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ABSTRACT In dynamic real-time systems (RTS), the synchronous communication model is a source
of unpredictable behaviors caused by the difficulty of estimating the maximum lockdown time in a
process. Inter-task communication is a critical issue in RTS, even in the case of uniprocessor archi-
tectures. Using an FPGA-based development platform, through an SoC project, the implementation of
HW_nMPRA_RTOS (a unified acronym for multi pipeline register architecture (nMPRA) where n is the
degree of datapath resource multiplication, hardware scheduler engine (nHSE) for n threads and RTOS
application programming interface (API)), dedicated processor architecture was developed, simulated and
validated. This paper proposes an innovative soft-core implementation to reduce interrupt latencies while
maintaining strong spatial and temporal isolation. Among the results which contain relevance and novelty,
we can mention: rapid tasks context switching (1 clock cycle); The implementation of a distributed and
versatile interrupt system that allows the interrupt attachment to any task; The implementation of a static
scheduler and support for the dynamic tasks scheduling; Rapid response to events of up to 2 clock
cycles. We demonstrate the architecture’s predictability, scalability, and performance by running a set
of benchmark applications on several configurations of HW_nMPRA_RTOS synthesized on a Xilinx 7
Series FPGA.

INDEX TERMS Hardware RTOS, microprocessor, scheduling, field-programmable gate arrays (FPGA),
real-time systems.

I. INTRODUCTION
The importance of RTS increases the more they are used
in the control of critical applications, where a malfunction
of control systems could cause material damage or even
incalculable losses. Examples include control systems in the
industry, aerospace, robotics, automotive, etc. The scope of
RTS is widespread and includes a wide range of other devices
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where the control system response is valid even after a dead-
line has passed. Most of these applications using RTS are
implemented on a wide variety of hardware devices where
embedded systems have the largest share due to their size and
scalability. In this context, it can be inferred that efficiency is
another characteristic that RTS must fulfill. The schedulers
that form the basis of the RTS operation must operate on
limited hardware resources, where memory and CPU require-
ments are significantly lower than in desktop systems. Under
these conditions, RTS must be robust and ensure the correct
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operation of the system in which they are installed, even
when system overloads reach their maximum permissible
level. Robustness and fault tolerance are two other charac-
teristic features of RTS [1]. A very important aspect of a
scheduling algorithm in an RTS is its ability to predictably
schedule system tasks in as short a time as possible. RISC
processors are more adaptable for handling asynchronous
interrupts because their occurrence is rather verified between
CPU elementary execution operations. In the case of com-
plex instruction architectures, interrupt handling is restricted
either by the limits of instructions execution or by the need to
define specific interruptible points.

Preemptive schedulers introduce fluctuations in task exe-
cution times, thus degrading system predictability. Designing
a CPU scheduler in hardware requires the introduction of
new sequential and combinational elements into the processor
that can increase the critical path. A kernel provides many
useful services to a scheduler, such as multitasking, interrupt
management, communication, and signaling between tasks,
resource management, time management, memory partition
management, and more [2]. Due to the complexity of indus-
trial and automotive applications and response times [3],
issues such as:

−‘‘engine does not run smoothly’’,
− −‘‘control accuracy of an industrial process is poor’’,
− − −‘‘poor network performance and slow communica-

tion’’, occur when using RTOS implemented in software. The
challenges in real-time embedded systems are very stringent,
and in some cases, RTS cannot use RTOS because kernel
overheads are too high or do not provide the real-time per-
formance required. These result in the following problems:

• It is not easy to add or modify the software;
• Large-scale software development is difficult;
• Difficult to modularize and update software.

The solution to this problem is given by implementing
certain functions or the entire RTOS in HW resulting in the
concept of HW_RTOS, Thus, HW_RTOS offers a high level
of real-time performance based on fast API execution, and
fast interrupt response, low RTOS overhead, small footprint,
tick offloading, hardware interrupt service routine (ISR) and
much lower CPU resource usage. In classic RTOS, interrupts
are the highest priority sections of code that may or may
not interact with the thread via RTOS API functions [4].
HW_RTOS can be provided as a hardware intellectual prop-
erty (IP) block that implements some of the most common
functions typically found in a software-based core. A good
part of the HW_RTOS registers appear as local memory for
the processor, this memory is mapped into the coprocessor
2 (COP2) address space for Microprocessor without Inter-
locked Pipeline Stage (MIPS32) architecture. This memory
can be monitored (i.e. read) to show what HW_RTOS is
doing, and writing to, in order to set some of the HW_RTOS
operating modes.

Current operating systems (OS) have been redesigned or
upgraded to handle multithreading [5], process and thread

scheduling, memory management and sharing, multi-core
processors, GPU and GPGPU coprocessors, interprocess
communication/synchronization, deadlock and starvation,
and other real-time and embedded entities that they can
exist on modern microprocessor systems. The time required
to change contexts is the most significant factor in any
RTOS [6]. This is an inherent limitation of the kernel, which
does not depend on the scheduling algorithm nor on the
structure of the task set. In the case of RTSs, another overhead
factor is the time required for the processor to execute the
interrupt handling routine.

The main contributions of our work can be summarised as
follows. HW_nMPRA_RTOS is a validated implementation
of the processor whose initial idea was partially described
in [7]. In the initial implementation, only a time event-
driven scheduler and deadline events were implemented [7].
A preemptive scheduler based on an interrupts system,
mutexes, message events, and deadlines has been added at
the COP2 level using additional CPU instructions to control
HW_nMPRA_RTOS. The solution proposed in this paper
is based on the private resources of threads, referred to
as HW_thread_i, with i = 0, . . . , n − 1. The hardware
instances (instPi) of a thread execute and allocate only one
HW_thread_i type resource at a given time. However, the
thread context (HW_thread_i) incorporates the CPU regis-
ters, instPi environment block, and kernel stack, as well as
a user stack associated with the process. Compared to the
original implementation, the concept proposed in this paper is
compliant with MIPS32 Release 1 instruction set architecture
(ISA) which enabled us to use COP2 for the real-time event
handling module (Chapter III-D). The HW_nMPRA_RTOS
project presented by the authors is based on the concept
of multiplication of CPU resources patented in [8]. Issues
related to missing factors in existing research projects include
non-deterministic execution associatedwith ISA, task context
switch time, and real-time response. The task context switch
operation, the inter-task synchronization and communication
mechanisms, as well as the jitter that occurred in treating
aperiodic events, are crucial factors in implementing RTOS.
In practice and literature, several solutions can be identified
for improving the response speed and performance of RTSs.
Software implementations of RTOS-specific functions can
generate significant delays, adversely affecting the deadlines
required for certain applications. The HW_nMPRA_RTOS
performs the same software RTOS function (selects the next
task to be executed) except that this is performed much faster
by using hardwired logic. It can be asserted that the chosen
solution provides a unitary management approach to inter-
rupts and events. The predictability issues for single/multi-
core design-based real-time systems must include RTOS
aspects and CPU pipeline structure. Many studies on schedul-
ing algorithms and CPU architectures are proposed in the
literaturewithout reference to the proper hardware implemen-
tation of the related blocks, the impact on critical paths in the
CPU, jitter in the case of RTS, the delay introduced by task
scheduling and event handling, and core power consumption.
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The proposed method solves these problems by implement-
ing RTOS functions in hardware, adding robust support for
events (time, external interrupt, deadline, mutex, messages),
and minimizing the time for task context switch due to the
separate implementation of thread contexts (HW_thread_i).
The proposed design differs from the existing studies because
it implements in the FPGA the multiplication of pipeline
resources for each task (instPi), and proposes an event-based
preemptive scheduler that selects for execution the highest
priority task.

The rest of this paper is organized as follows. Chapter II
reviews the current research in the field of real-time sys-
tems and FPGA designs and Chapter III introduces the
RTOS overhead and hardware-accelerated RTOS based on
a hardware scheduler and real-time event-handling module.
Chapter IV shows the synthesis, and implementation results,
and Chapter V provides the discussions and conclusions.

II. RELATED WORK
Reconfigurable devices used in real-time embedded systems
and research on hybrid fault-tolerant scheduling are a real
challenge to improve the reliability of real-time indepen-
dent periodic hardware tasks. The technique proposed in [9]
schedules tasks according to the EDF-NP policy, and candi-
date spare tasks are selected to load free processing periods.
In the next phase, an event-triggered dispatcher decideswhich
candidate spare tasks should be configured and executed
on the FPGA at runtime. Experimental results show that
the hybrid scheduling technique proposed in [9] improves
the mean time to system failure by an average factor of
1.22 compared to other scheduling algorithms. In mixed-
criticality systems, software fault-tolerance techniques are
available to mitigate hardware failures, but adapting them to
real-time systems is challenging due to the overhead intro-
duced. The paper [10] proposes an extension of traditional
scheduling theory for mixed-criticality systems to implement
fault-tolerant strategies against transient failures, tomeet both
failure and timing requirements. In particular, the authors
introduce dropout relations that generalize the concept of
criticality and allow, on the one hand, to improve the schedul-
ing analysis, on the other hand, to control the dependency
between tasks satisfying certification requirements. The sim-
ulation study shows an improvement in the scheduling ratio of
20-30% compared to classical scheduling while maintaining
compliance with failure requirements. In the case of embed-
ded real-time microkernels, the use of hardware to perform
part of the CPU processing functions is a common practice
that produces good results in terms of power and performance
when applied in embedded systems and beyond.

The paper [11] describes the integration of microkernel
functions to increase the performance of task-based systems.
This is because the CPU overhead is caused by scheduling
algorithms and thread context switches. Therefore, micro-
kernel functions have been implemented by hardware to run
in parallel with the CPU, thus reducing the task dispatch
time. In the paper [12], the authors address the problem of

shared resource arbitration at the OS level and propose a new
basic OS design platform centered on a scratchpad. In the
proposed concept, the predictable use of shared resources
across multiple cores is a central goal during the design
process. Therefore, the authors demonstrate how conflict-free
execution of real-time tasks on scratchpad-based architec-
tures can be achieved, i.e., how separation of application logic
and I/O operations in the time domain can be enforced. In [13]
the authors present a new computing system architectural
concept, instruction overloading, which can support block
ciphers in a RISC CPU core without ISA modification. In the
proposed concept, the extended core can perform different
context-dependent operations, such as the address of source
operands, for a single instruction overhead. Consequently, the
proposed RISC core not only provides complicated crypto-
graphic operations but also leads to power analysis resistance
with complex masked operations without additional custom
instructions. To reduce the real run-time overhead, the authors
propose in [14] a quasi-sharing-based scheduling algorithm,
called qHS-2S-RTS,which can achieve equivalent scheduling
performance to HS-2S-RTS. A new control algorithm for
HS-2S-RTS and qHS-2S-RTS, called HSAC-2S-RTS, is also
designed. Simulation results validate theoretical analysis that
qHS-2S-RTS and HS-2S-RTS can satisfy all feasible firm
deadline constraints while improving the schedulability of
soft tasks. In the context of real-time tasks, EDF scheduling
on multiple cores, paper [15] presents a new migration algo-
rithm for multi-core systems. This implementation is based
on the idea of migrating tasks only when strictly necessary
to respect their timing constraints in accordance with the
EDF algorithm. The proposed adaptive migration algorithm
is evaluated by an extensive set of simulations validating the
obtained performance. In some embedded control systems,
energy efficiency required performance, and scalability is
affected by power constraints imposed on heterogeneous pro-
cessors [16]. Memory wall and communication constraints
will continue to increase the gap between the performance
of an ideal processor and that of a practical processor. This
is because new concepts such as dynamic scheduling, out-of-
order execution, or HW integration of scheduling and RTOS
APIs will continue to be included in future processors.

The paper [17] proposes and validates an adapted EDF
variant and tests that it is at least near-optimal soft real-time.
However, the authors present simulation results for random
task systems that guarantee that the proposed EDF variant is
optimal for real-time soft. In the paper [18] Hybrid-SIMD, a
modular BvNC coprocessor architecture reliable to decrease
memory access and improve energy efficiency in a classical
von Neumann architecture, was proposed. An advantage of
the Hybrid-SIMD concept is modularity, as the intelligent
row structure can be modified according to the algorithm.
However, the user can enter the row interfaces required by a
single algorithm, in an application-specific approach, or by
a given set of benchmarks, such as in a generic approach.
Technological development, the increasing complexity of
user applications, the emergence of IoT concepts, and the
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amount of data to be processed, all contribute to increasing
performance requirements of computing devices [19].

In the paper [20], the authors aim to improve the schedula-
bility of deep neural network tasks in real-time while leverag-
ing heterogeneous resources. Thus a new system abstraction
is proposed, which allows transparent and flexible CPU/GPU
scheduling of individual deep neural network layers. In [21]
a new admissibility test for dynamically partitioned constant
bandwidth server reservations on multi-core systems is pre-
sented. The concept fundamentally preserves the simplicity
of utilization-based testing but leverages knowledge about the
future evolution of active utilization within each CPU due to
tasks that have recently been dropped, either due to termi-
nation or migration, which is tracked by any proper sched-
uler implementation. Analysis of the timing properties of an
application is of particular importance for real-time systems.
Only a time-predictable platform can allow the computation
of safe but tight worst-case execution bounds [22]. Therefore,
real-time systems need time-predictable processors. Real-
time applications can also compete for processor execution
time, which can lead to deadline misses [23]. Thus, isolation
between software components is necessary. This includes
spatial isolation in which memory is segregated between
protection domains to ensure integrity and temporal isolation
in which all execution is prioritized appropriately and the
impact of even malicious or errant high-priority executions
is limited. In [24] it is shown that the parallelism of instruc-
tions in the Ariane kernel does not prevent the imposition
of predictability in time. This further relaxes the restrictions,
allowing a limited amount of speculative execution, proving
that the kernel is predictable in time. Experimental results
show that performance is reduced by 10% on average com-
pared to the original Ariane core. In [25] the authors present
a time-predictable coprocessor called Vicuna. The proposed
vector processor can be scaled to meet the performance
requirements of massively parallel computational tasks, but
its timing behavior can remain simple enough to be efficiently
analyzable.

The same idea from existing studies is the improvement or
proposal of new scheduling algorithms [9], [14], [15], [17],
[18], [20] and their implementation in hardware or in hybrid
form for processor acceleration. Another similar idea intro-
duced in articles [10], [11], [12], [16], HW_nMPRA_RTOS,
is to integrate operating system functions, schedulers,
or external accelerators in hardware, which are then inte-
grated into real-time or even mixed-criticality systems.
Table 1 present difference in features between existing, opti-
mized, and proposed concepts, regarding CPU architecture,
time-predictable aspects, and scheduling technique, based
on different platforms. The difference from existing studies
is the architecture, therefore proposed processors use RISC
architectures [13], SIMD [18], dual-issue statically sched-
uled RISC processors [22], multi-core concepts [12], [21],
vector processors [25], simultaneous multithreading (SMT)
processors or speculative execution-oriented processors and
timing predictability [24]. However, temporal predictability

FIGURE 1. Task scheduling with software real-time kernel and hardware
RTOS scheduler.

is addressed in different aspects in articles [11], [12], [24],
and [25].

III. HARDWARE ACCELERATED RTOS BASED ON
PREEMPTIVE SCHEDULER AND REAL-TIME
EVENT-HANDLING MODULE
Typically, queues implemented in software use a list struc-
ture. In RTOS, TCBs are connected together with a list archi-
tecture to implement a queue. There are an enormous number
of queues in a classical RTOS. For example, if there are
64 semaphore identifiers, 64 event identifiers, and 16 priority
levels, then the total number will be 64 × 2 × 16 = 2,048
queues. As a result, even with this relatively small number of
objects, plenty of embedded systems resources are required.
Thus, the API execution time that accompanies queue man-
agement fluctuates dramatically depending on the state of the
queues in the RTOS [4]. Also, the resulting overheads are
almost as long as the API execution time, so the jitter can also
fluctuate dynamically depending on the internal states of the
RTOS queue. So when a large number of tasks are attached to
queues, queue management can create unexpected overhead,
resulting in possible failures in RTSs.

A. RTOS OVERHEAD AND HW-RTOS SCHEDULERS
Multitasking is the process of scheduling and switching the
CPU between multiple sequential tasks. Multitasking gives
the illusion of multiple CPUs andmaximizes CPU utilization,
as shown in Figure 1.

With a real-time kernel, application programs are easier
to design and maintain. Thus, HW_RTOS does the same
function as its software counterpart, i.e. it selects the next task
to run, except that it does it much faster using hardwired logic
in the FPGA. Also, an HW_RTOS-managed task looks the
same as with a software-based core. Independent on pipeline
implementation (number of stages), memory system archi-
tecture (SoC BUS, cache, fetch queue), debug and scheduling
interface (JTAG), and chosen architecture (MIPS32, RISC-V,
ARM ISA, 8, 16, 32, 64bit), tasks are scheduled for execution
according to the scheme in Figure 1 [4]. Thus, each task
relies on its information (datapath context, task control block
(TCB), priority, deadline, code) to guarantee safe execution

VOLUME 11, 2023 36267



I. Zagan, V. G. Găitan: Custom Soft-Core RISC Processor Validation

TABLE 1. The difference in features between related work proposed concepts.

FIGURE 2. RTOS overcontrol effect on task execution based on tick
interrupt.

within the deadlines imposed by the RTS, under the strin-
gent conditions imposed by the handling of assigned events
(time, deadline, interrupt, mutex, message) and ISR. Figure 2
illustrates the execution intervals σ caused by the routine for
handling time interrupts and the intervals δ required for thread
context switching.

The effects on periodic task scheduling due to interrupts
can be taken into account by adding the factor Ut to the total
utilization factor corresponding to the set of tasks [1]. If Q
is the system tick and σ is the WCET corresponding to the
periodic task, the introduced overhead can be calculated as
the utilization factor Ut obtained by equation (1).

Ut =
σ

Q
(1)

A solution to guarantee system predictability may be to
move the primitives and mechanisms of the RTOS, including
the scheduler, into hardware (HW_RTOS), thus eliminating
the overhead of the basic software-implemented functions
and greatly reducing the effect of jitter.

B. HW_nMPRA_RTOS PROJECT DESIGN AND TESTING
METHODOLOGY
The design and testing methodology involved the following
steps, with overlapping steps in certain stages of testing

and reviewing the project specifications. The first step con-
sisted of writing the HW_nMPRA_RTOS concept specifi-
cation and choosing the ISA (BL_name is MIPS32). Then,
using the Vivado DS and VC707 FPGA development kit,
the initial XUM design was ported to Virtex-7. Subse-
quently, the datapath and RTL (Register Transfer Level) for
the synthesizable CPU were simulated using the integrated
Vivado simulator, in accordance with the MIPS Assembler
simulator (Figure 3.a). After this step was successfully com-
pleted, the corresponding nHSE module blocks were imple-
mented in Verilog, the multiplication of datapath resources
(HW_thread_i) was performed and the HW_nMPRA_RTOS
project was simulated in Vivado DS. As can be seen in
Figure 3.b, the crTRi and crEVi registers are visualized and
the choice of an instPi for execution is made according
to the preemptive nHSE scheduler made with a finite-state
machine (FSM). For debugging stage we used the customiz-
able Integrated Logic Analyzer (ILA) IP core, so we test
synchronously the CPU internal signals.

Finally, the design was integrated into SoC and the
proposed scheduler performance was tested in a real-time
environment with appropriate comparisons in terms of the
achieved requirement/performance ratio. The use of an emu-
lator such as QEMU was not possible because the proposed
concept is a hardware extension that relies on a multiplica-
tion of the processor datapath for each thread called instPi.
Thus, we are considering in the future to develop an emula-
tor for the HW_nMPRA_RTOS concept supporting RISC-V,
MIPS32, and ARM ISA. The papers [7], [26], [27] present
these simulations at the concept level and do not explain the
algorithms underlying the implementation of the real-time
scheduler. In [7] the basic concept of nMPRA is presented
for the first time, with static Round Robin scheduling. In [26]
only a basic solution for handling mutex-type events is pre-
sented. In the overview presented in [27] different ISAs for
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FIGURE 3. (a) Project simulation using five-stage datapath pipeline CPU
and data redirection to avoid hazards; (b) HW_nMPRA_RTOS soft-core
simulation in Vivado DS developed on Verilog HDL.

nMPRA processor support, namely MIPS32, RISC-V, and
ARM, are reviewed. In this paper, the authors describe the
dynamic nHSE scheduler with a priority-based preemptive
execution for each instPi. Moreover, at the level of each
processor instance implemented in hardware, events vali-
dated by the crEPRi register can be prioritized. In addition,
message events for instPi communication, external interrupt
events, and preemptive scheduling mechanisms with flexi-
ble scheduling of both instPi priorities and their associated
events are presented and tested. Thus, these events inherit
the priority (mrPRIsCPUi) of the task to which they are
attached, allowing the design of secure applications with
predefined deadlines. Based on [7], several practical features
were subsequently added, such as FSM for nHSE, event
prioritization at each instPi level, hardware implementation
of a priority encoder for interrupt events, and realization of
the destination task search algorithm for a message using
content addressable memory (CAM). This paper adds a qual-
itative and quantitative study adding the improvements com-
pared to those previous tests so that the basic information
for HW_nMPRA_RTOS operation and practical results are
presented, including a comparison of power consumption.

C. HW_nMPRA_RTOS CONCEPT AND ARCHITECTURE
In designing and implementing the HW_nMPRA_RTOS
architecture, several questions and challenges arise: Which
types of registers and functional units should be implemented,
and how many are needed for each HW_thread_i? Under
what conditions can a functional unit be shared between
two or more instPi? How can functional units and multiple

registers be linked together so that all register transfer opera-
tions are performed correctly?

The nHSE unit has the role of activating only one instance
at a time. If one instPi is turned off at some point by nHSE and
another instPi is enabled, all program-specific information
running on the stopped instPi is preserved due to the mul-
tiplication of the PC registers, pipeline registers and RF asso-
ciated with HW_thread_i hardware resources. The program
running on instPi can be a task from a real-time multitasking
application. Switching from one instPi to another does not
require the saving of general-purpose registers or deletion of
the contents of pipeline registers, which causes a very fast
context switch. If each instPi runs task i, switching from one
task to another is also achieved very quickly.

The interrupt management mechanism of an RTOS pro-
vides for the management of interrupts that may be generated
by peripheral devices such as analog-to-digital converters or
sensors. In classical OSs, this mechanism involves the exe-
cution of a dedicated interrupt driver routine to transfer data
from the peripheral device to the main memory, or vice versa.
Thus, application tasks can be interrupted at any time by inter-
rupt routines. In the case of this research project, interrupt-
type events are associated with instPi, thus increasing the
predictability and performance of RTS. The nHSE integrated
hardware scheduler is without a doubt the central block of
the HW_nMPRA_RTOS processor. To achieve outstanding
performance, nHSE is designed as a constituent part of the
processor (Figure 4). In the case of context switching, the
preemptive scheduler does not use stack saving of registers as
is the case with other architectures, thus eliminating multiple
accesses to external memory.

The performance plus is due to the concept of remapping
task contexts (HW_thread_i), which is done in practically one
clock cycle due to the multiplication of processor resources
for each instPi. Even if all instPi use the same BL_name
(RISC-V, MIPS32, ARM) datapath, resource multiplication
is not an impediment to the practical use of this processor
in real-time applications. The nHSE module illustrated in
Figure 4 is designed to satisfy the following functions:

• Preemptive scheduling of tasks and therefore interrupts;
• Implementation and management of deadline events;
• Select bank of kernels via nHSE_Task_Select selector;
• Selection of pipeline registers (part of HW_thread_i)
corresponding to each instPi and PC.

The project written in Verilog HDL validates both
nHSE_Task_Select command signals and CPU datapath sig-
nals. Within the proposed CPU datapath, each task has a PC,
an RF, and a set of its own pipeline registers, as we can
see in Figure 4. The change of task contexts is controlled
by the scheduler using the nHSE_Task_Select selector. The
execution of a scheduled task is done by simply remapping
multiplexed hardware resources (HW_thread_i) related to
instPi to be executed due to a higher-priority event.

Table 2 shows the memory map for the local (lr),
control (cr), and monitoring (mr) registers. Thus, the
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FIGURE 4. Architecture and connections between HW_nMPRA_RTOS blocks based on hardware scheduler registers are defined in Table 2.

HW_nMPRA_RTOS global registers (gr) for a MIPS32
architecture are shown [28]. The following characteristics are
highlighted: current number (for GPR only and additional
registers), whether cr, lr, mr, or gr, whether mandatory (m) or
optional (o), and what it represents. The crTRi register con-
tains one bit for validating time events, such as deadline,
interrupt, mutex, and synchronization, respectively one bit for
validating program execution on instPi.

The mechanism for attaching interrupts to a specific task
is based on a set of grINT_IDi registers used to store the IDs
of the tasks to which external interrupts have been attached,
NR_INT being the number of interrupts in the processor.
By properly associating interrupts with the ID of the attached
tasks, an interrupt can be treated as the highest priority
interrupt in the system. Through the hardware-implemented
address priority encoder, the scheduler activates and launches
into execution the task to which the interrupt is attached
(Figure 5, interrupt event). The scheduling logic is based on
task priorities so that the occurrence of interrupts is not an
impediment to meeting the deadlines of the task set. The
mutex registers constitute the Mutex Register File (MRF).
grMutexi registers select the task ID to which the Mutexi
mutex has been attached (bit 31 of this register).

grSMRi registers compose the Message Synchronization
Event Register File (SMRF) and store the event status, source,
and destination identifier and afferent message. The bank
selection in the GPR is independent of the operations per-
formed at the level of the individual instPi. Recall that in the
datapath designed at the RTL for the HW_nMPRA_RTOS
architecture, the control lines for each bank in the GPR
are separate. These bits are implemented at the level of
each instPi and are named lr_enTi, lr_enWDi, lr_enD1i,
lr_enD2i, lr_enInti, lr_enMutexi, lr_enSMi and lr_run_instPi.
The crEVi register is a register that is used to indicate the
occurrence (1L) or not (0L) of an event validated by individ-
ual bits in crTRi. The bits in the crEVi register, corresponding
to the bits in crTRi, are named as follows: TEvi, WDEvi,
D1Evi, D2Evi, IntEvi, MutexEvi, SMEvi and lr_run_instPi.

Table 3 shows the global registers for external interrupts,
mutexes, and message synchronization-related events.

The modification of the registers corresponding to the
instPi scheduled by nHSE is done on the positive clock
edge, the outputs being of type wire assigned to variables
of type registered, depending on the selected instPi. The
resource requirement for the implementation of this module
is minimal, which is due to the FPGA implementation of
the multiplication registers. However, particular importance
must be given to the operations of COP2 and providing the
necessary information to the nHSE scheduler, control unit,
hazard detection, shift register, and register file.

D. nHSE SCHEDULER OPERATION AND EVENT HANDLING
LOGIC
Compared to previous work, especially [7], the amount of
improvement resulting from a quantitative evaluation is bet-
ter both in terms of response time to external events and
switching thread contexts. This is due to separate hardware
contexts for each thread (HW_thread_i), an implemented
state machine for nHSE, the use of CAM for RTOS message
destination lookup, and the realization of a priority coder for
interrupts. The main contributions of this work with respect
to the original project concern the proposal of algorithms
that minimize context switching time; the design and imple-
mentation in FPGA of a flexible and versatile scheme for
handling time, mutex, and timing events attached to a task,
i.e. these events can be prioritized in turn and at the level of an
execution thread; the proposal of an interrupt event handling
algorithm implemented in the nHSE dynamic scheduler. The
logic for hardware events handled by the nHSE scheduler
is illustrated in Figure 5. With independent execution, the
scheduler has entries for events such as interrupts and timers
(TEvi, WDEvi, D1Evi, D2Evi, IntEvi, MutexEvi, SMEvi).
The crTRi register is used to check if the corresponding
events are validated (see Table 2 and Table 3), so at the level
of each instPi there is a pattern like the one shown in Figure 5.
In the integrated fail-safe mechanism implementation, the
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TABLE 2. Memory mapping for local (Lr), control (Cr), and monitoring (Mr) nHSE registers.

TABLE 3. nHSE associated global registers.

highest priority semiprocessor instP0 is used. Thus, the
HW_nMPRA_RTOS processor can enter a stable state of
a system instability situation or a critical error. instP0 is

the active task after reset and has the highest priority task
in the processor, causing any running task to be suspended
when a critical error occurs. In the case of an exception, the
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processor enters a controlled fail-safe state and executes the
exception handler. The nHSE_EN_sCPUi selector is the acti-
vation command for tasks to which events are attached.When
the scheduler activates the instPi via the cr0MSTOP signals,
the block diagram simultaneously decodes the mrPRIsCPUi,
crTRi, crEVi, and grINT_IDi registers for the active tasks.
At some point in normal execution, only one instPi can be
in the RUNNING state. This is made possible by the nHSE
scheduler, instPi states, the event block (crTRi[j] & crEVi[j]),
and timing signals. If it is desired to measure the delay to
activate a digital output (LED), mapped to the address space
of the data memory (DataMem_Address[29:26]), then the
processor must execute the store word (sw) instruction.

The jitter is only two clock cycles, the time required to
identify the external interrupt (ExtIntEv[0]) and to activate
the instPi to which the interrupt is attached. Then, additional
time is needed to execute the instructions to change the logic
level of the FPGA circuit pin. The identifier register block
contains an ID for each instPi, a register with the priority
(mrPRIsCPUi, see Table 2) attached to each instPi used only
by the dynamic scheduler (except for instP0 which is always
the highest priority), and a global register containing the
identifier of the active instPi.

In the case of mutex event implementation logic in
HW_nMPRA_RTOS, the number of mutexes has been
denoted by m, so the MRF for mutexes is constituted based
on m (Figure 6.a) and instPi. The grMutexi register selects
the instPi identifier to which mutex i has been attached, after
resetting all bits to 0L.

At the level of each instPi there is a pattern like the one
illustrated in Figure 6.b that allows a type event to be gen-
erated whenever an expected mutex is free. At the level of
each instPi it is possible to decide which mutex is considered
with the help of the signals lr_en_Mi0, . . . , lr_en_Mim-
1. These signals are stored in local registers called enable
mutex registers (EMR). There can be one or more EMRi
registers depending on the number of mutexes implemented
in the MRF. For synchronization with the processor clock,
the D-type flip-flop is used which memorizes the information
on the rising edge of the processor clock. Mutex_i bit set
and reset operations are performed, using the scheme in
Figure 6.b, indivisibly in a single processor cycle. A test
and set instruction (in_tasm_wr and Address_i signals) will
read the old value of the mutex bit developed from the MRF
(Mutex_i), and set the Mutex_i bit. If the Mutex_i bit was
set to 1L it was used and the last n bits of the MRF register
read (Address_i sign) domain the mutex owner ID, which is
provided by the in_tasm_wr, Address_i and /Mutex_i signals
in Figure 6. If the mutex bit is set to 0L it will set the mutex bit
to 1L andwrite the ID of the instPi, fromwhich the instruction
was executed, to the common MRF register (Figure 6.a, for a
bit in the MRF other than Mutex_i). If the Mutex_i bit read
by the instruction was 0L, then the mutex was not found, only
the read ID belongs to the owner of the mutex. The delete
instruction creates the in_clrm_wr and Address_i signals and
sets Mutex_i to 0L.

The algorithm 1 show the selection of processor instances
(instPi) that are in the READY state implemented in
the nHSE dynamic scheduler. Thus NR_TASKS represents
the total number of instPi that have dedicated hardware
resources (HW_thread_i). Initially, the cr0MSTOP register
(see Table 2) is checked to test if the instPi is not in the
stopped state for execution. Then, the algorithm checks if
instPi has at least one validated and active event (crTRi[i] &
(crEVi[i]) and the lr_run bit is set, which condition causes
the corresponding instPi bit in nHSE_sCPUi_Ready to be
set. Subsequently, the algorithm implements the encoder for
dynamically prioritized tasks that provides the highest pri-
ority instPi in the sCPUi_Lower_PRI register based on the
priorities stored in mrPRIsCPUi[0:NR_TASKS-1].

It should be specified that this algorithm is transposed
in hardware, the FPGA logic contributing to generate a
coder that provides in the shortest time (one clock cycle)
the instPi ID with the highest priority (lowest value for
mrPRIsCPUi). Algorithm 2 generates a message-type event
based on SMRF. This checks if there is at least one free input
for signals (grSMRFG), then checks the Signal bit in each
grSMRi register (grSMRi[i] & 32’h80000000) (Figure 5).
The next step in the algorithm is to search the index
of the first signal for all instPi, then signaling message
events (signals). The effect of this algorithm is to set the
SMEvi bits of crEVi, validated by the lr_enSMi bits of
component crTRi (crEVi[(((grSMRi[i] & 32’h03E00000) ≫

21)] <= crEVi[(((grSMRi[i] & 32’h03E00000) ≫ 21)] |

Mask1_bit6;). Based on the hardware implementation of the
search operation in grSMRi, the setting of a SMEvi event is
done in one CPU cycle. The search in SMRF is performed
in one processor cycle, based on the CAM principle. Then,
Algorithm 1 uses the priority queue to launch instPi into
execution and executes a direct jump to the trap cell asso-
ciated with the event that generated the RUNNING state.
The scheduling operation using a preemptive algorithm is
based on HW_thread_i resource selection with zero theoreti-
cal overhead. The scheduling algorithm can be offline (static)
or online (dynamic). The offline variant is rudimentary and
assumes that the scheduler’s decisions are determined apriori.
The next condition checks the occurrence of time events
according to the event priorities in the crEPRi register at the
level of each instPi. Obviously, this processing type is very
rigid, strictly dependent on a specific application architecture,
and difficult to use for medium and high-complexity real-
time applications. For this reason, current RTOS does not
use this kind of approach. Unlike static scheduling, online
or dynamic schedulers decide which ‘‘ready to run’’ or ‘‘run-
ning’’ task should receive the active resource, with up-to-date
information about task states. Control over the processor is
transferred to the higher priority task (instPi), and for tasks on
the same priority level, the RR (Round Robin) or FIFO (First
In First Out) algorithm can be applied in relation to the arrival
time in the list of ready to run tasks. Dynamic scheduling
algorithms can work with static or dynamic priorities based
on mrPRIsCPUi registers. In the first case, task priorities are
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FIGURE 5. The hardware solution for event handling is implemented in the nHSE scheduler (COP2) with effect on HW_thread_i.

FIGURE 6. (a) MRF logic implementation schemes; (b) MutexEvi event
generation logic with MRF and nHSE registers.

not changed by the scheduling algorithm. It should be noted
that task priorities may vary during the execution of the appli-
cation, but these changes are not managed by the scheduler.
In the second case, the priorities are also changed by the
scheduling algorithm (EDF), taking into account the nHSE-
associated time constraints (TEvi, WDEvi, D1Evi, D2Evi).

IV. FPGA SYNTHESIS AND IMPLEMENTATION RESULTS
BASED ON HW_nMPRA_RTOS EVALUATION
In this paper, the HW_nMPRA_RTOS architecture valida-
tion and the SoC design used for testing the implementa-
tion proposed in this paper were presented. By means of
practical results obtained using the Vivado simulator and
the ChipScope analyzer, the practical implementation of the
theoretical approaches presented in Chapter III has been
demonstrated.

The proposed project needs to be newly implemented and
verified on FPGA because the initial project which included
a simple multiplication of the register file and pipeline reg-
isters was realized in VHDL, using Xilinx ISE and Virtex-6
environment.

In the new HW_nMPRA_RTOS implementation, Vivado
DS environment was used, with Virtex-7 and Verilog hard-
ware description language. The Vivado DS tool allowed rapid
project simulation, debugging using ChipScope and hardware
testing of the above-mentioned modules.

A. VALIDATION OF THE PROPOSED HARDWARE
SCHEDULER IMPLEMENTED IN HW_nMPRA_RTOS
The elements of difficulty of this research appear at
the HW_RTOS level, due to embedding its functional-
ity in hardware and highlighting performance improvement
through appropriate test programs. Based on FPGA design
methodology and optimization techniques, Figure 7 illus-
trates the results from the design and debugging stage of
the HW_nMPRA_RTOS concept at a working frequency
of 33 MHz with a corresponding bitstream running on the
board. The signals were captured with the PicoScope 6404B
oscilloscope on the AM39, AN39, AR37, AT37 VC707
FPGA circuit pins (LEDs mapped in the address space of
the data memory of the processor). For implementation,
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Algorithm 1 nHSE Dynamic Scheduler: Select Which instPi Are in the Ready State
1: always@(posedge clock) begin
2: for i = 0, NR_TASKS do
3: if (((cr0MSTOP & Wire_Mask1_bit_i[i])!=32’h00000000) &
4: ((crTRi[i] & (crEVi[i]|32’h00000080))!=32’h00000000)) begin
5: //If there is a validated and occurred event or if the lr_run bit is set
6: nHSE_sCPUi_Ready = nHSE_sCPUi_Ready | Wire_Mask1_bit_i[i];
7: else
8: nHSE_sCPUi_Ready = nHSE_sCPUi_Ready & Wire_Mask0_bit_i[i];
9: end if
10: end for
11: sCPUi_Lower_PRI = 32’hFFFFFFFF; //The dynamic prioritized instPi encoder providing the highest priority instPi ID
12: for i = 0, NR_TASKS do
13: if (((nHSE_sCPUi_Ready & Wire_Mask1_bit_i[i])!=32’h00000000) & (mrPRIsCPUi[i] <

sCPUi_Lower_PRI)) begin
14: sCPUi_Lower_PRI = mrPRIsCPUi[i];
15: end if
16: end for
17: end always

Algorithm 2 Generate a Message Type Event Based on SMRF
1: always@(posedge clock) begin
2: grSMR = 32’h00000001;
3: for i = 0, NR_EV-1 do//check if it is at least one free input for signals
4: if((grSMRi[i] & 32’h80000000) != 32’h80000000) begin //if the signal bit is 0 the input is free
5: grSMRFG = 32’h00000000; //grSMRFF = 0 indicates that the signals register file is not full
6: end if
7: end for
8: for i = NR_EV-1, i >= 0; i– do begin //search the index of the first free signal in the grSMRF
9: if ((grSMRi[i] & 32’h80000000) == 32’h00000000) begin
10: index_FreeSignal <= i;
11: end if
12: end for
13: for i = 0, NR_TASKS do //initialize crSMRindex registers
14: crSMRindex[i] = 32’hFFFFFFFF;
15: end for
16: for i = NR_EV-1, i>=0; i– do //search the index of the first signal for all instPi
17: if ((grSMRi[i] & 32’h80000000) == 32’h80000000) begin //if it’s an active signal
18: crSMRindex[((grSMRi[i] & 32’h03E00000)≫21)] = i;
19: end if
20: end for
21: for i = 0, NR_EV do //signaling of message events (signals)
22: if (((crSMRi0[i] & Wire_Mask1_bit_i[i]) !=

32’h00000000) && ((grSMRi[i] & 32’h80000000) == 32’h80000000)) begin
23: if (((crTRi[((grSMRi[i] & 32’h03E00000)≫21)] & Mask1_bit6) != 32’h00000000)) begin
24: crEVi[((grSMRi[i] & 32’h03E00000)≫21)] <= crEVi[((grSMRi[i] & 32’h03E00000)≫21)] | Mask1_bit6;
25: end if
26: end if
27: end for
28: end always

debugging, and testing we used Virtex-7, which has a
200MHz differential oscillator. Based on CPUHarvard archi-
tecture, the dual-port on-chip memory was designed with

IP Block Memory Generator 8.4 and clocked by IP Clock-
ing Wizard 5.2. The design methodology used to derive
the HW_nMPRA_RTOS concept involved writing CPU
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specifications, writing Verilog HDL code, Vivado DS RTL
simulation, synthesis, implementation, report generation, and
analysis to meet timing and power consumption constraints,
bitstream generation, FPGA programming, and in-circuit
testing using an oscilloscope.

The data in Figure 7 and Figure 8 are obtained from a
bitstream running on the Vistex-7 board. Figure 7 shows three
tasks scheduled by nHSE by running a benchmark application
on instP4 configuration, instP0 being the highest priority,
followed by instP1. Oscilloscope signals indicate the time
each instPi is running, this is done by setting a pin of the
FPGA with sw instruction. Thus, preemption points T1 and
T2 are indicated, then when instP0 finishes execution, at time
point T3, instP1 is selected by the FSM with a jitter of only
one clock cycle because the instP1 context has been stored by
HW_thread_1. At time point T4 switches task instP3, which
is the lowest priority task in the system. An overview shows
that saving the state of instPi tasks in their own HW_thread_i
hardware space simplifies context switching and improves
CPU execution time.

In the second situation illustrated in Figure 7.a, it is
observed that instP0 enters execution (T6), but although vali-
dated events occur at instP1 and instP3 (arrival time), they are
scheduled at time points T7 and T8. A task set is schedulable
with nHSE if equation (2) is verified, the preemptive priority-
based scheduler providing handling of n instPi, p interrupt
events, m mutex events, and s message timing events (3).

U =

∑n−1

i=0
t_instPi ≤ 1 (2)

tinstPi = tTEVi+ tWDEvi+ tD1Evi+ tD2Evi

+

∑p−1

i=0
t_IntEvi+

∑m−1

i=0
t_MutexEvi

+

∑s−1

i=0
t_SMEvi (3)

Thus, t_instPi is the time for instPi task execution, and tTEvi,
tWDEvi, tD1Evi, and tD2Evi represent the time spent for
the execution of time events. It should be mentioned that
the nHSE scheduler can run scheduling algorithms such as
EDF, as it has a set of timers available for measuring instPi
run cycles (mrCntRuni), instPi idle cycles (mrCntSleepi), and
HW_nMPRA_RTOS idle cycles (see Table 2).
Figure 7.b shows the preemptive scheduling of events at the

instPi level when the oscilloscope is set to persistent mode.
It can be verified that instP0 interrupts instP2 and instP3 at
time points T1 and T2, thus validating the correct execution
of the scheduling scheme, with a dynamic attachment of
events to instPi. IntEvi interrupts events borrow the priority
(mrPRIsCPUi) of the task to which it is attached so that the
search for the source of the interrupt and the jump to the trap
cell associated with this event is performed in hardware.

The watchdog component is the only element that monitors
the execution of tasks, the integrated hardware scheduler is
relieved of calculating execution times. The feasibility study
on task set schedule is the offline operation performed at
the system design stage, based on the real-time constraints

discussed in Chapter III of this paper. Therefore, the com-
putation of the processor load and the predictability of the
HW_nMPRA_RTOS processor guarantee successful task set
scheduling. To handle multiple events with its own trap cell
(interrupts, time, mutexes, and message events), a solution to
integrate the priority encoder for interrupts and local events
associated with instPi has been proposed. This results in an
automatic jump to the handler for the highest priority event
associated with instPi. The identifier register block contains
an identifier for each instPi, a register with priority attached to
each instPi (mrPRIsCPUi) used only by the dynamic sched-
uler (except instP0 which is always the highest priority), and
a global register containing the active instPi identifier. For
the implementation of these registers, as well as the combina-
tional logic associated with the scheduler, this paper presents
the FPGA circuit resource requirements for the chosen degree
of multiplication.

Figure 8.a shows the sequence of events occurring at the
FSM-controlled nHSE scheduler. This shows the handling
of an asynchronous event (cursor C1 at time moment T1)
in a maximum of 2 clock cycles. Subsequently, the priority
encoder for TEvi, WDEvi, D1Evi, D2Evi, IntEvi, MutexEvi,
and SMEvi events will select the highest priority event based
on the priorities of each of the crEPRi. Each mentioned event
has 3 priority bits at each instPi level (crEPRi register). Cursor
C2 indicates the setting of the evIi bit (T2) in the crEV0
register, the jitter in this case is a maximum of 30.3 ns.
This depends on when the ExtIntEv[0] event occurs, with
priority crEPR0[14:12] and attached to instP0, and can be
a maximum of one processor clock period. Cursor C3 illus-
trates the moment when nHSE performs context switching
at instP0 (T3), and FSM switches the task to the RUNNING
state (nHSE_FSM_state = FSM_sCPU0). The condition
(crTRi[sCPU0_ID] &Mask1_bits)&&(crEVi[sCPU0_ID] &
Mask1_bits) validates the treatment of the type i event, so that
cursor C4 shows the timewhen instP0 fetches the first instruc-
tion to be executed in the pipeline (T4). As we can see in
Figure 8.a the time elapsed from themoment an asynchronous
event occurs with the processor to the actual execution of
the handler’s afferent code is minimal (maximum two clock
cycles). Figure 8.b illustrates the jitter of the nHSE scheduler
in the case of handling an asynchronous message event (T1).
The measured period of 571.7 ns includes the time to send a
message from instP3 to instP0, search based on hardware for
the SMEvi event, schedule the execution of instP0 (T2), and
delete that event.

Unlike timing mechanisms implemented in software,
the nHSE scheduler checks for SMEvi events in hard-
ware and based on the destination task in grSMRi
places the corresponding task in the READY state. With
HW_nMPRA_RTOS, it is easy to implement multiple
interrupt-handling modules, by assigning an interrupt priority
(instPi, mrPRIsCPUi). In HW ISR, multiple interrupts are
implemented according to the priority of the tasks being acti-
vated. The performance of a hardware-implemented RTOS
comes at a low cost considering that using Synopsys Design
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FIGURE 7. HW_nMPRA_RTOS multiple events scheduling validations (instP0 = 1.663 us) by using the PicoScope 6404B oscilloscope by Pico Technology
(St Neots, UK), (a) Preemptive event scheduling at instPi level; (b) Execution selection of processor instance instP0 (highest priority) against preemption
points (persistent oscilloscope mode).

FIGURE 8. (a) HW_nMPRA_RTOS kernel latency to asynchronous event attached to instP0 (T1: Asynchronous external event (ExtIntEv[0]); T2: Setting the
evIi bit in the crEVi nHSE register; T3: Context switch to instP0 (FSM state change); T4: instP0 fetch instruction to execute and decode); (b) The jitter of the
nHSE scheduler in the case of handling a SMEv0 message-type synchronization event (T1: lr_enIi external event; T2: inter-thread communication jitter
(SMEvi event)).

Compiler, the space occupied by the HW_RTOS is about
8476 LUTs. Integrating a hardware scheduler into the data
path requires the design of new combinational and sequential
elements that can increase the critical path in the CPU. In the
proposed concept architecture, the multiplication of proces-
sor units per processor instance (instPi) has a direct effect on
the critical path (Table 4).

The maximum response time of the nHSE scheduler, for
an event defined in crEvi was 60.6 ns (from T1 to T3 time
moment), whereas the response time jitter of the external
interrupt event type is about 30.14 ns (due to the time
period T1 - T2). This architecture is complete and provides
a maximum task-switching time of two processor cycles.
HW_RTOS does not have a cyclic management function.
However, an equivalent function can be performed using an
HW ISR. Furthermore, the startup time of a cyclic activa-
tion task using an HW ISR is shorter than that of a cyclic
handler running on conventional RTOS software. The pro-
cedure is simple: define the input to the HW ISR (ExtIn-
tEv[0]) as the output of the built-in time event (TEvi) of the
HW_nMPRA_RTOS. By designing a system that includes
multiple interrupt management, you can perform multiple
cyclic activation tasks. In fact, it is possible to define three
or more cyclic activation tasks. The periods of each task do
not have to synchronize with each other. It is also possible to
trigger the cyclic activation of an external pin.

B. RESOURCE USAGE AND SYNTHESIS RESULTS
To achieve a predictable and reliable real-time system, a timer
block has been designed in the nHSE component to mon-
itor task execution (mrCntRuni). The implemented proces-
sor predictability is defined by the ability to change task
contexts in one clock cycle. Through a special implementa-
tion of the GPR and pipeline registers using programmable
logic technology, each instPi corresponds to a bank of
registers. The multiplication of pipelined registers guaran-
tees hardware isolation of tasks under the nHSE module
direct control. The HW_nMPRA_RTOS architecture pro-
vides superior performance in terms of response time to
external events and context switching time, and is suitable
for small real-time applications due to the resource consump-
tion of register multiplication, as we can see in Figure 9.
The performance and stability of the HW_nMPRA_RTOS
architecture can be improved by designing a dedicated hard-
ware module to protect against unauthorized memory access.
This module is very important because it protects private
memory areas belonging to hard real-time tasks, ensur-
ing process stability at maximum performance. Figure 9
presents the Virtex-7 FPGA resource utilization based on
different projects, including the HW_nMPRA_RTOS con-
cept based on a dynamic hardware scheduler. For nHSE
registers the implementation, as well as the combinational
logic associated with the scheduler, experimental soft-core
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FIGURE 9. FPGA device resource utilization for the proposed
HW_RTOS_nMPRA architecture and its configurations.

TABLE 4. FPGA timing report based on different processor
implementation.

CPU implementations show the FPGA resource requirements
according to HW_RTOS_nMPRA multiplication degree and
scheduler support, including dynamic priorities for instPi.
To test whether all instructions were implemented correctly,
another testbench was created that does nothing but opera-
tions using a few values loaded from memory.

Some of these instructions have certain dependencies and
others do not. Each instPi instruction is stored in different
registers, so it was possible to check them using the simu-
lator included in the Vivado environment. So, by checking
the final values in memory obtained from the arithmetic
and logic operations, it was sufficient to test whether the
instructions were implemented correctly. Table 4 shows the
information generated by Vivado DS on FPGA implemented
timing report, so all the user-specified timing constraints are
met. WNS is the most negative of all the paths that failed any
constraint (3.395 ns). Again, unless it is put into perspective,
it only serves to show how badly the designer missed the tim-
ing closure. During Place and Route step, TNS indicates the
negative slack sum for all paths that fail any time constraint.
TNS (total negative slack) is the sum of all negative slacks,
whereas WNS is slack of the critical path. WNS slack can
be negative, zero or positive, so by obtaining 2.106 ns we
demonstrate that the HW_nMPRA_RTOS project is imple-
mentable in FPGA. Thus, obtaining and analyzing the values
for WNS, WHS, and WPWS demonstrates that the project
meets the time constraints at 33 MHz CPU frequency. WHS

is the worst hold slack, which is the worst negative hold value
(0.056 ns). Thus, FPGAs have the clock shaft already seated,
so on a single clock design designers do not see intra-FF hold.

The nHSE_EN_sCPUi selector represents the activation
command for instPi based on the attached events. When the
scheduler activates the instPi hardware instance, the nHSE
block diagram simultaneously decodes the mrPRIsCPUi,
crTRi, crEVi, and grINT_IDi registers. Thus, only one instPi
can be in the RUN state. This is possible through the sched-
uler FSM, task states, and event block, as well as the syn-
chronization signals. The jitter for setting the LED is only
nine clock cycles, a period necessary to identify the exter-
nal interrupt, activate the instPi to which the interrupt is
attached, and execute the instructions related to the change
in the logical level corresponding to the digital output FPGA
circuit. For theWCET calculation, the deadlines for RTSwith
hard constraints were considered. In HW_nMPRA_RTOS,
events are statically attached to instPi and inherit its priority
(mrPRIsCPUi), which can be set dynamically by instP0. It is
worth mentioning that the CPU pipeline does not contain
valid data, so the instructions extracted from the address
indicated by the trap cell associated with the interrupt event
ExtIntEv[0] must pass through the fetch, decode, execute,
memory, and write back pipeline stages. The grINT_PR
global register implemented in the nHSE scheduler stores the
highest-priority interrupt ID, which is updated by an inter-
rupt priority encoder. This priority register makes it possible
to perform dynamic scheduling in software, e.g., the EDF
algorithm can be implemented for thread scheduling. Pipeline
registers are multiplied to store instruction execution infor-
mation for each thread. The scheduler and the CPU datapath
provide, through the instructions CFC2 (copy control word
from COP2), CTC2 (copy control word to COP2), MFC2
(move word from COP2) and MTC2 (move word to COP2),
the writing and reading of the scheduler registers, which are
mapped to the COP2 address space. Thus, the architecture
was intended to be as deterministic as possible, and imple-
menting a cache level could introduce an unpredictability
factor in terms of the RTS response time.

In the process of designing the HW_nMPRA_RTOS,
designers had to verify the timing report and where this hold
violation is happening and see if it can be resolved by an IO
timing constraint or by moving the IO register to the IO Pad
or some other way. Thus, THS is total hold slack, which is
the cumulative negative hold value. The worst of all of the
pulse width violations (1.100 ns for HW_nMPRA_RTOS)
are reported as the Worst Pulse Width Slack (WPWS).
Table 5 presents the power report HW_nMPRA_RTOS post-
implementation in the FPGA circuit.

C. COMPARISON BETWEEN DIFFERENT CPU
ARCHITECTURES BASED ON FPGA IMPLEMENTATION
Figure 10 presents the Virtex-7 FPGA resource utilization
based on different projects [32], [33], [34], [35], [36], [37],
including the HW_nMPRA_RTOS project (4 instPi soft-core
only) with a dynamic hardware scheduler. Table 6 shows
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FIGURE 10. FPGA resource requirements comparison among CPU cores (RISC-V core [29], MicroBlaze [31], ARM Cortex-M3 [30], XUM [28], RPU [31],
NIOS [32], A.P.FFT.RISC-V [33], PicoRV32 [34], NEOR32 [35], DarkRISC [36], HW_nMPRA_RTOS (soft-core CPU), UE RISC-V [37]).

TABLE 5. Power report post-implementation in FPGA.

the overhead results related to RTOS functions and services
partially or fully implemented in hardware by the nHSE
scheduler and other CPU architectures. The improvement
by the difference of the proposed method in the evaluation
is given by the thread context save/restore which is only
0.121 us, compared to 0.510 at the hthreads project [38].

The present project relies on both separate hardware
resources for each thread and a priority-based preemptive
scheduler. Jitter for synchronous event handling is only
0.268 us at HW_nMPRA_RTOS compared to 1.910 us at
hthreads and 2.300 us at ARPA-MT [39]. This improve-
ment is mainly because in HW_nMPRA_RTOS, the inter-
rupt event borrows the priority of the instPi to which it is
attached, and the handler useful code is executed directly,
without searching through software tests for the source that
issued the request. The same hardware implementation idea
for processing structures as presented in this paper can be
found in [23], [38], [39]. Many projects choose to integrate
and implement in FPGA established architectures such as
MIPS32 [28], HW_nMPRA_RTOS, new architectures such
as RISC-V [24], [29], [33], [34], [35], [36], [37], architectures

TABLE 6. Overhead related to RTOS functions and services
implementation and other CPU architectures.

with the most produced ISAs such as ARM [30], or specific
architectures of FPGA circuit manufacturers such asMicroB-
laze [31], NIOS [32].

In the specialized literature, numerous highly established
studies are proposed that implement some features of RTOS
in hardware and that are designed for time-predictable
systems, such as MERASA [40], PRET [41], and Pat-
mos [22], [42]. Advantages that can be newly realized in
this study are of conceptual and practical nature. It can be
stated that a new algorithm has been proposed for the nHSE
dynamic scheduler that selects which instPi is in the ready
state, and generate a message-type event based on SMRF.
At the implementation level, the project has been successfully
synthesized in Vivado DS and the jitter afferent to the events
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associated with the RTOS functions and the context switching
times have been measured with the oscilloscope. To perform
the appropriate performance measurements, some reg-type
spies were introduced into the Verilog HDL software. These
flip-flops change the state of some internal wire-type sig-
nals, which are then connected to the pins of the Virtex-
7 FPGA circuit. Following the presentation, the description
of the HW_nMPRA_RTOS architecture, and the analysis of
processor architectures with functions implemented in the
hardware we can deduce the following new findings asso-
ciated with the proposed paper. First, the nHSE preemptive
scheduler has been implemented in hardware (Figure 4) facil-
itating practical testing of the HW_nMPRA_RTOS architec-
ture using programmable logic technology, which enhances
the state-of-the-art scheduler in the field. Thus, the nHSE
unit registers were reorganized to interconnect with the
HW_nMPRA_RTOS datapath and the control unit was mod-
eled to meet the requirements of the nHSE scheduler based
on COP2 instructions. As a derivative scientific contribution,
the mechanism for handling interrupts, mutexes, and mes-
sages (Figure 5, Algorithm 2) between processor instances
(instPi) with private hardware context was integrated into
nHSE (Table 6).

From a safety-critical application point of view, the
HW_nMPRA_RTOS architecture represents an innovative,
forward-looking, low-cost solution (including RTOS) with
better performance than existing systems in automotive,
robotics, medical, motion control, Building Internet of Things
(BIoT), and industrial process control.

V. CONCLUSION
In this paper, the validation of the HW_nMPRA_RTOS archi-
tecture and the SoC design used for testing the implemen-
tation proposed in this project was presented. By means of
practical results obtained using the Vivado and the Virtex-7
FPGA circuit, the practical implementation of the theoret-
ical approaches presented in Chapter III has been demon-
strated. The elements of difficulty of this research appear
at the HW_RTOS level, due to embedding its function-
ality in hardware and highlighting performance improve-
ment through appropriate test programs. The amount of
improvement resulting from a quantitative evaluation is about
three times better both in terms of response time to external
events and switching thread contexts jitter. This is due to
separate hardware contexts (HW_thread_i) for each thread
(instPi), an implemented FSM for nHSE, the use of CAM
for RTOS message destination lookup, and the realization of
a priority encoder for interrupts. The relevant performances,
required in critical RTS, are represented by the memory
consumption for the multiplication in the hardware of the
multiplexed datapath resources. This factor depends on thread
hardware instances implemented, their number being in the
range of 4-16 because the architecture validated in this paper
is proposed for small-embedded applications in the industrial,
IoT, medical, or automotive sectors.

The implementation proposed in this paper comes with
practical results explicitly validated for MIPS32 and tested
on the Virtex-7 FPGA development kit produced by Xilinx-
AMD. Thus, we can consider that the scientific and practical
contribution brought by the authors through this paper is a
significant one since the improvement brought to themanage-
ment scheme of asynchronous external events is an essential
one in terms of real-time embedded systems.

Given the application domains and range of capabilities
of the nMPRA concept, the economic impact is significant,
materializing in the form of a predictable processor and the
elimination of costlyWCET determination, testing, and certi-
fication. The authors plan in the future to implement a multi-
core processor architecture with RISC-V ISA, where instPi
are dynamically associated with pipeline stages from cores,
and integrate the HW_nMPRA_RTOS concept into a set of
BIoT-based smart switches. These concepts are also complex
approaches, generating scalable, extensible architectures with
wide applicability in practice.

PATENTS
The central processing unit with pipeline registers is patented
in Germany, Munich (DE202012104250U1).
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