIoNT?) = Tp T FP x IR
Recall (%) = true positive rate (%)
TP
= — x 100 @)
TP + FN
Specificity (%) N 100 ®)
ecifici = ——— X
ey ) = IN T FP
Fal iti te (%) il 100 &)
itive r. = ——— X
alse positive rate (% TN - Fp
precision x recall
Flscore (%) =2 x — (10)

precision + recall

. weighted precision x recall
Weighted F1 score (%) = 2 x

weighted precision + recall

(1)
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FIGURE 3. Architectures of the (a) VGGNet-based model and (b) ResNet-based model.

TABLE 1. Binary classification criteria.

TABLE 2. Viability test results.

Criterion Positive class Negative class
Second grade
Cutl First grade Abnormal
Non-germinated
Cut2 First grade Abnormal
Second grade Non-germinated
First grade
Cut3 Second grade Non-germinated
Abnormal

IV. RESULTS AND DISCUSSION

A. VIABILITY TEST

Table 2 depicts the viability test results for tomato seed
samples. Both the TY sweetiny and Tiniup cultivar lots
had non-germination rates of <10%, i.e., 4.4% and 8.7%,
respectively. The first-grade seeds accounted for 88.8% of
the TY sweetiny cultivar, a higher percentage compared
to 47.4% for the Tiniup cultivar. The percentages of the

VOLUME 11, 2023

TY sweetiny Tiniup Total

Class

No. % No. % No. %

First-grade 1,021 88.8 272 47.4 1,293 75

Second-grade 36 3.1 149 26.0 185 10.7

Abnormal £ 37 103 179 145 84
Non- 51 44 50 87 101 59
germinated
Total 1LIS0 1000 574 1000 1,724  100.0

second-grade and abnormal classes were 3.1% and 3.7% for
the TY sweetiny cultivar and 26% and 17.9% for the Tiniup
cultivar, respectively.

B. X-RAY IMAGING

Fig. 4 depicts the X-ray images of tomato seed samples
by class. In the non-germinated class, some seeds exhibited
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(b) | )

FIGURE 4. X-ray images of tomatoes in four classes: (a) first-grade;
(b) second-grade; (c) abnormal; (d) non-germinated.

TABLE 3. Mean and standard deviation of tomato seed integrity (%)
quantified via image processing.

Class
Cultivar First- Second - Non-
Abnormal .
grade grade germinated
TY 91.61+ 87.56+ 89.79 + 87.33
sweetiny 3.53 4.12 3.92 5.75
Tiniup 8726+ 87.89+ 87.56 + 81.49 +
3.26 332 3.65 6.72
Total 90.69+ 87.84+ 88.21 + 84.44 +
3.90 3.49 3.86 6.88

distorted internal structures different from the swirl-shaped
internal structure observed in the other classes. As indicated
in previous studies [26], [27], [37], the high-intensity area
(white area) inside seeds in X-ray images indicates internal
cavities. Despite large seed deviations, non-germinated seeds
tended to have larger internal cavity areas than in other
classes, as indicated in the X-ray images.

C. SEED INTEGRITY

Table 3 and Fig. 5 present the quantified integrity results by
cultivar and class. In both cultivars, the non-germinated seeds
revealed lower mean integrity than the other seed classes.
In the TY sweetiny cultivar, the first-grade class showed a
significant difference in seed integrity compared to that in
the other classes. The seed integrity of the non-germinated
class differed significantly from that of the first-grade and
abnormal classes but not from that of the second-grade class.
In the Tiniup cultivar, the non-germinated class revealed
significant differences from the other classes (Tukey—Kramer
test (p < 0.09)).

38066

D. INTEGRITY-BASED MODELING

Table 4 presents the evaluation metrics of the integrity-based
viability prediction model using the test set. The optimal
integrity threshold was determined as the threshold with the
highest weighted accuracy for a dataset that included both
the training and validation sets. When the integrity of the
seed was above the threshold, the seed was classified as
positive; otherwise, the seed was classified as negative. The
cut3-tested result (i.e., distinguishing germinated and non-
germinated seeds) showed the highest evaluation metrics
among the test results. Fig. 6 depicts the receiver operating
characteristic (ROC) curves of the integrity-based viability
prediction model.

E. CNN-BASED MODELING

Table 5 presents the evaluation test results of the CNN models
on the test set. Both the VGGNet- and ResNet-based CNN
attained higher values in the evaluation metrics for the cut3
model than the cutl and cut2 models. Most of the cutl and
cut2 models had accuracies ranging from 55.98%-59.77%,
while the ResNet-based cutl model had an accuracy of
67.06%. However, the ResNet-based cutl model revealed a
biased result by cultivar. Therefore, the evaluation results
for each cultivar showed accuracies of <50%. In compar-
ison, the VGGNet-based cut3 model had an accuracy of
86.01% and an F1 score of 92.11%; the corresponding val-
ues for the ResNet-based cut3 model were 74.33% and
84.42%.

In the weighted metrics, the VGGNet-based cut3 model
had an accuracy of 80.92% and an F1 score of 81.14%;
the corresponding values for the ResNet-based cut3 model
were 76.98% and 76.27%. The cut3-tested ROAUC was sim-
ilar between the VGGNet-based (84.79%) and ResNet-based
(83.31%) models. For these two cut3 models, the unweighted
accuracy showed a difference of 11.68%, whereas the dif-
ference in the weighted accuracy was 3.94%. Furthermore,
the cut3-tested ROAUC difference between the two cut3
models was 1.5%. This can be explained by the greater
tendency of the VGGNet-based model to classify seeds as
germinated seeds (i.e., the majority class) than that of the
Resnet-based model. Therefore, the differences in perfor-
mance between the models were relatively small consider-
ing the class balance, although the VGGNet-based model
performed better overall. Fig. 7 depicts the ROC curves of
the VGGNet-based models. The cut2- and cut3-tested ROC
curves showed similar trends and ROAUC in the cut2 and
cut3 models. It is inferred that the abnormal class did not
significantly affect training regardless of which binary class it
belonged to.

The VGGNet-based model outperformed the integrity-
based model by 6.29% in weighted accuracy, 5.39% in
weighted F1 score, and 2.66% in cut3 ROAUC. These results
indicate that integrity can be a significant factor in pre-
dicting viability. However, CNNs that can reflect other fea-
tures may make more accurate viability predictions than an
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integrity-based model. Considering that the performance dif-
ference between the models using integrity alone and the
CNN was 2.66% and 6.29%, respectively, a model with a
moderate inductive bias could demonstrate similar perfor-
mance at a lower cost than a CNN. Therefore, cost optimiza-
tion using various feature extraction and machine learning
methods should be attempted in future studies. However,
to be generalized for conditions, a CNN capable of learn-
ing multiple features suitable for the task is still considered
advantageous.

Fig. 8 presents X-ray images of the test set and the
VGGNet-based cut3 model prediction results. Images with
the highest confidence scores from positive predictions and
images with the lowest scores from negative predictions are
shown in the figure. The true-positive images with high confi-
dence scores of >97% showed embryo and endosperm struc-
tures with small cavity areas. In contrast, the false-negative
and true-negative images revealed large cavity areas inside
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the seeds. Furthermore, the cavity areas of false positive
images were smaller than those of negative prediction images.
This shows that seed integrity is one of the key features
for predicting tomato seed viability in the CNN model. The
structures of the embryos and endosperm were not visible in
the false-positive image shown in the bottom left of Fig. 8.
Notably, among the 1,724 seeds used in our experiment,
12 seeds with no visible internal structures were identified.
Therefore, additional data or methods may be required to
analyze and model such seeds.

F. EVALUATION BY CULTIVAR

Table 6 presents the cut3-tested results of the integrity- and
the VGGNet-based cut3 model for the different seed cultivars.
In all evaluation metrics for both cultivars, the VGGNet-
based model attained equal or higher values than the integrity-
based model. Notably, in both the models, the weighted eval-
uation metrics and ROAUC values of the Tiniup cultivar were
higher than those of the TY sweetiny cultivar, demonstrating
that the two models had similar prediction tendencies. For
the TY sweetiny cultivar, the VGGNet-based model had an
accuracy of 88.21% and an F1 score of 93.56%, while it
showed a weighted accuracy of 74.75% and a weighted F1
score of 78%. This result means that the prediction perfor-
mance for the minority class (non-germinated seeds) is lower
than that of the majority class (germinated seeds). In addi-
tion, the model has difficulty classifying non-germinated
samples of the TY sweetiny cultivar. Considering that the
TY sweetiny cultivar has a lower germination rate than
the Tiniup cultivar, it is hypothesized that non-germinated
samples of the TY sweetiny cultivar deteriorated more than
those of the Tiniup cultivar. Consequently, the model could
more clearly classify the non-germinated seeds of the Tiniup
cultivar.

These results show that conditions of seed lots, such as
the deterioration and cultivar, can affect the accuracy and
tendency of the model. In a previous viability prediction
study for pepper seed [44], the trends differed between seed
lots, similar to the results of this study. Since this study
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FIGURE 7. Receiver operating characteristic (ROC) curves for VGGNet-based viability prediction models based on the (a) cut1, (b) cut2,
and (c) cut3 test sets. AUC = area under the curve. Cut1,2,3-trained means that model was trained with a binary class test dataset
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False positive rate
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classified following the cut1,2,3 criterion.

TABLE 4. Results of the integrity-based model evaluation.

Test Accuracy F1 score Precision

Model criterion (weighted) (weighted) (weighted) Recall Specificity ROAUC
0, 0, 0,
cutl (3132023 ééf;i;‘;) é;:ggtﬁ) 82.56% 42.35% 72.49%
Integrity- 76.09% 85.30% 90.84% , , ,
based cut2 (64.67%) (69.47%) (61.16%) 8041% 48.94% 71.98%
0, 0, 0,
cut3 (;2:302) g;%‘;) (%:23‘02) 79.26% 70.00% 82.15%
TABLE 5. Results of the convolutional neural network (CNN) model evaluation.
Accuracy F1 score Precision [ Test
weighte weighte weighte criterion
Model ighted ighted ighted Recall Specificity o ROAUC
cutl 74.99%
0, 0 0
cutl (Zgg;ﬁ;) (ggé;ﬁ) (g;:‘;goﬁ) 50.00% 89.41% w2 73.45%
cut 77.86%
cutl 74.71%
VGGNet- 58.89% 69.94% 94.80% , . -
based CNN cut2 (68.11%) (63.50%) (74.36%) 5541% 80.85% cut2 76.66%
cut 84.28%
cutl 69.44%
0, 0, 0,
cut3 (Zg:g;ﬁ) (2%:}411{2) 82:52% 86.69% 75.00% a2 77.92%
cut3 84.81%
cutl 74.68%
0, 0, 0,
cutl (%:ggoﬁ) (Zéjﬁ?of;) (g?ﬁgéoﬁ) 63.57% 77.65% cut2 70.26%
cutd 63.69%
cutl 67.15%
ResNet- 55.98% 68.08% 90.96% , . -
based CNN cut2 (60.17%) (57.76%) (61.56%) >4.39% 63.96% cuz  67.14%
cut3 69.58%
cutl 71.47%
0, 0 (V)
cut3 5232?2) (ggi‘z‘%) 82%% 73.97% 80.00% a2 76.84%
cutd 83.31%

various conditions are required to achieve robust and general
models.

was limited to two seed lots, the models’ results might be
biased. Therefore, additional experiments on seed lots under
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TABLE 6. Cut3-tested results by tomato cultivar.

Accuracy F1 score

Precision

Model Cultivar (weighted) (weighted) (weighted) Recall Specificity ROAUC
. 84.28% 91.26% 98.00% o o o
TY sweetiny (67.92%) (72.80%) (69.11%) 85.84% 50.00% 78.68%
Integrity-
based
Tiniu 67.54% 78.61% 98.55% 65.38% 90.00% 85.91%
P (77.69%) (74.56%) (86.73%) e U e
. 88.21% 93.56% 98.00% o o o
TY sweetiny (74.75%) (78.00%) (69.11%) 89.50% 60.00% 81.23%
VGGnet-
based CNN
Tiniuy, 81.58% 88.89% 98.75% 80.61% 90.00% 89.23%
p (85.38%) (84.68%) (88.96%) DR U e
TP TP FN FN the integrity-based model. These results show the ability of

Score : 97.12% Score : 24.53%

Score : 98.48% Score : 25.66%

TP TP FN FN
Score : 98.35% Score : 98.18% Score : 26.51% Score : 19.62%

FP FP TN TN
Score : 58.62% Score : 69.68% Score : 29.04% Score : 29.04%

Score : 73 43% Score : 8l 87% Score : 22 98% Score : 27 37%

FIGURE 8. Test set X-ray images of tomato seeds and their prediction
results obtained using the VGGnet-based cut3 model.

V. CONCLUSION

In this study, viability prediction technologies for tomato
seeds were developed using X-ray imaging. The integrity-
and CNN-based models were developed and evaluated using
multiple viability criteria. The seed integrities were quan-
tified using image processing, and the evaluation results
of CNN and integrity-based models were compared. The
models performed better in classifying germinated and
non-germinated seeds than for the other criteria, and the
CNN-based models attained higher evaluation metrics than

VOLUME 11, 2023

the CNN-based models to use not only the integrity feature
but also other features relevant to germination, including
distortion of the seed’s internal structure.

Previous studies on viability assessment of tomato seeds
through X-ray imaging did not include quantitative prediction
modeling. Hyperspectral imaging was mainly used in studies
to predict the viability of tomato seeds based on imaging.
Shrestha et al. [45] investigated predicting tomato seed via-
bility through hyperspectral imaging; however, no signifi-
cant differences were detected. Peng et al. [46] achieved
accuracies above 85% for tomato seed viability prediction
using hyperspectral imaging; however, the accuracy was eval-
uated for only about 40 seeds. In our study, viable and
non-viable seeds could be distinguished with an accuracy
of 86.01% using the X-ray imaging method. Furthermore,
as the relationship between internal structure and viability
of tomato seeds has been reported several times in pre-
vious studies, it is considered a robust method. In addi-
tion, X-ray imaging has the potential to be applied to
seed quality assessment since it can detect internal damage
to seeds, which was not included in the current research
samples.

Seeds in their natural state that were not artificially aged
were used for our experiment and modeling. Therefore, the
classes other than the first-grade class were relatively minor-
ity classes. In addition, the results of each seed lot confirmed
that the model results could differ depending on the condition
of the seed lot. Therefore, it is considered that the perfor-
mance and robustness of the model can be improved through
the additional collection of minority class data and data for
various seed lots via additional experiments.
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