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ABSTRACT The presence of high blood sugar levels damages blood vessels and causes an eye condition
called diabetic retinopathy. The ophthalmologist can detect this disease by looking at the variations in retinal
blood vasculature. Manual segmentation of vessels requires highly skilled specialists, and not possible for
many patients to be done quickly in their daily routine. For these reasons, it is of great importance to isolate
retinal vessels precisely, quickly, and accurately. The difficulty distinguishing the retinal vessels from the
background, and the small number of samples in the databases make this segmentation problem difficult.
In this study, we propose a novel network called Block Feature Map Distorted Switchable Normalization
U-net with Global Context Informative Convolutional Block Attention Module (BFMD SNU-net with GCI-
CBAM). We improve the traditional Fully Convolutional Segmentation Networks in multiple aspects with
the proposed model as follows; The model converges in earlier epochs, adapts more flexibly to different data,
is more robust against overfitting, and gets better feature refinement at different dilation rates to cope with
different sizes of retinal vessels. We evaluate the proposed network on two reference retinal datasets, DRIVE
and CHASE DB1, and achieve state-of-the-art performances with 97.00 % accuracy and 98.71 % AUC in
DRIVE and 97.62 % accuracy and 99.11 % AUC on CHASE DB1 databases. Additionally, the convergence
step of the model is reduced and it has fewer parameters than the baseline U-net. In summary, the proposed
model surpasses the U-net-based approaches used for retinal vessel separation in the literature.

INDEX TERMS Retinal vessel, segmentation, disout, block attention, switchable normalization.

I. INTRODUCTION
Symptoms of many important diseases are encountered as a
result of retinal scanning. These diseases include age-related
macular degeneration (AMD), diabetes, diabetic retinopathy,
and glaucoma. Hyperglycemia (the presence of high blood
sugar) damages blood vessels and is known to damage the
eyes and causes a retinal complication of diabetes called dia-
betic retinopathy [1]. Hypertensive retinopathy is originated
from a high level of blood pressure and this condition is
a complication of diabetes. It causes damage to the retina.
Moderate situations of this disorder are connectedwith retinal
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arteriolar contraction and nicking of vasculature in some
cases [2]. AMD is also among the most prevalent causes of
visual impairment in the world [1] Therefore by looking at
the retinal vessels, diseases can be diagnosed and tracked by
experts. In a form of AMD called wet AMD, there is the
expansion of new and uncommon blood vessels. The vessels
can leak blood or other fluids, causing scarring of the macula.
Therefore, thinning, thickening, growth and other changes
in the retinal vessels may be signs of the above-mentioned
important diseases, the ophthalmologist can detect the dis-
eases by looking at the changes in these retinal blood vessels,
and as a result of the early diagnosis, experts may prevent
blindness [1]. Thus retinal vessel separation is an essential
task, and ophthalmologists need to capture even the smallest
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changes in retinal vessels to correctly assess the disease.
Manual separation of vessels requires highly skilled special-
ists, and it is also very time-consuming and not possible
for many patients to be done quickly. For these reasons,
it is of great importance to automatically separate retinal
vascular structures from fundus photographs automatically.
In this manuscript, we propose an improved deep learning
architecture based on regularization and normalization for
retinal segmentation to achieve high segmentation accuracy
and precision. Our main contributions can be listed as:

• We employ a Block Feature Map Distortion (BFMD) to
avoid overfitting problem effectively for retinal vessel
segmentation,

• We utilize 3 different types of normalization instead
of one type of normalization in the network for earlier
convergence and improving generalization ability,

• We employ Global Context Informative Convolutional
Block Attention Module (GCI-CBAM) to deal with thin
and thick vessels for improving segmentation perfor-
mance further.

The remainder of this manuscript is split into sections as
follows: Section II explains the studies in the literature and the
points that limit the segmentation performance. Section III
details the methods proposed in this study. Section IV details
the datasets, ablation experiments, implementation, and train-
ing procedure. Section V compares the proposed network
with the basic U-net and the separation results with other
state-of-the-art works. It also explores chosen switchable
normalization weights in the network. Section VI provides
a discussion and concludes the paper.

II. RELATED STUDIES
In this section, a summary of previous studies on retinal
vessel segmentation will be presented. For this segmentation
problem, first Fully Convolutional Networks (FCN), encoder-
decoder type networks, U-net, and then improved U-net net-
works will be introduced.

While classical image processing techniques were initially
applied for retinal vessel segmentation, deep learning tech-
niques have been used more frequently in recent years due to
their success [3]. In an early attempt, [4] used a FCN network
with 2 times downsample and upsample blocks. After FCNs,
encoder-decoder networks especially U-net [5] became the
most popular framework for segmentation tasks. The work of
[6] employed a Dual Encoding U-net (DEU-net) and it has
two encoding parts, one for obtaining spatial features and the
other for obtaining more content knowledge. An Attention
Guided Network (AG-Net) was proposed by [7] which can
preserve edge and structural information. Another U-net-
based study is proposed by [8] namely, SD U-net which adds
structured dropout after convolution to prevent overfitting.
Then, they extended their work and proposed SA-U-net [9]
by adding the Spatial Attention module to the bottleneck part
of SD U-net.

Although U-net and enhanced U-net models perform well
in general, the fact that fundus images are often affected by

FIGURE 1. A color fundus image from the DRIVE training database
indicated thin and thick vessels (left top) and corresponding ground truth
image (left bottom), and a color fundus image from the CHASE DB1
training database, indicated thin and thick vessels (right top) and
corresponding ground truth image (right bottom). Green arrows show
thick vessels, red arrows show thin vessels.

noise, the interconnectedness of vessels, irregularly illumi-
nated samples, small samples in the databases, and especially
the difficulty to distinguishing retinal blood vessels from the
background makes segmentation difficult. As illustrated in
Fig.1 some retinal blood vessels are very thin, and distin-
guishing these vessels from the background is quite chal-
lenging even to the human eye. The inability to segment
these thin vessels significantly affects the sensitivity metric
as it decreases the true positive value, and this causes low
sensitivity values. Considering the studies in the literature,
we proposed a model for improved accuracy, sensitivity, and
precision.

III. METHODOLOGY
In this section, we give details on the proposed network for
vascular structure separation. We propose 3 additions to the
baseline U-net to perform this segmentation better:

• Inspired by the work of [10], Switchable Normaliza-
tion (SN) is appended to each convolutional layer of the
U-net, this way it accelerates both the convergence and
generalization performance of the model and makes it
adaptable for different data as it can choose different nor-
malization types (batch, instance or layer) for different
images.

• Secondly, inspired by [11], BFMD is appended to each
convolutional layer part of the network. The addition
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of BFMD ensures that the regularization of the model
is improved. After this addition, the convolution block
of the model becomes convolution-BFMD-SN-relu and
this can be seen in Fig.3.

• Finally, we propose GCI-CBAM and add it between the
decoder-encoder parts of the net to improve segmen-
tation performance further. The proposed network and
GCI-CBAM can be seen in Fig.2 and Fig.4, respectively.

Experimental studies show that adding SN to the model
improves both the convergence of training and the perfor-
mance of the model. BFMD, on the other hand, prevents over-
fitting, thus small sample size datasets can be well trained,
and also by distorting feature maps it facilitates the model
to learn better the features of the fundus, therefore, the seg-
mentation of thin vessels. Finally, using the recommended
GCI-CBAM instead of U-net’s short connections further
improves segmentation performance. As a result of these
developments, the proposed BFMD SN U-net with GCI-
CBAM outperforms state-of-the-art results in U-net-based
approaches for retinal vessel separation at important metrics
such as sensitivity, AUC, and accuracy for both datasets.

A. PROPOSED NETWORK ARCHITECTURE
The proposed BFMD SN U-net with GCI-CBAM is shown
in Fig.2. In the encoder part of the network, there are
convolution-BFMD-SN-ReLU (C-BFMD-SNR) layers at
each stage and max-pooling to carry out the down-sampling
operation. The number of channels is doubled in each down-
sampling part. In the decoder part, the up-sampling (Conv2D
Transpose) function is employed and the channels are halved,
this function is followed by a combination with the GCI-
CBAM module. Therefore, we add GCI-CBAM between the
short connection of the network. The output of the last stage
produces a resulting separation map utilizing 1×1 convolu-
tion and sigmoid function.

B. SWITCHABLE NORMALIZATION
Normalization is a very effective element used in deep learn-
ing, it is commonly used for efficiency in natural language
processing and computer vision [10]. The first reason for
using normalization in deep networks is faster convergence.
During this stabilization, not only the training time is reduced,
but also increased performance is achieved because of the
regularization effect of the normalization layer [12]. Models
used so far used a single normalization type in all its layers
for normalization, which did not produce the best results, and
choosing different normalization types for different problems
made designing themodelmore difficult [10]. As a solution to
this, Switchable Normalization (SN) is proposed by [10] that
can use different normalizations in different layers and com-
bines the statistics of three normalization methods namely,
Instance Normalization (IN) [13], Batch Normalization (BN)
[12], and Layer Normalization (LN) [14]. SN chooses to
use three normalizations in some problems, combining three
types of normalizers by switching among them and learn-
ing their importance weights [10]. SN facilitates the use of

normalizers by allowing each normalization part in the net-
work to perform its own functioning and pushing the normal-
ization limits in deep learning [15]. In many problems, it is
more efficient to use combinations of these normalizations
rather than a single normalization method. For example, the
combination of three normalizers is preferred for image clas-
sification and object detection problems [10]. The ability to
select different normalizers enables SN to be more robust to
the minibatch dimension. For instance, when a small batch
size is selected, the random noise coming from batch statistics
of BN will be more dominant. To avoid this, SN reduces
the weights of the batch normalization and instead increases
the weights of the layer normalization, and the regulariza-
tion from the BN is minimized and the learning capacity is
improved by the LN. In other words, SN provides the balance
of learning and generalization ability [10], [15].

SN is defined as [15]:

d̂ncij = κ
dncij −

∑
k∈� wkµk√∑

k∈� w
′
kσ

2
k + λ

+ β (1)

where dncij and d̂ncij are the values of original and normal-
ized pixels in 4D input tensor, where 4D tensor is the num-
ber of samples, the number of channels, height, and width
(N,C,H,W). n, c, i, and j take values between 1 to N, 1 to C,
1 to H, and 1 toW, respectively. β represents a shift parameter
and κ represents a scale parameter. λ is a small constant
to maintain numerical stability. � is a group of moment
statistics. wk and w′

k are the scalar variables representing
importance ratios and are employed to weight the means (µ)
and variances (σ 2). These parameters take dynamic values
between 0 and 1 and are learned by backpropagation. k is
used to discriminate BN, IN, and LN methods.

C. DISOUT
Models trained with a small number of samples suffer from
overfitting due to sampling noise and generate poor per-
formance on the test time [8]. Dropout is one commonly
used methodology to avoid overfitting [16]. However, the
recently proposed Disout [11] regularization technique pro-
poses to learn the distortion of the feature map by reducing
the empirical Rademacher complexity (ERC) of the network,
rather than fixing the value of perturbation. Secondly, the
features in CNNs are spatially related and in order tomake the
Disout more useful in CNNs, it also proposes to distort certain
semantic information, as DropBlock [17] suggests dropping
certain semantic information is a more useful regularization
technique for CNNs, and calls it Block Feature Map Distor-
tion (BFMD). The algorithm for training the neural network
is as follows; Firstly, it calculates the feature map of the
corresponding layer Fm(di), then it generates the distortion ε

and corresponding sample mask M , then it obtains distorted
feature map F̂m(di), and feed-forward the network using this
distorted feature map. It does this for all layers and then
backpropagates to update the weights.
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FIGURE 2. Proposed BFMD SN U-Net model with GCI-CBAM approach. Dark blue feature maps are the output of GCI-CBAM
and light blue feature maps are the output of Transpose Conv.

Block Feature Map Distortion has the following
formula [11];

F̂m(di) = Fm(di) −Mm
i ◦ εmi (2)

where di is the input data, Fm(di) is the feature map of the
m-th layer, F̂m(di) is the distorted featuremap,M is the binary
mask, and ε is the distortion utilized on the feature map,
respectively. Circle denotes the element-wise product. As in
the case of a fully connected layer, ERC in the (m+1)-th
layer is employed to guide the optimization of epsilon (ε)
in the m-th layer [11]. Instead of fixing the value, epsilon is
automatically learned in the guide of ERC. i takes values from
1 to the total number of input samples.

D. SWITCHABLE NORMALIZATION AND BLOCK FEATURE
MAP DISTORTION IN U-NET BFMD-SN BLOCK
Retinal vessel segmentation databases have a small num-
ber of samples, so deep-learning models trained for this
segmentation suffer from overfitting. To make the opti-
mization problem smoother and to increase generaliza-
tion performance by making use of different normalization
types, we integrate Switchable Normalization into the base
U-net model, thus convolution-relu-convolution-relu block
becomes convolution-SN-relu-convolution-SN-relu. We call
this model SN U-net throughout the text. To solve the overfit-
ting problem andmake themodel trainable even on small-size
datasets, is integrated the Block Feature Map Distortion layer

into the SNU-net. Thus, the new block becomes convolution-
BFMD-SN-relu-convolution-BFMD-SN-relu instead of the
convolution-SN-relu-convolution-SN-relu block, as shown in
Fig.3. We call this model BFMD SN U-net throughout the
text. Here, since BFMD and SN improve the regularization of
themodel in different ways, and SN also improves the conver-
gence epochs, it prevents the prolongation of the convergence
epoch that may occur as a result of the excessive distortion of
the BFMD, and therefore it is very favorable to use these two
layers together, in terms of both generalization performance
and convergence speed.

E. GLOBAL CONTEXT INFORMATIVE CONVOLUTIONAL
BLOCK ATTENTION MODULE
Channel Attention (CA) was initially used for classification
networks to create channel attention maps as squeeze and
excitation blocks. In [18], Convolutional Block Attention
Module (CBAM) is proposed, which combines both Channel
and Spatial Attention. Channel attention concentrates onwhat
is relevant in the input picture, on the other hand, spatial
attention concentrates on where the informative region is,
which is supplementary to channel attention [18]. CBAM
takes the channel attention and multiplies it with the input
feature to get the channel attention map then takes the spatial
attention of the channel attention map and multiplies it with
the channel attention map to get the spatial attention map.
As a result, the input feature is enhanced. Retinal blood
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FIGURE 3. Blocks are named as U-net block (left column), SN U-net block
(middle column), and BFMD SN U Net block (right column), respectively.

vessels have different thicknesses and for better segmenta-
tion of different thicknesses, we propose GCI-CBAM. Here,
we use Dilated/Atrous convolution, which does not increase
the number of parameters while increasing the receptive field
of the model to capture retinal vessels of different sizes.
Unlike channel attention used by CBAM, we use convolu-
tion instead of multilayer perceptron in channel attention.
One advantage of using convolution here is computational
efficiency since multilayer perceptron will calculate the new
channel by considering all channels (giving weights to all
of them), while 1D CNN with a kernel size of 3 will take
3 adjacent channels into account and will have fewer param-
eters. We select the dilation rates of the convolutions in
SA and CA as 1, 2, 4, and 6. Thus, we obtain 4 different
refined features and concatenate them. We call this module
GCI-CBAM throughout the text. This adds global context
information while filtering the image. GCI-CBAM first cal-
culates the channel attention of the input feature at different
rates, multiplies it by the input feature, and obtains 4 different
channel refined features. The resulting channel-refined fea-
tures are forwarded to the spatial attention module. In this
Spatial attention section, channel-refined features from 4 dif-
ferent branches are calculated at different convolution rates
and thus retinal vessels of different sizes are detected, and
these spatial attention outputs are multiplied by the channel-
refined features, and thus spatial and channel-refined features
are obtained. The proposed GCI-CBAM is shown in Fig. 4.
We add the proposed GCI-CBAM to the short links of BFMD
SN U-net and call this model BFMD SN U-net with GCI-
CBAM. We add GCI-CBAM in the skip connection (short
links) of U-net because is a general principle for integrating
attention blocks to vanilla U-net architectures. Guoheng et al.
[27] propose Channel-attention U-Net and use the attention
blocks in the skip connection, and Khanh et al. [28] enhance

U-net with Spatial-Channel Attention Gate and use this gate
in the skip connection. Performance is further enhanced as a
result of the addition of the GCI-CBAM module.

IV. EXPERIMENTAL SETUP
We train BFMD SN U-net with GCI-CBAM on the DRIVE
and CHASE DB1 databases, the two most common pub-
licly accessible databases for retinal vascular separation.
We prefer a combination of affine and pixel-level transforms
augmentation approaches as detailed in [19]. After these
data augmentations, we increase the number of images of
both datasets to 240. Among affine transformations, we use
90, 180, 270-degree rotation, random rotation, shear, and
crop and among pixel-level transformations, we use gamma
correction, Gaussian noise, linear contrast stretching, and
brightening.

A. DATASETS
We train and test the suggested approach on two publicly
accessible databases, namely, DRIVE and CHASE DB1.
DRIVE database consists of 40 pictures in total and usually,
20 pictures are reserved for testing and the remaining for
training. In this database, 7 of the images belong to the
diseased, and 33 belong to the healthy subjects. Some of these
7 images show diabetic retinopathy and some have pigment
epithelium changes or both. All pictures in the dataset have a
resolution of 584×565 pixels. A mask image for each retinal
image is contained, showing the region of interest. We set
the data to 592 × 592 by adding black pixels at the corners
of the pictures so that the data is suitable for the proposed
model, and after testing, we convert the predictions to their
original size (584×565). Zero-padding is utilized for resizing
step. A total of 20 images were given for training, and we
increase it to 240 images using the above-mentioned data
augmentation techniques.

The second publicly available dataset we use, CHASE
DB1, consists of 28 images in total. In general, 20 of these
pictures are employed for training and 8 are used for testing.
Each sample image in the database is 999 × 960 pixels.
We resize the images to 1008 × 1008 with the technique
mentioned above to be compatible with the proposed model,
and after testing, we resize the predictions to their original
size (999 × 960). In this dataset, as in DRIVE, we increase
20 training images to 240 with the aforementioned augmen-
tation techniques. We normalize the pictures in both datasets
during training and testing.

B. EVALUATION METRICS
Aiming to measure the performance of the proposed system,
we compare the ground truths of the data sets labeled by the
experts with the prediction of the network. We calculate True
Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN) values by making a comparison on the
basis of pixels and calculating Sensitivity (SE), Specificity
(SP), Accuracy (ACC), and F1 Score (F1) as shown in the
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FIGURE 4. Proposed Global Context Informative Convolutional Block Attention Module (GCI-CBAM). On the left side of the
module, after receiving channel attention at different dilation rates from top to bottom, it is multiplied by the input
feature (IF) and a Channel Refined Feature (CRF F′′) is obtained. This feature is then sent to spatial attention, and spatial
attention is taken from top to bottom at different dilation rates, and after multiplying with the input (CRF F′′), the Refined
Feature (RF) is obtained and the information from 4 branches is combined. The first group of poolings is 2D Global Poolings
applied to the spatial axis as can be seen from the top part of the figure giving an output of 1 × 1 × C . The second group of
the poolings is applied on the channel axis as can be seen from the bottom part of the figure giving an output of HxWx1.

following formulas, respectively.

SE =
TP

TP+ FN
(3)

SP =
TN

TN + FP
(4)

ACC =
TP+ TN

TP+ TN + FP+ FN
(5)

F1 =
2 ∗ TP

2 ∗ TP+ FP+ FN
(6)

C. ABLATION EXPERIMENTS
We train and test the base U-net, SN U-net, BFMD SN
U-net under the same conditions to show that Switchable

Normalization (SN), the proposed GCI-CBAM, and BFMD
increase segmentation performance for retinal vasculature.
Moreover, we also compare the U-net with the proposed
GCI-CBAM and with CBAM [18].

The performances of the models are given in Tables 1 and 2
in details. Our experimental studies on the DRIVE database
showed that SN U-net is better than basic U-net by 0.6 %
in accuracy, 6.48 % in sensitivity, 1.72 % in AUC, and
4.32 % in F1 score. Also, the convergence epoch decreased
from 200 to 80. By adding BFMD to SN U-net, we observe
an increase of 7.35 % in sensitivity, 0.27 % in AUC, and
0.42% in F1 score as compared to SNU-net. Finally, we see a
further increase in performance by adding the GCI-CBAM to
the BFMD SN U-net. This increase is 0.98 % in sensitivity,
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FIGURE 5. Segmentation results of U-net (top) and BFMD SN -U-net with GCI-CBAM (bottom) at different threshold values on an example image in the
DRIVE test set. From left to right, the input color picture, the corresponding ground truth, and the predicted binary images for threshold values of 0.1, 0.3,
0.5, 0.7, and 0.9, respectively. Red, green, purple, and blue arrows indicate false positives, true negatives, false negatives, and true positives respectively.

0.35 % in AUC, and 0.9 % in F1 score. The segmentation
result of BFMD SN U-net with GCI-CBAM on thin vessels
is also shown in detail in Fig.6 and is shown with blue arrows
in the segmentation outputs in Fig.7. Also, the experimental
studies on the CHASE DB1 database show that SN U-net
is better than basic U-net by 7.05 % in sensitivity, and by
1.91 % in F1 score. Then by adding BFMD to SN U-net,
sensitivity, and F1 score are increased by 4.06 %, and 0.8 %
respectively. Finally, the addition of GCI-CBAM to BFMD
SNU-net positively affected the sensitivity by 2.44 % and the
F1 score by 1.13 %. The segmentation outputs can be seen in
Fig. 7.

D. IMPLEMENTATION DETAILS AND TRAINING
PROCEDURE
For optimization, the Adam optimizer is used and we choose
to employ binary cross-entropy for the loss function. The
network is trained in 150 epochs. We choose the learning
rate as 0.001 in the first 100 epochs and 0.0001 in the last
50 steps. The BFMD’s block size is chosen as 7 for each layer,
and the distortion rate as 0.10,0.15,0.20,0.25,0.20,0.15,0.10.
As can be seen from Fig.8, when we select the momen-
tum parameter of the Switchable Normalization in SN-U-net
as 0.99, it fluctuates in the training step. To prevent this,
we select the momentum as 0.97. We choose the epsilon of
SN as 1e-3.

V. RESULTS
A. COMPARISON WITH U-NET
After adding SN to the U-net, the convergence time of the
model is accelerated by 2 times. Moreover, with the addition
of SN to the model, a significant improvement is observed

not only in the convergence time of the system but also in
the segmentation performance as can be seen in Table 1.
SN U-net prefers to use 3 different normalizations, instance
normalization, batch normalization, and layer normalization,
and gain different advantages from each layer for this seg-
mentation problem. The proposed SN U-net can also adapt to
different segmentations by learning different normalization
weights in different data. By adding BFMD to the SN U-net,
we see a significant increase in sensitivity as can be seen
in Table 1, which indicates that even thin retinal vessels are
better segmented as well as thick vessels. Segmentation of
these thin vessels in both datasets can be seen in Fig.7 and
Fig.6. Performance is further improved by the addition of
GCI-CBAM to the BFMD SN U-net. Finally, BFMD SN
U-net with GCI-CBAM ismore confident compared to U-net,
for example, when we change the retinal vessel threshold,
we see that the proposed model is less sensitive to this thresh-
old value compared toU-net. Sowhenwe set the retinal vessel
selection threshold to 0.1, the basic U-net will introduce
too many false positives, while the BFMD SN U-net with
GCI-CBAM behaves more consistently, and when we set the
threshold to 0.9, we see that the basic U-net model predicts
a lot of true positives as false negatives, whereas BFMD SN
U-net with GCI-CBAMdeal better, this waywe can show that
the proposed model is more robust. Segmentation results for
different threshold values of U-net and BFMD SNU-net with
GCI-CBAM are shown in Fig. 5.
In our network, instead of using 23 convolutional layers,

we utilize 18 convolutional layers and a remarkable decrease
in the number of parameters and making the network lighter
and more effective. Thus, 23-layer U-net has 2,158,705
parameters, while 18-layer U-net has 535,793 parameters.
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TABLE 1. DRIVE database ablation experimental results (in %). CE stands for Convergence Epoch.

TABLE 2. CHASE DB1 database ablation experimental results (in %). CE stands for Convergence Epoch.

FIGURE 6. (a) Input fundus image from DRIVE test set (top), selected region (in color), predicted with
BFMD SN U-net with GCI-CBAM (in binary), corresponding ground truth (in binary), from left to right
(bottom), respectively. (b) Input fundus image from CHASE DB1 test set (top), selected region (in color),
predicted with BFMD SN U-net with GCI-CBAM (in binary), corresponding ground truth (in binary), from
left to right (bottom), respectively.

As a result of our additions to the 18-layer U-net, that is,
BFMD SN U-net with GCI-CBAM has 685,069 parameters
and has fewer parameters compared to the 23-layer U-net,
while it has slightly more parameters than 18-layer U-net,
but considering the convergence epoch and the performances
of the network, it can be said that BFMD SN U-net with
GCI-CBAM is much more effective. Such that, it is better

by, 14.81 % in sensitivity, 2.34 % in AUC, 0.54 % in accu-
racy, and 5.71 % in F1 score as compared to basic U-net
in Table 1.

B. COMPARISON WITH STATE OF THE ART STUDIES
As a result of these developments, as can be seen from
Tables 3 and 4, the best performances are achieved in
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FIGURE 7. From left to right, input color fundus images, segmentation results (in binary), and
corresponding ground truths (in binary), respectively. From top to bottom, the first two rows are
from the DRIVE test database and the last two rows are from the CHASE DB1 database,
respectively. Blue arrows indicate thin vessels.

TABLE 3. Comparison with state of the art studies on DRIVE database
(in %).

the retinal vessel segmentation with the proposed model.
Segmentation results are shown in Fig. 7 and segmentation

TABLE 4. Comparison with state of the art studies on CHASE DB1
database (in %).

results of thin vessels are shown in Fig. 6 in
detail.
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FIGURE 8. The performance of SN U-net with 0.99 momentum (left), and with 0.97 momentum (right). As seen on the left, when the Switchable
Normalization moment is set to 0.99, the model fluctuates while training, and when the momentum is reduced to 0.97, as seen on the right, this
fluctuation disappears.

FIGURE 9. Selected mean (left) and variance (right) weights of SN in the BFMD SN U-net with GCI-CBAM at layers 8, 9, 15 and 16.
Switchable Normalizations in these layers prefer to use three different types of normalization and assign mean and variance values greater
than 0 to each normalization. The most weighted normalization type in these layers is instance normalization as it has the highest mean
and variance.

C. SWITCHABLE NORMALIZATION WEIGHTS ON THE
RETINAL VESSEL SEGMENTATION
BFMD SN U Net with GCI-CBAM, which we trained in
DRIVE and CHASE DB1 datasets, chose to use 3 different
types of normalization for most SNs. As illustrated in Fig. 9

switchable normalization prefers to use each of the three
normalizations in the BFMD SN U-net with GCI-CBAM.
Also, the mean and variance of the BN, IN, and LN,
calculated by SN can be seen in Table 5. SN in the
BFMD SN U-net with GCI-CBAM preferred to use instance

38272 VOLUME 11, 2023



S. Deari et al.: Block Attention and SN Based Deep Learning Framework for Segmentation of Retinal Vessels

normalization in most of the cases. Fig.9 shows some of the
SN weights selected in the proposed network.

TABLE 5. The average values of the mean and variance calculated by
Switchable Normalizations for each normalization (in %). For the average
mean calculation, the mean of each layer is summed and divided by the
total number of layers, and for the average variance calculation, the
variance of each layer is summed and divided by the total number of
layers.

VI. CONCLUSION AND DISCUSSION
The precise separation of retinal vessels acts a vital role
in classifying, the major causes of blindness, and disor-
ders such as diabetic retinopathy, glaucoma, and hyperten-
sion. The retinal vessel segmentation studies conducted in
recent years utilized variants of U-net architecture. We aim
to address the shortcoming of the vanilla U-net network.
Firstly, by adding switchable normalization (SN) to the U-net
model, the convergence epoch of the model decreases, and
the model becomes more flexible as SN can choose different
normalization combinations for different data as it can learn
different importance ratios automatically to weighted BN,
LN, and IN and it tries to use the most effective normalization
combinations from 3 normalizations accordingly so during
the training phase it tries to find the best normalization com-
binations which minimize the loss function. Then, by adding
BFMD to the network, the overfitting encountered in the
baseline U-net is solved and generalization performance is
improved. Thus, the proposed network can be trained effec-
tively with few samples and converges quickly. Additionally,
we add the Global Context Informative Convolutional Block
Attention Module (GCI-CBAM) between the decoder and
encoder parts of the model. With this addition, we get better
feature refinement by taking into account spatial attention
and channel attention. We obtain this feature refinement at
different dilation rates thereby increasing the receptive field
of the model to capture different sizes of retinal vessels.

In this manuscript, we propose a novel network called
BFMD SN U-net with GCI-CBAM for the automatic seg-
mentation of retinal vessels. Thanks to the block feature map
distortion we added to this U-net-based network, the model
can be well-trained even with a few samples, and we also
improved the convergence speed of the model by adding SN
to the model. We also proposed the GCI-CBAM module to
suppress non-essential information and learn different sizes
of information at the same time. We showed that these 3 dif-
ferent improvements can be used together in a network and
the state-of-the-art performances are reached on DRIVE and
CHASE DB1 databases among U-net based models.

One possible application area of our method can be coro-
nary artery and lung vessel tree segmentation challenges

in Computer Tomography images. The mis-classification of
narrow vessels is a major problem in CT and our context
information guided setup can address this issue. In the future,
it can be efficient if the model can select automatically the
distortion probability and block size to be based on the over-
fitting condition. Such an approach will make it possible to
select better values for block size and distortion rate without
much trial and error and loss of time. Dice loss can be used in
combination with cross-entropy in the future to improve the
performance further by developing a new loss function.

It is difficult to manually find the optimum value of block
size and the distortion probability of the block feature map
distortion in the proposed model. The block size and the
distortion probability values will directly affect the perfor-
mance. The small block size and distortion probability cause
the model to overfit. On the other hand, selecting these values
high will cause the model to underfit. Therefore, selecting
these values carefully requires researchers to understand the
behavior of the model in the data. Fortunately, these choices
can be developed by trial and error method by looking at
the performance of the model in the test dataset. However,
it requires good initial values in order to prevent time lost due
to trial and error.
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