
Received 21 March 2023, accepted 5 April 2023, date of publication 10 April 2023, date of current version 14 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3266117

Bi-Branch Vision Transformer Network for EEG
Emotion Recognition
WEI LU 1,2, TIEN-PING TAN1, AND HUA MA2
1School of Computer Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia
2Henan High-Speed Railway Operation and Maintenance Engineering Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou
451460, China

Corresponding author: Tien-Ping Tan (tienping@usm.my)

This work was supported by the Henan Provincial Science and Technology Research Project under Grant 232102240091.

ABSTRACT Electroencephalogram (EEG) signals have emerged as an important tool for emotion research
due to their objective reflection of real emotional states. Deep learning-based EEG emotion classifica-
tion algorithms have made encouraging progress, but existing models struggle with capturing long-range
dependence and integrating temporal, frequency, and spatial domain features that limit their classification
ability. To address these challenges, this study proposes a Bi-branchVision Transformer- based EEG emotion
recognitionmodel, Bi-ViTNet, that integrates spatial-temporal and spatial-frequency feature representations.
Specifically, Bi-ViTNet is composed of spatial-frequency feature extraction branch and spatial-temporal
feature extraction branch that fuse spatial-frequency-temporal features in a unified framework. Each branch
is composed of Linear Embedding and Transformer Encoder, which is used to extract spatial-frequency
features and spatial-temporal features. Finally, fusion and classification are performed by the Fusion and
Classification layer. Experiments on SEED and SEED-IV datasets demonstrate that Bi-ViTNet outperforms
state-of-the-art baselines.

INDEX TERMS Affective computing, EEG-based emotion recognition, transformer.

I. INTRODUCTION
Emotion is a psychological and physiological response
formed by sensing external and internal stimuli that influ-
ences human behavior and plays a significant role in daily
life [1], [2], [3], [4], [5], [6], [7]. As one of the most important
research topics in affective computing, emotion recognition
has garnered increasing interest in recent years due to its wide
range of potential applications in human-computer interac-
tion [8], disease detection [9], [10], [11], fatigue driving [12],
[13], [14], [15], mental workload estimation [16], [17], [18],
[19], and cognitive neuroscience. In general, emotion recog-
nition methods can be divided into two types depending
on whether physiological or non-physiological signals is
involved [20]. Non-physiological signals, including speech,
posture, and facial expression [21], are external manifesta-
tions of human emotions. Physiological signals, correspond-
ing to the physiological reactions caused by emotions, such
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as eye electricity, ECG, EMG, and EEG, are human recessive
emotional expressions [22]. Non-physiological signals, such
as facial expressions and speech, are limited in their ability to
reliably reflect an individual’s true emotional state, because
humans may conceal their emotions through masking their
facial expression and voice. Physiological signals, on the
other hand, are difficult to disguise and can objectively reflect
human emotions. Consequently, physiological signals are
more suitable for emotion recognition. Among physiological
signals, EEG signals are characterized by high time resolution
and rich information content, enabling the detection of subtle
changes in emotions. These features make emotion recogni-
tion tasks based on EEG signals more objective and accurate
than those based on other types of physiological signals [23],
[24], [25], [26], [27]. Therefore, emotion recognition meth-
ods based on EEG signals are more favored by researchers.

In order to better complete emotion recognition based on
EEG signals, it is necessary to extract multi-dimensional
features of EEG signals. In general, EEG signal features
can be divided into: temporal domain features of EEG
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signals, frequency domain features of EEG signals, and spa-
tial domain features of EEG signals [28], [29]. Temporal
domain features of EEG signals: EEG signals collected with
scalp electrodes and EEG signals amplified with acquisition
equipment are all expressed in temporal domain. In temporal
domain analysis, the temporal changes of neurophysiological
signals are used as features to describe EEG signals with
precise time markers. Such features include the information
extracted from the collected EEG signal and related to the
peak value or duration, reflecting the change of the signal
with time [30]. Frequency domain features of EEG signals:
The collected EEG signals can be represented in frequency
domain by Fourier transform or wavelet transform. In the
frequency domain, the features of neural signals are the sub-
band power of EEG signals and the Power Spectral Density
(PSD) that reflects the power changes of specific EEG sig-
nal frequency bands [31]. Spatial domain features of EEG
signals: The purpose of extracting spatial domain features
of EEG signals is to identify brain regions that generate
specific neural activities by drawing topographical map of
brain [32], [33].

There are two main types of emotion recognition tasks
based on EEG features [34]: conventional machine learn-
ing methods and deep learning methods. Conventional emo-
tion recognition methods based on machine learning usually
extract features from EEG signals, and then input these fea-
tures into classification algorithm [35] such as Support Vec-
tor Machine (SVM) [36], K-Nearest Neighbor (KNN) [37],
and Bayesian Network (BN) [38]. However, these methods
require expert knowledge in both feature design and fea-
ture selection [39]. Therefore, it is challenging to extract
relevant features from complex EEG signals and the results
produced are lower compared to deep learning methods [40].
The effectiveness of deep learning in solving pattern recog-
nition problems in natural language processing, computer
vision [21], speech recognition, and other fields [41], [42],
have inspired researchers to apply deep learning methods in
emotion recognition tasks using for example Convolutional
Neural Networks(CNN) [43] and Long Short-Term Memory
(LSTM) [44]. Although these methods have led to improve-
ments in emotion recognition results compared to conven-
tional machine learning methods, these methods still face
some challenges.Challenge 1: At present, most of the models
do not integrate the features of the three different domains
of EEG signal, namely spatial-frequency- temporal, which
limits the classification ability of the models to some extent.
Challenge 2: At present, most models do not have strong
ability to capture long-range dependency, and it is difficult to
capture the global information of EEG signals, thus extracting
more powerful features, which affects the performance of
model classification.

The aim of our research is to address the aforementioned
challenges and improve the classification performance of
the model. Therefore, in order to address the aforemen-
tioned challenges, we propose an EEG emotion recognition

model, Bi-branch Vision Transformer Network (Bi-ViTNet),
which is based on the dual branch Vision Transformer and
takes spatial-frequency features representation and spatial-
temporal features representation as input. Bi-ViTNet consists
of spatial-frequency feature extraction branch and spatial-
temporal feature extraction branch. Each branch is composed
of a Linear Embedding and a Transformer Encoder, which
is used to extract spatial-frequency features and spatial-
temporal features. The extracted spatial-frequency features
and spatial-temporal features are fused and classified by
Fusion and Classification layer. Bi-ViTNet not only inte-
grates the frequency-spatial-temporal information of EEG
signals in a unified network framework but also the Trans-
former Encoder in each branch of Bi-ViTNet can better
capture the long-range dependencies of EEG signals. Exper-
iments using SEED and SEED-IV datasets show that Bi-
ViTNet outperforms all the state-of-the-art models in terms of
accuracy and standard deviation. Finally, we conduct ablation
studies to determine the validity of each branching model.

II. RELATED WORK
We have reviewed related work in terms of EEG signal-
based emotion recognition and the Transformer model in this
section.

A. EEG-BASED EMOTION RECOGNITION
In recent years, time series data mining has gradually become
a research hotspot [45], [46]. Time series technology has
been applied in many fields, such as transportation [47] and
medical treatment [48], [49], [50]. EEG is a typical time series
data. EEG signals have been widely used in emotion recog-
nition because they could reflect the real emotions of sub-
jects accurately and objectively. In earlier studies, researchers
used conventional machine learning models, such as SVM to
model emotion using EEG signals. For example, Nie et al.
extracted EEG features from the EEG signal, and employed
a linear dynamic system technique to smooth these features,
then modelled these features using SVM [51]. Anh et al.
developed a real-time emotion recognition system based on
EEG signals that is capable of detecting various emotional
states, including happiness, relaxation, and neutral states. The
system employs an SVM classifier and has demonstrated an
average accuracy of 70.5% [52].

Inspired by the success of deep learning in computer
vision, natural language processing, and biomedical signal
processing, several researchers have attempted to employ
deep learning methods for EEG-based emotion recognition.
Zheng et al. proposed a deep belief network (DBN) to clas-
sify three categories of emotions using EEG features, and
demonstrated through experiments that deep learning meth-
ods outperformed traditional machine learning methods [53].
Alhagry et al. put forward a kind of end-to-end deep learning
neural network to recognize emotions from raw EEG signals.
The network utilizes an LSTM-RNN to learn features from
the EEG signals and the dense layer for classification [44].
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Even though all the deep learning methods gave encouraging
results, it is still difficult to combine more essential infor-
mation from diverse domains. Therefore, some researchers
proposed new methods. Al-Nafjan et al. proposed a method-
ology for EEG emotion recognition. Power spectral density
and deep neural networks were considered in the proposed
approach [54]. Yin et al. extracted Differential Entropy(DE)
features to construct feature cubes and took them as input to
a novel deep learning model as fusing graph convolutional
neural network (GCNN) and LSTM to achieve EEG-based
emotion classification [55]. Liu et al. developed a dynamic
differential entropy (DDE) technique to extract EEG signal
characteristics. The collected DDE features were input to a
convolutional neural network [56]. Rahman et al. proposed
to transform EEG signals into a topographic map of brain
covering frequency and it was used as features to a convo-
lutional neural networks for emotion recognition [57]. Topic
et al. came up with an idea to construct topographic feature
map (TOPO-FM) and holographic feature map (HOLO-FM)
using EEG signal features and after that used deep learning
as a feature extraction method on feature maps to identify
different types of emotions [58].

These works obtained encouraging results using only one
or two types of features (temporal or frequency features).
There are few studies in EEG-based emotion recognition
that combine three features: temporal domain features, fre-
quency domain features, and spatial domain features. Jia et al.
proposed an attention 3D dense network with fusing short-
range EEG features in the time domain, the spatial domain,
and the frequency domain [39]. Xiao et al. used 4D spatial-
spectral-temporal representations as input and proposed a
method called the 4D local attention-based neural network for
EEG emotion classification and recognition [59]. However,
these models do not learn long-range dependencies well and
have difficulty in capturing the global information of EEG
signals.

B. TRANSFORMER
Transformer was first proposed in natural language pro-
cessing [60], and since then it has been applied in other
domains [61]. Vision Transformer (ViT) based on multi-head
self-attention to patches of images has achieved outstanding
results in the field of computer vision. A ViT associates a
query and a set of key-value pairs with an output based on
the attention mechanism described as Formula (1):

Attention(Q,K ,V ) = Softmax(
QKT
√
Dk

)V (1)

where Q is the query, K means the key, and V indi-
cates the value, respectively. Dk represents the dimension
of the query and the key. Through the training of large-
scale data sets, Vision Transformer has achieved state-of-the-
art ImageNet image classification result. In addition, it has
been applied in computer vision problems, including object
detection [62], image classification [63], segmentation [64],
etc. In general, Transformer has the following advantages,

Advantage 1: Transformer has strong ability to learn long-
range dependencies, and its multi-head self-attention and
parallel input processing improve the modeling of long-range
dependencies. Transformer could use attention mechanisms
to capture global information and extract more powerful
features. Advantage 2: The position embedding of Trans-
former preserved key position information of words and
image blocks, while class tags can aggregate representative
information [65]. Advantage 3: Transformer is suitable for
multi-modal data input. The data can be used as the input
of Transformer model when converted into vectors. These
advantages of Transformer model motivate us to investigate
it for emotion recognition tasks based on EEG signals.

III. PRELIMINARIES
In this paper, we define ES = (ES1 ,ES2 , . . . ,ESB ) ∈ RNe×B

as the frequency features containing B frequency bands
extracted from EEG signals, where Ne is the number of
electrodes. We construct the spatial-frequency features AS =

(AS1 ,A
S
2 , . . . ,A

S
B) ∈ RH×W×B, where H and W represent the

height and width of the frequency map, respectively.
We define ET = (ET1 ,ET2 , . . . ,ETT ) ∈ RNe×T as an

EEG signal sample of T period, where Ne is the number of
electrodes. We construct the spatial-temporal features AT =

(AT1 ,AT2 , . . . ,ATT ) ∈ RH×W×T , whereH andW represent the
height and width of the temporal map, respectively.

The objective of the study is to establish a map-
ping between spatial-frequency/temporal representations and
emotional states. Given spatial-frequency representation AS

and spatial-temporal representation AT , the emotion recogni-
tion task can be characterized as Yout = F(AS ,AT ), where
Yout represents the emotion state and and F is our proposed
model.

IV. METHODOLOGY
We propose an EEG emotion recognition model, Bi-branch
Vision Transformer Network (Bi-ViTNet), based on the dual
branch Vision Transformer, with the spatial-frequency fea-
tures representation and spatial-temporal features representa-
tion as the input. Figure 1 shows the overall architecture of the
proposed Bi-ViTNet model. Bi-ViTNet consists of spatial-
temporal encoder and spatial-frequency encoder, and inputs
to the encoders are the spatial-frequency features and the
spatial-temporal features respectively. Both spatial-temporal
encoder and spatial-frequency encoder consist of a Linear
Embedding Layer and a Transformer Encoder. The input
features go into the Linear Embedding. We summarize three
core ideas of the Bi-ViTNet as follows:

1) Spatial-frequency data construction and spatial-
temporal data construction methods are proposed;

2) Based on the construction of spatial-frequency data and
spatial-temporal data, the spatial-frequency-temporal
information of EEG is fused in a unified network
framework;
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FIGURE 1. Whole process of EEG emotion recognition. The EEG signals of the experimental subjects are constructed as
spatial-temporal and spatial- frequency representations and used as the input of the Bi-ViTNet model. The model consists of
two branches: one branch extracts spatial-temporal fe atures and the other extracts spatial-frequency features. Both
branches with the same structure are composed of Linear Embedding layer and Transfo rmer Encoder layer. Finally, the
features extracted from the spatial-temporal branch and from the spatial-frequency branch are fused and classified.

3) The Transformer model is used to capture the global
information of EEG signals in spatial-temporal and
spatial-frequency domains.

A. SPATIAL-FREQUENCY AND SPATIAL-TEMPORAL
FEATURE REPRESENTATIONS
To better characterize EEG data, the original EEG signal
is converted into spatial-temporal and spatial-frequency rep-
resentations, which are used to describe the spatial dis-
tribution of temporal and frequency information of EEG
signals. The 10-20 electrode placement system is an arrange-
ment of electrodes on the surface, containing the spatial
information of brain potential distribution. Then, the map-
ping electrode position matrix is used to create a spatial
frame for each sample and describe the spatial informa-
tion in the constructed spatial-temporal and spatial-frequency

representations of EEG signals. The spatial-temporal and
spatial-frequency representations of EEG signals are used as
the input of the Bi-ViTNet, as shown in Figure 2.

Figure 3 shows the process of converting the origi-
nal EEG signals into spatial-temporal and spatial-frequency
representations. The original EEG signals are divided into
non-overlapping periods lasting for τ = 1 seconds, and
each segment is assigned the same label as the original EEG
signals.

1) SPATIAL-TEMPORAL FEATURE REPRESENTATION
To construct the spatial-temporal feature representation,
we extract temporal-domain features of different time stamps
from EEG fragments with a length of τ = 1 seconds.
We define ET = (ET1 ,ET2 , . . . ,ETT ) ∈ RNe×T as the
EEG signal sample containing time stamp T , where the
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FIGURE 2. Mapping of the Scalp Electrode Positions to a Matrix. The objective of this work is to maintain the positional links
between several electrodes.

time stamp is T ∈ {1, 2, . . . , 25}, the electrode is Ne ∈

{FP1,FPZ , . . . ,CB2}, and XTt = (x1t , x
2
t , . . . , x

N
t ) ∈

RN (t ∈ {1, 2, . . . ,T }) represent the EEG signals of all N
electrodes collected on the time stamp T . Then, the selected
data are mapped to a temporal-domain brain electrode posi-
tion matrix ATt ∈ RH×W (t ∈ {1, 2, . . . ,T }) according to
the electrode location on the brain. Finally, the temporal-
domain brain electrode position matrices from different time
stamps are superimposed to form the spatial-temporal fea-
tures representation of EEG, that is, the construction of AT =

(AT1 ,AT2 , . . . ,ATT ) ∈ RH×W×T is completed.

2) SPATIAL-FREQUENCY FEATURE REPRESENTATION
To construct the spatial-frequency feature representation,
the temporal-frequency feature extraction method is used to
extract the Power Spectral Density features of five frequency
bands {δ, θ, α, β, γ } of all EEG channels from the EEG signal
samples in the EEG segments with a length of τ = 1 seconds.
We define ES = (ES1 ,ES2 , . . . ,ESB ) ∈ RNe×B as a frequency
feature containing a frequency band extracted from the Power
Spectral Density feature, in which the frequency band is B ∈

{δ, θ, α, β, γ }, the electrode is Ne ∈ {FP1,FPZ , . . . ,CB2},
and XBb = (x1b , x

2
b , . . . , x

N
b ) ∈ RN (b ∈ {1, 2, . . . ,B})

represent the collection of EEG signals from allNe electrodes
on the frequency band B. Then, the selected data are mapped
to a frequency domain brain electrode position matrix ASb ∈

RH×W (b ∈ {1, 2, . . . ,B}) according to the electrode location
on the brain. Finally, the frequency-domain brain electrode
position matrices from different frequencies are superim-
posed to form the spatial-frequency feature representation of
EEG signals, that is, the construction of the spatial-frequency
feature representation AS = (AS1 ,A

S
2 , . . . ,A

S
B) ∈ RH×W×B is

completed.

B. EEG EMOTION RECOGNITION BASED ON
BI-BRANCH ViT
Transformer is a novel neural network architecture that
was primarily created for natural language processing
applications, in which multi-layer perceptron layers are uti-

lized on top of multi-head attention mechanisms to cap-
ture the long-range dependencies in sequential input. Vision
Transformer has recently demonstrated considerable promise
in a variety of computer vision applications, such as pic-
ture classification and segmentation [61]. Motivated by these
works, we propose a new kind of ViT, the Bi-branch Vision
Transformer Network, which uses a different type of EEG
feature representation. Specifically, we propose a ViT archi-
tecture with two branches, each of which processes a different
EEG feature representation before combining the results for
EEG categorization.

We propose Bi-ViTNet to take advantage of the spatial-
temporal representation and spatial- frequency representation
for emotion recognition. Figure 4 illustrates the Bi-ViTNet
model framework for EEG feature learning. The input of the
Bi-ViTNet model is the spatial-temporal feature representa-
tion AT = (AT1 ,AT2 , . . . ,ATT ) ∈ RH×W×T and the spatial-
frequency feature representation AS = (AS1 ,A

S
2 , . . . ,A

S
B) ∈

RH×W×B. We expand the spatial-temporal feature represen-
tation of sizeH×W×T and theH×W×B spatial-frequency
feature representation into T spatial-temporal representation
patches ATt ∈ RH×W with a size of H × W and B spectral-
spatial representation patches ASb ∈ RH×W with a size of
H ×W , respectively. Each representation patch is used as the
input of the Linear Embedding layer. Linear Embedding is
used to map representation patches to Ed with a constant size.
According to Equation (2),WA can be obtained as the input of
the Transformer Encoder, where xclsp ∈ REd denotes the class
token in the feature representation learning, NTB ∈ {T ,B}

is the number of spatial-frequency/temporal representation
patches, EA ∈ RH×W×Ed is the linear projection matrix, and
AposE ∈ R(NTB+1)×Ed is one-dimensional position embedding,
aiming to preserve the order information of frequency and
time series.

WA =

[
xclsp ; x1pEA; x

2
pEA; . . . ; xNTBp EA

]
+ AposE (2)

As shown in Figure 4, the transformer encoder block
includes multi-head self-attention, layer normalization, and
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FIGURE 3. Process of converting original EEG signal into spatial-temporal representation and spatial-frequency representation.
Firstly, the original EEG signal is divided into segments with a fixed length. Secondly, the temporal-domain features of different
time stamps and frequency-domain features of d ifferent frequency bands are extracted from each fragment, respectively.
Finally, these features are mapped to the electrode position matrix to construct the spatial-temporal and spatial-frequency
feature representations.

multiple-layer perception. The first sub-layer is the Multi-
head self-attention (MSA) and the second is the Multi-layer
perceptron (MLP). Before data enters each sub-layer, it is
normalized by layer normalization (LN), and after it passes
through each sub-layer, it is fused directly with the input
using a residual connection. The operation in the transformer
encoder is shown in Formula (3) and Formula (4).

W ′
l = MSA(LN (Wl−1)) +Wl−1, l = 1, . . . ,L (3)

Wl = MLP(LN (W ′
l )) +W ′

l , l = 1, . . . ,L (4)

where MSA(·) and MLP(·) represent the MSA operation and
MLP operation, W ′

l and Wl are the outputs of the MSA
and MLP, respectively. L is the number of stacked trans-
former encoder blocks. Finally, the spatial-temporal feature
and spatial- frequency feature representations output by the
transformer encoder are sent to the Fusion and Classification
layer for emotion classification based on EEG.

C. FUSION AND CLASSIFICATION
Taking the spatial-temporal features representation and
spatial-frequency features representation as the input, the
Bi-branch Transformer model used for spatial-frequency-
temporal features fusion and classification extracts the
spatial-temporal feature information and spatial-frequency
feature information from the spatial-temporal feature

extraction module and the spatial-frequency feature extrac-
tion module, respectively. Finally, according to Equa-
tion (5), the output from the Bi-branch transformer is fused
in the Fusion and Classification layer for high-precision
classification.

Yout = Softmax(XS1 ∥ XT2 ) (5)

where ∥ represents the concatenate operation,XS1 and XS2
denote the outputs from Bi-branch transformer, Yout denotes
the classification result of Bi-ViTNet.The cross-entropy loss
is used as a loss function in this paper.

V. EXPERIMENTS
In this section, we first describe the datasets used in the study.
Next, the experiment setup is then described. Finally, the
experiment results are presented and discussed.

A. DATASETS
The study was carried out using SEED [53] datasets and
SEED-IV [66] datasets. SEED datasets are public EEG
datasets mainly used for emotion recognition. There are EEG
data of 15 subjects in the datasets. Specifically, 15 Chinese
film clips were selected to stimulate the subjects. Each clip
viewing process can be divided into four stages, including
5s start prompt, 4-minute clip period, 45s self-assessment,
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FIGURE 4. Branch frame of Bi-ViTNet model for EEG feature learning. The Bi-ViTNet model is composed of two branches:
spatial-frequency and spatial-temporal. The two branches have the same structure, which is composed of a Linear Embedding
layer and a Transformer Encoder layer.

and 15s rest period. The EEG recordings were carried out
three times on each subject, and the interval between two
consecutive recordings is two weeks. In every session, each
subject watched 15 movie clips, each clip was about 4 min-
utes long, and they evoked positive, neutral, and negative
emotions respectively. SEED-IV datasets are an extension of
SEED datasets, including four different types of emotions,
and the datasets can also be used to evaluate EEG based
emotion recognitionmodels. During the experiment, 72 video
clips with a duration of 2 minutes were used to stimulate
subjects to evoke happy, sad, fear, and neutral emotions.The
participants self-evaluation their emotion after the video ends.
ESI Neuroscan system was used to record signals of 62 chan-
nel EEG with a sampling rate of 1000 Hz, which was down
sampled to 200 Hz. In order to filter noise and eliminate
artifacts, EEG data of the two data sets were input to a band-
pass filter. And the Power Spectral Density and Differential
Entropy features of each segment in five frequency bands
(δ:1 ∼ 4Hz, θ :4 ∼ 8Hz, α:8 ∼ 14Hz, β:14 ∼ 31Hz,
γ : 31 ∼ 50Hz) were extracted. Table 1 summarizes the
processing done to extract the EEG data.

B. SETTINGS
We trained the Bi-ViTNet model using a Tesla V100-SXM2-
32GB GPU. A total of 12 transformer blocks were used.
Each block consists of 12 attention heads. Adam optimizer
was used for the training. In each experiment, we divided
the original EEG signals into non-overlapping periods lasting
for τ = 1 seconds. Each original EEG signal can be divided
into approximately 256 segments. We randomly shuffled the
samples. The data was divided for training and test. The ratio

TABLE 1. The processing done to extract the SEED and SEED-IV
datasets.

between training set and test set is 7:3. The hyperparameters
were as follows:

• patch_size - 32 - Size of each patch.
• num_classes - 3 or 4 - Number of classes to classify.
SEED datasets are 3. SEED-IV datasets are 4.

• dim - 768 - Last dimension of output tensor after linear
transformation.

• mlp_dim - 3072 - Dimension of theMLP (FeedForward)
layer.

• depths - 12 - Number of Transformer blocks.
• heads - 12 - Number of heads in Multi-head Attention
layer.

• dropout - 0.2 - Dropout rate.

C. BASELINE MODELS
We compared the proposed Bi-ViTNet with other competitive
models.
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• SVM [36]: A classifiers based on a least-squares support
vector machine.

• DBN [53]: Deep belief networks that were trained with
differential entropy features taken from multichannel
EEG data to study crucial frequency bands and channels.

• DGCNN [67]: Multi-channel EEG emotion recognition
using convolutional dynamical graph networks.

• RGNN [68]: Regularized graph neural network that
takes the biological architecture of different brain areas
into account in order to capture both global and local
relationships between different EEG channels.

• R2G-STNN [30]: This method includes spatial and tem-
poral neural network models with a regional to global
hierarchical feature learning process to learn the dis-
criminative spatial-temporal EEG features.

• BiHDM [69]: Bi-hemispheric discrepancy model that
considers asymmetry discrepancies between the two
hemispheres for EEG emotion identification and use
four directed RNNs to obtain a deep representation of
all the electrodes of EEG signals.

• SST-EmotionNet [39]: SST-EmotionNet extracts spa-
tial, spectral, and temporal features using a two-stream
network. In addition, SST-EmotionNet uses attention
mechanisms to increase its EEG emotion recognition
ability.

• 4D-aNN [59]: This method uses four-dimensional
attention-based neural network with 4D spatial-spectral-
temporal representations for EEG emotion recognition.

D. EVALUATION METRICS
For the proposed Bi-ViTNet method, its performance will be
evaluated based on the following metrics: average accuracy
(ACC) and standard deviation (STD). The accuracy rate is
defined as the ratio of correctly identified positive and neg-
ative samples to the total number of samples, as shown in
Equation (6):

ACC =
TP+ TN

TP+ TN + FP+ FN
(6)

where TP represents the number of predicted positive sam-
ples in the positive samples, TN represents the number of
predicted negative samples in the negative samples, FP repre-
sents the number of predicted positive samples in the negative
samples, and FN represents the number of predicted negative
samples in the positive samples. The standard deviation is
shown in the Equation (7):

STD =

√∑n
i=1(xi − x̄)2

n− 1
(7)

E. RESULTS ANALYSIS AND COMPARISON
Wecompare Bi-ViTNetmodel with the baselinemodels using
SEED and SEED-IV datasets.We evaluate the performance
of the models using the accuracy and the standard devia-
tion. Table 2 shows the average accuracy and the standard
deviation of these EEG based emotion recognition models on

TABLE 2. The performance on the SEED datasets.

the SEED datasets. The proposed Bi-ViTNet achieved better
performance compared to the baseline models on the SEED
datasets. The result shows that the performance of deep learn-
ing models were better than that of SVM classifier. DGCNN
only models evaluates the spatial information of EEG data
obtained from several channels and extracts the spatial infor-
mation using graph convolution. BiHDM uses bidirectional-
RNN to model spatial information of EEG signals, and the
classification accuracy was 93.12%. R2G-STNN not only
extracts the EEG electrode associations in brain regions and
brain regions in order to acquire spatial information, but it
also extracts the dynamic information of EEG signals in order
to obtain temporal information with good accuracy. SST-
EmotionNet comprehensively considers the complementarity
of spatial, spectral, and temporal information, and achieved
good performance, with an accuracy rate of 96.02%. 4D-aNN
takes 4D spatial spectral temporal representation containing
spatial, spectral, and temporal information of EEG signal as
input, and integrates attention mechanism into CNN module
and bidirectional LSTM module, with an accuracy rate of
96.25%. Bi-ViTNet not only considers spatial, frequency,
and temporal information but also better captures the global
information of EEG signals, which enables Bi-ViTNet to
fully extract valuable features from EEG signals for emo-
tion recognition. Compared with the baseline models, the
accuracy of Bi-ViTNet was significantly higher. In addition,
Figure 5 shows the confusion matrix of Bi-ViTNet on the
SEED datasets. The results show that for Bi-ViTNet, neutral
emotions are easier to identify than negative emotions and
positive emotions [22].

Table 3 shows the performance of all models on the
SEED-IV dataset. The proposed Bi-ViTNet achieves the
state-of-the-art performance on the SEED-IV dataset. For
four categories of classification tasks, the accuracy rate of
DBN is 66.77%, and the accuracy rate of DGCNN and
RGNN based on graph is further improved by 69.88% and
79.37% respectively. BiHDMmakes full use of the difference
between the two hemispheres recorded by EEG, reaching
74.35%. SST-EmotionNet and 4D-aNN add attention mech-
anism to learn emotional features in different fields, reaching
84.92% and 86.77% respectively. Compare with the base-
line model, Bi-ViTNet has further improved the accuracy of
the model to 88.08%. In addition, the confusion matrix in
Figure 6 shows that Bi-ViTNet has a good recognition effect
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FIGURE 5. The Confusion Matrix of SEED datasets.

TABLE 3. The performance on the SEED-IV datasets.

FIGURE 6. The Confusion Matrix of SEED-IV datasets.

on sad and neutral emotions, and the recognition accuracy of
fear and happy is similar.

F. ABLATION STUDIES
In order to evaluate the contribution of each component of
Bi-ViTNet, we conducted an ablation study. We constructed
two models: a spatial-temporal encoder with a classification
layer, a spatial-frequency encoder with a classification layer.
Figure 7 compares the accuracies of the three models on
SEED and SEED-IV datasets, the performance of Bi-ViTNet
is better than that of the single encoder models. By combing-
ing the two encoders, the accuracy improved by 6.85% and

FIGURE 7. Ablation studies on Bi-branch fusion.

24.71% on the SEED datasets and 6.24% and 28.38% on
the SEED-IV datasets, respectively, compared with that of
the spatial-frequency branch model and the spatial-temporal
branchmodel. The results show that the two branch structures
effectively use the spatial-frequency-temporal features, and
the different features are complementary, which improves
the classification accuracy. In addition, the branching model
considering only spatial-frequency features has better perfor-
mance than the branching model considering only spatial-
temporal features. This shows that the importance of different
features is different.

VI. CONCLUSION
In this paper, we propose the Bi-ViTNet, a Bi-banch
Vision Transformer-based model for emotion recognition
of EEG signals. The frequency features and temporal fea-
tures are mapped into the electrode position matrix to con-
struct the spatial-temporal feature representations and the
spatial-frequency feature representations. Bi-ViTNet then
effectively utilizes the complementarity between different
features by using spatial-frequency feature representations
and spatial-temporal feature representations as input. In addi-
tion, Transformer Encoder in each branch of Bi-ViTNet
can better capture the global information of EEG sig-
nals. Experiments on the SEED and SEED-IV datasets
show that the Bi-ViTNet model outperform all baselines.
In addition, the ablation studies show the effectiveness
of dual branching and the fusion of spatial-frequency-
temporal features in the model. The Bi-ViTNet could also
be applied to other areas, such as driving fatigue analysis
and motion imagery classification. While the transformer-
based model has shown excellent recognition performance,
the model has a large number of parameters. In the future,
we will study the lightweight transformer models for emotion
recognition.
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