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ABSTRACT Most music emotion recognition approaches perform classification or regression that estimates
a general emotional category from a distribution of music samples, but without considering emotional
variations (e.g., happiness can be further categorised into much, moderate or little happiness). We propose
an embedding-based music emotion recognition approach that associates music samples with emotions in a
common embedding space by considering both general emotional categories and fine-grained discrimination
within each category. Since the association of music samples with emotions is uncertain due to subjective
human perceptions, we compute composite loss-based embeddings obtained tomaximise two statistical char-
acteristics, one being the correlation between music samples and emotions based on canonical correlation
analysis, and the other being a probabilistic similarity between a music sample and an emotion with KL-
divergence. The experiments on two benchmark datasets demonstrate the effectiveness of our embedding-
based approach, the composite loss and learned acoustic features. In addition, detailed analysis shows that
our approach can accomplish robust bidirectional music emotion recognition that not only identifies music
samples matching with a specific emotion but also detects emotions expressed in a certain music sample.

INDEX TERMS Music emotion recognition, embeddings, canonical correlation analysis, Kullback-Leibler
divergence, bidirectional retrieval.

I. INTRODUCTION
Music is a powerful means to evoke human emotions.
Analysing the interactions between them is thus important
in affective computing, and is one of main focuses of Music
Emotion Recognition (MER) which attempts to automatically
identify the emotion matching a specific music [1]. MER is
useful for many potential applications such as music recom-
mendation and playlist generation for streaming services, and
even music therapy in biomedicine [2].

MER is performed differently in the literature depend-
ing on several factors. The first one is how emotions are
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modelised. Two main frameworks to define emotions cur-
rently co-exist: the categorical and the continuous ones. The
former defines emotions as explicit categories, either directly
using the six ‘basic’ emotions highlighted in Ekman’s theory
(i.e., happiness, sadness, anger, fear, disgust and surprise) [3]
or derivatives from them. The latter decomposes emotions
along several axes, among which the most popular axes are
arousal (level of energy) and valence (level of pleasantness)
based on Russell’s Circumplex model [4]. Both of the cate-
gorical and continuous frameworks have their pros and cons.
While the former can clearly identify general emotions in
music, it is not the most appropriate to take into account
the richness and variations of human emotions. For example,
there are several degrees of happiness ranging from little to
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intense happiness, that cannot be distinguished from each
other with the categorical models. On the other hand, the
continuous approach can express fine-grained human emo-
tions in a vector space defined by the arousal and valence
axes. However, it is difficult to identify general emotions
because dissimilar emotions such as ‘fear’ and ‘anger’ are
located close to each other in the arousal-valence space [5].
Therefore, neither categorical nor continuous approach has
become predominant over the other in the literature, despite
the benefits of each approach being essential for MER.

The second main difference among MER work lies in how
MER is translated into a machine learning problem. The most
popular approaches so far have consisted in consideringMER
either as a classification or a regression problem, depending
on whether the categorical or continuous modelisation of
emotions is used [6]. Classification and regression methods
are however unidirectional, and mostly investigate Music
to Emotion (M2E). In this framework, a classification or
regression model is trained to respectively output categorical
emotion estimations or arousal-valence intensity scores given
somemusic-related input data (e.g., audio records, lyrics tran-
scripts, playlist information, etc.). On the other hand,Emotion
to Music (E2M) aims to retrieve some relevant music extract
given some emotion-related input remains more marginal.
More recently, embedding-based retrieval approaches have
emerged to address this issue. In a retrieval problem, a model
is trained to return a list of examples ordered in a descending
order of similarities to an input example, also referred to
as a query [7]. For M2E, the query and retrieved examples
are respectively music-related data and emotion, while the
reverse is true for E2M. Embedding-based methods on the
other hand aim to project examples from various modalities
into a common space referred to as an embedding space,
so that the embeddings (i.e. vectorial projections) of two
data examples associated to the same concept are close to
each other [8]. The combination of embedding and retrieval
approaches enables bidirectional retrieval, allowing retrieval
methods to perform either E2M or M2E in the case of MER,
and consequently has led to an increased interest from the
research community over the past years [9], [10], [11], [12],
[13], [14]. But while audio, image and text modalities are the
most popular in the literature to the best of our knowledge,
no other work has so far attempted to investigate bidirectional
retrieval between audio and emotion ratings, except for our
previous study [15].

In this paper, we propose anEmbedding-basedMusic Emo-
tion Recognition (EMER) approach that performs bidirec-
tional retrieval based on the continuous model of emotions.
Our approach can directly analyse the similarity between
music and emotion in the embedding space, where an embed-
ding designates here the vector representation of a music
sample or an emotion in the embedding space. Fig. 1 shows
a standard EMER approach that projects music samples and
emotions into an embedding space, in such a way that asso-
ciated music and emotions are close to each other in the

FIGURE 1. Principle of an embedding-based retrieval approach for MER.
A music encoder and an emotion encoder are first jointly trained to
project associated music samples and emotions close to each other in an
embedding space. The trained encoders are then used to obtain
embeddings of the query and test samples. The test samples are finally
ordered by decreasing similarity to the query in the embedding space.

embedding space. This allows it to identify general emotions
because similar emotions are gathered close to each other in
terms of their embeddings. It can be noted that by projecting
highly associated music samples and specific emotions in
proximity, their fine-grained relations are preserved in the
embedding space. This way, EMER can treat both of gen-
eral and specific emotions. Once both music and emotion
encoders are trained, they can be used to obtain the embed-
dings of a query and test samples, and rank the latter by
decreasing similarities to the query in the embedding space.

One challenge when working directly with emotional rat-
ings is that they are inherently uncertain, because they are
subjectively annotated according to human perceptions which
are highly influenced by many factors such as age, personal-
ity, cultural background and surrounding conditions [1], [16].
We refer to this phenomenon as emotional uncertainty. On the
one hand, some existing MER approaches bypass this prob-
lem by extracting emotion-related information from sources
that are more reliable than individual subjective reports, such
as music tags [14], [17] or lyrics [12], [13]. On the other hand,
many other past work directly use subjective emotion rat-
ings without considering emotional uncertainty, and assume
that the provided annotations are completely correct. This
uncertainty could however cause the trained models to be
either inaccurate or biased, and thus negatively impact the
recognition performances.
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To mitigate the impact of emotional uncertainty,
we develop an approach, called EMER using Composite Loss
(EMER-CL) that trains music and emotion embeddings with
a compound loss examining two statistical characteristics that
are affected in a limited way by possible inaccuracies in the
emotional annotations. Firstly, we assume that even if emo-
tional intensities differ from user to user in terms of intensity
values, they remain nevertheless correlated when listening to
the same music sample. Thus, Canonical Correlation Anal-
ysis (CCA) is used to devise a correlation-based loss [18].
This loss enables us to deal with inter-subject variations in
emotional intensities by maximising the correlation between
music samples and their associated emotions in an embed-
ding space, so as to find their ‘relative’ connection. That
is, the embedding space characterises how acoustic features
change according to an increase/decrease in arousal/valence
intensities and vice versa. Secondly, music samples yielding
very different acoustic features can evoke similar emotions.
For instance, happiness can be expressed in different genres
like rock, blues and jazz. This kind of large intra-class
variation in acoustic features for one emotional category
makes projecting a music sample or an emotion into a single
point (as shown in Fig. 1) suboptimal. Thus, we additionally
project each of music samples and emotions as a probability
distribution in another embedding space [19], [20]. This idea
is implemented by defining a distribution-based loss that
measures the Kullback-Leibler (KL) divergence between the
probability distribution for a music sample and the one for an
emotion in the embedding space.

Our composite loss consisting of the correlation- and
distribution-based losses is necessary for managing the
aforementioned inter-subject and intra-class variations
resulting from the emotional uncertainty. Only using the
correlation-based loss cannot cover the large intra-class vari-
ation of acoustic features, while the inter-subject variation
of emotional intensities cannot be handled only with the
distribution-based loss. The experimental results in Sec-
tion IV-D validate the necessity of combining the correlation-
and distribution-based losses.

To sum up, this paper contains the following three main
contributions: Firstly, we propose EMER-CL that can work
with both general and specific emotions since it uses the
continuous model of emotions to obtain embeddings of emo-
tions, and the embedding space maintains not only associ-
ated music samples and emotions close to each other but
also non-associated ones far away. The embedding space
serves as a bridge between music samples and emotions
and offers bidirectional MER as a by-product of EMER-CL.
Secondly, we propose a new composite loss combining the
CCA and KL-divergence losses to take into account the emo-
tional uncertainty. Finally, we perform extensive experiments
on two benchmark datasets, MediaEval Database for Emo-
tional Analysis in Music (DEAM) [21] and PMEmo [22].
We demonstrate the effectiveness of EMER-CL over regres-
sion baselines not relying on embeddings, of the composite
loss over other alternatives and of the features learned by

EMER-CL relatively to the state-of-the-art MER methods.
In addition, detailed analysis of EMER-CL results reveals that
reasonable recognition is robustly attained even in cases of
mis-recognition.

This paper is organised as follows: Section II reviews the
literature of exsting MER approaches grouped into several
categories. Section III details our EMER-CL and Section IV
reports the experimental results demonstrating its effective-
ness. Detailed analysis of recognition results by EMER-CL
is conducted in Section V. Finally, Section VI presents the
conclusion and our future work. In addition to these main
contents, several appendices are provided to show experi-
mental details, such as hyper-parameter tuning for EMER-CL
and the comparison approaches involved in the comparative
studies in Section IV, additional insights and results for the
detailed analysis in Section V, and the computational cost of
EMER-CL.

II. RELATED WORK
This section provides a short review of existing MER
approaches by dividing them into M2E and E2M. We first
review existing M2E approaches by classifying them into
three categories: ‘‘feature engineering’’ that hand-crafts
emotion-related acoustic features, ‘‘feature learning’’ based
on deep learning that automatically learns emotion-related
features, and ‘‘relation modelling’’ to extract the relationship
between emotional intensities and acoustic features obtained
by feature engineering or learning. We then discuss past
work dealing with E2M. Through this review, we clarify the
novelties of the proposed EMER-CL.

A. FEATURE ENGINEERING FOR M2E
Several libraries like MIRtoolbox [23] and openSMILE [24]
are currently available to extract fundamental acoustic
features such as Zero-Crossing Rate (ZCR), Root-Mean-
Square (RMS) energy, Mel-Frequency Cepstral Coefficients
(MFCCs), Short-Time Fourier Transform (STFT), etc. How-
ever, acoustic signal analysis alone might not be enough to
account for all required acoustic characteristics [5]. As a
result, a large focus of M2E approaches has been put on
feature engineering in recent years. Panda et al. [25] dis-
tinguished several types of emotion-related acoustic fea-
tures including spectral features (low-level feature), rhythm
clarity (perceptual feature) and genre (high-level semantic
feature). Mo and Niu [26] presented an acoustic feature
extraction technique that combines three signal processing
algorithms, the orthogonal matching pursuit, Gabor func-
tions, and the Wigner distribution function, to provide an
adaptive time-varying description of music signals with a
higher spatial and temporal resolution. Panda et al. [27]
proposed algorithms to extract acoustic features related
to musical texture and expressive performance techniques
(e.g., vibrato, tremolo and glissando).

The aforementioned work mainly focuses on designing
acoustic features and feature selection to effectively estimate
an emotion from a music sample, but it can be claimed that

VOLUME 11, 2023 36581



N. Takashima et al.: Embedding-Based Music Emotion Recognition Using Composite Loss

feature engineering does not inherently take into account the
emotional uncertainty unlike our EMER-CL approach.

B. FEATURE LEARNING FOR M2E
The advantage of feature learning is the ability to capture
high-level features from raw data or hand-crafted (low-level)
features. Feature learning for M2E has become a fast moving
research topic due to the increasing interest in deep learning
over the past decade. For this reason, we report only the most
recent work (i.e. less than five-year-old) that we found related
to this topic. Malik et al. [28] demonstrated the effective-
ness of stacking a Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) to predict arousal/valence
from acoustic features exclusively based on log mel-band
energy. Dong et al. [29] developed a Bidirectional Con-
volutional Recurrent Sparse Network (BCRSN) that uses
the spectrogram of audio signals and reduces computational
complexity by converting the continuous arousal/valence pre-
diction process to multiple binary classification problems.
Sarkar et al. [30] applied a CNN taking log-mel spectro-
gram as input to the four-class classification problem defined
by Russell’s model quadrants [4]. Hizlisoy et al. [2] pro-
posed a Convolutional Long short term memory Deep Neural
Network (CLDNN) for the classification of three quadrants
excluding low arousal - high valence from Russell’s model
quadrants [4]. Choi et al. [31] presented a transfer learning
approach where a CNN taking mel-spectrograms as input
is firstly trained for a music tagging task, and then trans-
ferred and fine-tuned for six other tasks such as music genre
classification, speech/music classification, emotion predic-
tion etc. Koh and Dubnov [32] presented a comparison of
state-of-the-art deep feature learning architectures including
VGGish and L3-Net that take audio spectrograms as inputs.
The two models outperformed MFCCs features on various
M2E datasets for either classification or regression tasks.
Orjesek et al. [33] proposed two deep-learning-based archi-
tectures to learn features for M2E as a regression problem.
The first one is based on a CNN stacked with a bidirectional
Gated Recurrent Unit (GRU) and Multi-Layer Perceptron
(MLP). The other has the same architecture, except that an
autoencoder is inserted between the CNN and bidrectional
GRU. The ensemble is trained by adding a reconstruction
term to the loss function. He and Ferguson [34] proposed a
two-stage approach for the classification of low/high arousal
and valence. Log-mel spectrograms obtained from the raw
audio signals are first used to trained a convolutional autoen-
coder. The encoder is then used to train two bidirectional
Long Short-term Memory (LSTM), one for arousal and the
other for valence classification.

The aforementioned approaches do not take into account
the emotional uncertainty. On the other hand, our EMER-CL
approach uses high-level acoustic features learned by a
pre-trained VGGish model [35], and takes advantage of the
composite loss to deal with the emotional uncertainty.

C. RELATION MODELLING FOR M2E
Past work has also investigated relationships between music
samples and emotions, although the lower popularity of
this topic in MER research compared to feature engineer-
ing or feature learning means that this field is moving at
a slower pace. Yang et al. [36] built a group-wise MER
scheme (GWMER) which divides users into various groups
based on user information such as generation, gender, occu-
pation and personality, and trains a Support Vector Regres-
sion (SVR) for the prediction of arousal/valence for each
group. GWMER can this way partially address the problem
that continuous emotions are more affected by subjective
issue than discrete emotions when annotating. Yang and
Chen [37] presented a ranking-based neural network model
that ranks a collection ofmusic samples by emotion and deter-
mines the emotional intensity of each music sample. Yang
and Chen [38] and Chin et al. [39] developed probabilistic
approaches to deal with the emotional uncertainty by estimat-
ing the distribution of emotional intensities from hand-crafted
acoustic features. Markov and Matsui [40] showed that mod-
elling with Gaussian Processes (GP) was more powerful
than SVR for arousal/valence regression with hand-crafted
acoustic features. Fukayama and Goto [41] evaluated the
effectiveness of aggregating multiple GP regressions, each
trained with different acoustic features. Wang et al. [42]
presented Acoustic Emotion Gaussians (AEGs) that treat the
emotional uncertainty by modelling hand-crafted acoustic
features as a parametric probability distribution (soft assign-
ment) instead of a single point (hard assignment). Wang
et al. [43] proposed a Histogram Density Mixture (HDM)
model that quantises the arousal/valence space into cells and
extracts latent histograms representing characteristic emo-
tion distributions over cells based on hand-crafted acoustic
features. Wang et al. [44] developed a MER system for
34 emotional categories based on Hierarchical Dirichlet Pro-
cess Mixture Model (HDPMM) that links emotion classes
using the property of sharing components in the HDPMM.

To the best of our knowledge, relation modelling
approaches have so far exclusively relied on feature engineer-
ing, and not yet been used with high-level features obtained
by feature learning. On the other hand, our EMER-CL
approach uses high-level acoustic features based on VGGish,
and projects emotional intensities into an embedding space,
which enables us to extract high-level feature representations
for emotions.

D. E2M
E2M has not been explored as extensively as M2E, especially
not in the recent MER literature. One possible reason for this
scarcity is the fact that the existing acoustic features associ-
ated with emotions are high dimensional, and thus not easy
to predict directly from emotions using traditional machine
learning methods like regression. Except for studies older
than a decade [45], [46], [47], [48], we could find only a
single recent method incorporating E2M elements proposed
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by Deng et al. [47]. In this work, a music recommendation
method taking into account the emotions of the user is pro-
posed. An M2E model is first trained using a classification
framework to predict the emotional state associated with a
music sample. The model is then used to predict an emotional
state sequence containing the emotions associated with the
last songs listened by the user. A model based on Conditional
Random Fields is used to predict the user’s current emotion
based on this emotional state sequence. Finally, the simi-
larities between the predicted current emotion and the ones
associated to songs of the dataset are computed to retrieve
relevant songs to be suggested.

In this paper, we propose a new bidirectional MER
approach able to perform either M2E and E2M based on pro-
jecting music samples and associated emotions in proximity
in two embeddings spaces. Unlike Deng et al., our approach
can directly perform E2M without relying on a M2E system.

E. EMBEDDING-BASED RECOGNITION
Approaches in this category have attracted much atten-
tion as techniques that can perform effective bidirec-
tional recognition between different modalities (e.g., image,
text and audio). When it comes to approaches involving
audio modality, the most common investigations include
embedding-based recognition between audio and image [9],
[10], between audio and text (lyrics) [11], [12], or even
between all three of image, audio and text [13]. Some
attempts have also focused on extracting meaningful
embeddings from music meta-data (e.g. genre, instrument,
mood/theme) and playlist information [14]. However to
the best of our knowledge, no existing work addresses
embedding-based recognition between audio and emotion
except our previous study [15], where MLPs trained with the
CCA loss are used to compute embeddings of music samples
and emotions. This paper is an extension of our previous study
by adopting RNNs in addition to MLPs, devising a compos-
ite loss that combines the CCA and KL-divergence losses,
and conducing significantly deeper analysis of experimental
results.

III. EMER-CL APPROACH
Fig. 2 shows an overview of our EMER-CL approach. First,
a music sample is converted into a sequence of acoustic
features X (m)

= x(m)1 , · · · , x(m)Tm of length Tm. Here, x
(m)
t ∈

RD(m)
x is a D(m)

x -dimensional feature vector at time t (1 ≤
t ≤ Tm). In our implementation, VGGish1 produced by
Google [35] is used to segment every music sample recorded
with a sampling rate of 44.1kHz into segments of 0.96 sec-
onds, and then x(m)t is extracted as a 128-dimensional vector
(i.e., D(m)

x = 128) from each segment. The emotion asso-
ciated with the music sample is represented as a sequence
X (e)

= x(e)1 , · · · , x
(e)
Te of length Te where x(e)t ∈ RD(e)

x is

1https://github.com/tensorflow/models/tree/master/research/audioset/
vggish

FIGURE 2. An overview of our EMER-CL approach. X(m) and X(e)

respectively designate the music and emotion sequences input to the
music and emotion encoders. v(m) and v(e) are the vectorial outputs of
the music and emotion encoders, respectively. Branches of fully
connected (FC) layers project v(∗) into a point-based embedding φ(∗) in
the space C(cca), and a probabilistic-based embedding following a
multivariate Gaussian distribution N (µ(∗), σ (∗)) in the space C(kl ), for
∗ ∈ {m, e}. Both music and emotion models are jointly trained to
minimise a composite loss computing the CCA loss between φ(m) and
φ(e), and a KL-divergence loss between N (µ(m), σ (m)) and N (µ(e), σ (e)).

a D(e)
x -dimensional vector containing characteristics of the

emotion at time t (1 ≤ t ≤ Te). In our setting, x(e)t is defined
as a two-dimensional vector (i.e., D(e)

x = 2) indicating
arousal and valence intensities recorded with a sampling rate
of 2Hz. Unlike X (m), we do not perform feature extraction on
the raw arousal/valence intensities and use the latter directly
as X (e). This is because we consider that only two types of
intensities recorded with a low sampling rate have relatively
simple characteristics. Note that for simplicity X (e) is called
an arousal/valence sequence in the following discussions.

It is cumbersome to directly project X (m) and X (e) into
an embedding space because they are sequences of different
lengths Tm and Te. Thus, as shown in Fig. 2 (a) and (b), music
and emotion encoders are used to transform X (m) and X (e)

into vectors v(m) ∈ RD(m)
v and v(e) ∈ RD(e)

v , respectively.
Each of v(m) and v(e) is a high-level feature that effectively
summarises the features in X (m) or X (e) and their temporal
relations. We use either an MLP or RNN based on bidirec-
tional Gated Recurrent Unit (GRU) [49], [50] as music and
emotion encoders as described in Section III-A.
Then, v(m) and v(e) are projected into an embedding space

C(cca) of dimensionality D(cca) using different Fully Con-
nected (FC) layers with linear activation. The embeddings
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for v(m) and v(e) in C(cca) are denoted by φ(m)
∈ RD(cca)

and
φ(e)
∈ RD(cca)

, respectively. In addition, two branches of FC
layers are used to transform v(m) into a mean vector µ(m)

∈

RD(kl)
and a covariance matrix 6(m)

∈ RD(kl)
×D(kl)

. This
defines an additional embedding for v(m) as a multivariate
Gaussian distribution N (µ(m),6(m)) in another embedding
space C(kl) of dimensionality D(kl). Considering the expen-
sive computational cost to process multivariate Gaussian dis-
tributions, we assume that each dimension is independent
based on the standard practice of the literature [51], [52].
Thus, N (µ(m),6(m)) is reduced to N (µ(m), σ (m)) by replac-
ing 6(m) with the variance vector σ (m)

∈ RD(kl)
representing

the variance in each dimension. Similarly, v(e) is converted
into N (µ(e), σ (e)) in C(kl) using two branches of FC layers.
Under the above-mentioned setting, EMER-CL trains the
music and emotion encoders and the six branches of FC
layers by jointly minimising the CCA loss between φ(m) and
φ(e) and the KL-divergence loss between N (µ(m), σ (m)) and
N (µ(e), σ (e)), as illustrated in Fig. 2 (c).
The following sections describe encoding of music sam-

ples and emotions, and more details of the training pro-
cess. The dimensionalities D(m)

v , D(e)
v , D(cca) and D(kl) are

hyper-parameters of EMER-CL whose specific values are
provided in Section IV-C.

A. MUSIC AND EMOTION ENCODERS
For the music encoder, two types of neural networks were
tested: an MLP and an RNN using bidirectional GRU [49],
[50]. When the former is used, a mean feature vector x̄(m)

is computed by averaging x(m)1 , · · · , x(m)Tm in X (m), and fed
into the MLP which performs several non-linear transforma-
tions on x̄(m) to output v(m). The RNN using bidirectional
GRU computes two types of D(m)

h -dimensional hidden states
−→
h (m)
t ∈ RD(m)

h and
←−
h (m)
t ∈ RD(m)

h that represent temporal
characteristics of X (m) in the forward and backward direc-
tions, respectively. Roughly speaking,

−→
h (m)
t is computed by

recursively aggregating x(m)t at the current time t and
−→
h (m)
t−1

obtained at the previous time t − 1. Letting f be a function
for the recursive aggregation,

−→
h (m)
t is described as

−→
h (m)
t =

f (x(m)t ,
−→
h (m)
t−1) [49]. In contrast,

←−
h (m)
t in the backward direc-

tion is computed by aggregating x(m)t and
←−
h (m)
t+1 at the next

time t + 1, that is,
←−
h (m)
t = f (x(m)t ,

←−
h (m)
t+1). The vector

obtained by concatenating
−→
h (m)
Tm and

←−
h (m)

1 is a high-level
feature expressing bidirectional temporal characteristics in
X (m), and is fed into the FC layers to produce a higher-level
feature as v(m).

Our preliminary experiments showed the effectiveness of
an RNN using bidirectional GRU as the emotion encoder
regardless of datasets. We hypothesise that this is due the fact
that bidirectional GRUs can capture the best the variations
in arousal and valence levels during the listening of a music
sample, and therefore take this information into account to
produce meaningful embeddings. Therefore, a feature vector
v(e) for an arousal/valence sequenceX (e) is extracted the same

way as v(m) when an RNN is used as the music encoder.
Finally, the specific values of hyper-parameters likeD(m)

h ,D(e)
h

for the RNN-based emotion encoder, and the configuration of
FC layers are provided in Section IV-C.

B. TRAINING WITH THE COMPOSITE LOSS
Let X = {(X (m)

n ,X (e)
n )}Nn=1 be a batch consisting of N

pairs of an acoustic feature sequence and an arousal/valence
sequence for associated music samples and emotions. And,
V = {(v(m)n , v(e)n )}Nn=1 is a set of feature pairs obtained by
feeding (X (m)

n ,X (e)
n ) ∈ X to the music and emotion encoders.

The CCA lossCCA(F) [18] is computed by converting V into
a set of embeddings F = {(φ(m)

n ,φ(e)
n )}Nn=1. In addition, the

KL-divergence loss KL(G) [19] is calculated by transforming
V into a set of pairs of multivariate Gaussian distributions
G = {(N (µ(m)

n , σ
(m)
n ), N (µ(e)

n , σ
(e)
n ))}Nn=1. Our composite

loss CL(F ,G) combines CCA(F) and KL(G) as follows:

CL(F,G) = λ · CCA(F)+ (1− λ) · KL(G) (1)

where λ ∈ [0, 1] is a weight parameter to balance CCA(F)
and KL(G). Details of CCA(F) and KL(G) are described in
the following Sections III-B1 and III-B2.

1) CORRELATION-BASED EMBEDDING WITH CCA
The CCA loss is employed to construct an embedding space
C(cca) where {φ(m)

n }
N
n=1 and {φ

(e)
n }

N
n=1 are strongly correlated.

More specifically, for each dimension of C(cca), music and
emotion embeddings are linearly correlated with each other
regardless of their actual values. This linear correlation indi-
cates what change in acoustic features (or emotions) would
be associated to the corresponding change in emotions (or
acoustic features) for each of these dimensions. This allows
us to characterise the relationship between music samples
and emotions in a way that is independent from the actual
emotion intensities attributed by individuals, which is useful
for addressing the inter-subject variations described in Sec-
tion I. To extract embeddings capturing complex correlations
between music samples and emotions, FC layers are firstly
used to refine v(m)n and v(e)n into a D(m)

z -dimensional vector
z(m)n ∈ RD(m)

z and a D(e)
z -dimensional vector z(e)n ∈ RD(e)

z ,
respectively. The CCA loss is computed on z(m)n and z(e)n .
Let z(m) be a random vector that is sampled from the

probability distribution estimated using a set of N samples
{z(m)n }

N
n=1, and z

(e) be a random vector from the probability
distribution estimated using {z(e)n }Nn=1. In addition, let us

assume that w(m)
∈ RD(m)

z and w(e)
∈ RD(e)

z are D(m)
z - and

D(e)
z -dimensional weight vectors to project z(m) and z(e) into

scalars, respectively. CCA optimises w(m) and w(e) so as to
maximise the following correlation between w(m)T z(m) and
w(e)T z(e) [18]:

ρ(w(m)T z(m), w(e)T z(e))

=
w(m)T6(me) w(e)√

w(m)T6(mm) w(m)
√
w(e)T6(ee) w(e)

(2)
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where 6(me)
∈ RD(m)

z ×D
(e)
z is the cross-covariance matrix

computed from {(z(m)n , z(e)n )}Nn=1 and6(mm)
∈ RD(m)

z ×D
(m)
z and

6(ee)
∈ RD(e)

z ×D
(e)
z are the covariance matrices for {z(m)n }

N
n=1

and {z(e)n }Nn=1, respectively. In Eq. (2) the quantity tomaximise
is invariant in scaling ofw(m) andw(e), so it is possible to focus
on the problem where the denominator is equal to 1. In other
words, the objective of CCA is to maximise the numerator in
Eq. (2) subject to the constraints w(m)T6(mm)w(m)

= 1 and
w(e)T6(ee)w(e)

= 1.
The CCA approach described above can be re-applied

independently on each dimension of C (cca). For this, D(cca)

pairs of weight vectors {(w(m)
d ,w(e)

d )}D
(cca)

d=1 are found to max-
imise the sum of correlations betweenw(m)T

d z(m) andw(e)T
d z(e).

In other words, letting W (m)
∈ RD(m)

z ×D(cca)
be a matrix

where each column is w(m)
d , W (m)T z(m) forms a D(cca)-

dimensional embedding φ(m). Similarly,W (e)
∈ RD(e)

z ×D(cca)

where each column is w(e)
d is defined to create φ(e)

=

W (e)T z(e). From this perspective, the general CCAmaximises
the sum of correlations each computed for one dimension of
φ(m) andφ(e). Past work has shown that the batch optimisation
of {(w(m)

d ,w(m)
d )}D

(cca)

d=1 can be done by solving the following
constrained optimisation problem [18]:

minimise: CCA(F) = − tr(W (m)T6(me)W (e))

subject to:W (m)T6(mm)W (m)
= W (e)T6(ee)W (e)

= I (3)

where the trace operation (tr) is used to sum up the correla-
tions on each dimension of φ(m) and φ(e). After obtaining the
optimal W (m)∗ and W (e)∗, the correlation-based embedding
for z(m)n of a music sample and the one for z(e)n of an emotion
are computed as φ(m)

n = W (m)∗T z(m)n and φ(e)
n = W (e)∗T z(e)n ,

respectively.

2) DISTRIBUTION-BASED EMBEDDING WITH
KL-DIVERGENCE
The CCA loss analyses only the relation (correlation)
between music samples and their associated emotions, but
neither the relation of a music sample to non-associated
emotions nor the relation of an emotion to non-associated
music samples. In addition, φ(m)

n and φ(e)
n are points in

C(cca), which is unsuitable for managing the large intra-class
variation of acoustic features, as discussed in Section I.
To address these issues, the KL-divergence loss KL(G) is
used to build an embedding space C(kl) that attempts to fulfil
the following conditions: 1) a music sample and its associ-
ated emotion are projected as multivariate Gaussian distribu-
tions N (µ(m)

n , σ
(m)
n ) and N (µ(e)

n , σ
(e)
n ) which are similar to

each other; 2) a music sample and its non-associated emo-
tion are projected as dissimilar distributions N (µ(m)

n , σ
(m)
n )

and N (µ(e)
n′ , σ

(e)
n′ ) (n ̸= n′). Similarly, an emotion and its

non-associated music sample are transformed into dissimilar
distributions N (µ(e)

n , σ
(e)
n ) and N (µ(m)

n′ , σ
(m)
n′ ).

For simplicity,N (µ(m)
n , σ

(m)
n ) andN (µ(e)

n ,6
(e)
n ) are abbre-

viated into N (m)
n and N (e)

n , respectively. In addition, we use
the term positive pair to indicate a pair of N (m)

n and N (e)
n

obtained for a music sample and its associated emotion.
On the other hand, a negative pair expresses a pair of
N (m)
n and N (e)

n′ or a pair of N (m)
n′ and N (e)

n , consisting of
non-associated music sample and emotion. Note that by fol-
lowing the standard of embedding-based retrieval [19], [53],
we consider that a music sample and an emotion whose
indices are the same form a positive pair, and any other pair
is a negative pair.

The aforementioned conditions for C(kl) can be formulated
using a triplet (N (m)

n ,N (e)
n ,N (e)

n′ ):

ψ
(
N (m)
n ,N (e)

n
)
≤ α + ψ

(
N (m)
n ,N (e)

n′
)
, (4)

whereψ(·, ·) represents a distance between two distributions.
Additionally, α > 0 is a margin hyper-parameter which
determines how far the difference between the distance for
the positive pair (N (m)

n ,N (e)
n ) and the one for the negative

pair (N (m)
n ,N (e)

n′ ) is allowed to be. Eq. (4) uses N (m)
n as an

anchor and checks whether its distance toN (e)
n is sufficiently

smaller than its distance to N (e)
n′ . Similarly, another triplet

(N (e)
n ,N (m)

n ,N (m)
n′ ) can define the distance condition using

N (e)
n as an anchor:

ψ
(
N (e)
n ,N (m)

n
)
≤ α + ψ

(
N (e)
n ,N (m)

n′
)
. (5)

For each positive pair (N (m)
n ,N (e)

n ) in G, KL(G) examines
the distance conditions in Eqs. 4 and 5. Specifically, the
following ranking loss r(N (m)

n ,N (e)
n ) is defined by combining

two hinge losses as follows:

r(N (m)
n , N (e)

n )

=

∑
n′ ̸=n

max
{
0, ψ

(
N (m)
n ,N (e)

n
)
− α − ψ

(
N (m)
n ,N (e)

n′
)}

+

∑
n′ ̸=n

max
{
0, ψ

(
N (e)
n ,N (m)

n
)
− α − ψ

(
N (e)
n ,N (m)

n′
)}
,

(6)

where the first term becomes zero if all the negative pairs
defined using N (m)

n as an anchor lead to distances that
are greater than the distance between the positive pair
by more than α. The second term also checks a simi-
lar distance condition using N (e)

n as an anchor. This way
r(N (m)

n , N (e)
n ) indicates how small ψ(N (m)

n , N (e)
n ) is rela-

tively to ψ(N (m)
n , N (e)

n′ ) and ψ(N
(m)
n′ , N

(e)
n ) defined for all

the negative pairs.
To compute r(N (m)

n , N (e)
n ), the KL-divergence is

employed as a distance ψ(·, ·) between two multivariate
Gaussian distributions N (µ1, σ 1) and N (µ2, σ 2) in C(kl) of
dimensionality D(kl), and is computed as follows

ψ
(
N (µ1, σ 1), N (µ2, σ 2)

)
=

1
2

{ D(kl)∑
d=1

σ1,d

σ2,d
− D(kl)

+ ln

∏D(kl)

d=1 σ2,d∏D(kl)

d=1 σ1,d

+

D(kl)∑
d=1

(µ2,d − µ1,d )2

σ2,d

}
, (7)
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where µ1 and σ 1 are expanded as (µ1,1, · · · , µ1,D(kl) )T and
(σ1,1, · · · , σ1,D(kl) )T , respectively. Similarly, µ2 and σ 2 are
also expanded.

Finally, KL(G) is defined as the sum of r(N (m)
n , N (e)

n )
for all the positive pairs in G. The minimisation of
KL(G) can therefore lead both music and emotion
encoders and FC layers to learn parameters so that the
KL-divergence between each positive pair is minimised,
while maximising the KL-divergence between each negative
pair.

C. TESTING EMER-CL IN M2E AND E2M
We evaluate EMER-CL in the framework of M2E and E2M
that are formulated as a retrieval task. In the following
paragraphs, q designates the index of a query, with 1 ≤
q ≤ Q where Q is the number of examples in the test
set. In M2E, the query is X (m)

q which represents a music
sample that is associated with an emotion rating X (e)

q . The
trained music model (consisting in the music encoder and
three branches of FC layers) is used to encode the querymusic
sample X (m)

q into its correlation-based embedding φ(m)
q and

distribution-based embedding N (m)
q . Similarly, the trained

emotion model (consisting in the emotion encoder and three
branches of FC layers) is used to convert the jth test emotion
X (e)
j (for 1 ≤ j ≤ Q) into its correlation-based embedding

φ
(e)
j and distribution-based embedding N (e)

j . The similarity

s(X (m)
q ,X (e)

j ) between the query music sample and the jth test
emotion is computed as follows:

s(X (m)
q ,X (e)

j ) = λ · 0(φ(m)
q , φ

(e)
j )+ (1− λ) · ψ

(
N (m)
q ,N (e)

j

)
,

(8)

where λ ∈ [0, 1] is the same weighting parame-
ter used for the loss in Eq. (1), ψ designates the
negative KL-divergence, and 0 is a correlation-based
similarity between φ(m)

q = (φ(m)q,1 , · · · , φ
(m)
q,D(cca))

T and

φ
(e)
j = (φ(e)j,1 , · · · , φ

(e)
j,D(cca))

T .

To determine a suitable correlation-based similarity 0,
we proceeded as follows. As a reminder, the CCA loss is
designed tomaximise the correlation on each ofD(cca) dimen-
sions independently. The higher the correlation ρd on the
d-th dimension (1 ≤ d ≤ D(cca)) is, the more linearly aligned
embedding values for music samples and emotions in training
data (i.e., {φ(m)n,d = w(m)T

d z(m)n }
N
n=1 and {φ

(e)
n,d = w(e)T

d z(e)n }Nn=1)
are. Based on this, linear regression is performed to extract
the approximation line gd (·) that takes as input φ(m)q,d being
the embedding value for the query music sample on the
d th dimension and outputs gd (φ

(m)
q,d ) being an approximate

embedding value for the associated emotion. Thus, the neg-
ative of the absolute difference between gd (φ

(m)
q,d ) and the

embedding value φ(e)j,d for the test emotion is defined as its
similarity to the query music sample on the d th dimension.
By summing up such similarities on all theD(cca) dimensions,

0(φ(m)
q ,φ

(e)
j ) is computed as follows:

0(φ(m)
q ,φ

(e)
j )=

∑
d∈{d ′|1≤d ′≤D(cca),ρd ′≥P}

−ρd

∣∣∣gd (φ(m)q,d )− φ
(e)
j,d

∣∣∣
(9)

where each dimension d ′ is filtered out or weighted by the
correlation ρd ′ . If ρd ′ is lower than the threshold P, the
approximation on the d ′th dimension is regarded as inac-
curate and the similarity on this dimension is not counted.
In contrast, as ρd ′ becomes higher, the approximation is
regarded as more accurate and the similarity is more priori-
tised by weighting it with ρd ′ .
The similarities between the query music and all test

emotions s(X (m)
q ,X (e)

j ) are computed for all 1 ≤ j ≤ Q
using Eq. (8), and then sorted by decreasing similarities. The
performance of M2E is evaluated by examining whether the
test emotion associated with the query music sample X (e)

q is
ranked at a high position in the sorted output list.

Similarly to M2E, E2M is performed by encoding a query
emotion X (e)

q and test music samples X (m)
j with the trained

emotion and music models, respectively. Then, the Q test
music samples are sorted by computing their similarities to
the query emotion s(X (e)

q ,X
(m)
j ) for 1 ≤ j ≤ Q according

to Eq. (8). The rank of the music sample associated with
the query emotion is checked to measure the performance of
E2M.

IV. EXPERIMENTS
In this section, we evaluate EMER-CL on two datasets:
MediaEval Database for Emotional Analysis in Music
(DEAM) [21] and PMEmo [22]. We first present an overview
and pre-processing on each dataset, the evaluation metrics,
and the implementation details. Then, we present the results
of three experiments. The first is an ablation study to vali-
date the composite loss, the second compares EMER-CL to
regression baselines not relying on embeddings, and the last
examines the generality of EMER-CL by comparing it to the
state-of-the-art MER methods.

A. DATASETS
DEAM [21]2 provides 1802music samples that are free audio
source records, and their corresponding arousal/valence
sequences where arousal and valence intensities lie in
[−10, 10]. Each music sample was annotated with arousal
and valence intensities every 0.5 seconds by at least 5 subjects
recruited using Amazon’s crowdsourcing platform Mechan-
ical Turk. These intensities were projected into the range
[−1, 1] for each subject. DEAM contains 1744 45-second-
long music samples and 58 samples that have durations
longer than 45 seconds. The authors of DEAM decided to
discard the first 15 seconds of annotations after observing
high instabilities due to a high variance in howmusic samples
start. Because of this and the fact that most music samples

2https://cvml.unige.ch/databases/DEAM
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last only 45 seconds, each music sample is normalised to
have a length of 30 seconds by taking the segment starting
at 15 seconds and ending at 45 seconds. In order to make
our system robust for the average music listener, an ‘‘aver-
age sequence’’ is created for each of arousal and valence
by computing the average value over all subjects at each
timestamp. The average sequences for arousal and valence
are then concatenated into an arousal/valence sequence X (e).
Finally, the 30-second segment corresponding to the paired
music sample is extracted.

PMEmo [22] (and more specifically the updated dataset
PMEmo20193) contains 794 music samples which are the
chorus parts of high quality popular pop-songs gathered from
the Billboard Hot 100, the iTunes Top 100 Songs (USA)
and the UK Top 40 Singles Chart. 457 subjects includ-
ing 366 Chinese university students, 44 Chinese music stu-
dents and 47 English speaking individuals were recruited
for the annotation process. Each music sample is annotated
with arousal and valence intensities between 1 (low) and 9
(high) every 0.5 seconds, and then projected into the range
[0, 1]. Similarly to DEAM, the first 15 seconds of annotations
were discarded by taking into account a large variance in
beginnings of music samples. Unlike DEAM, music samples
and associated arousal and valence sequences in PMEmo
have variable lengths ranging from 0.08 to 73.24 seconds.
We decided to select music samples with a total length of at
least 7.0 seconds to evaluate in total 701 samples. Similarly to
DEAM, an arousal/valence sequence X (e) was associated to
each music sample by averaging arousal and valence inten-
sities over all subjects who annotated the sample at each
timestamp.

B. EVALUATION METRICS
Each dataset is split into training and test partitions with a
proportion of 8 : 2. Specifically, DEAM is split into training
and test partitions, respectively containing 1441 and Q =
361 pairs of a music sample and an emotion. The training
and test partitions of PMEmo include 560 andQ = 141 pairs,
respectively. A model trained on a training partition is evalu-
ated on the corresponding test partition in the framework of
M2E and E2M. On both datasets, M2E is run Q times using
each of the Qmusic samples X (m)

j as a query. For each query,

theQ test emotionsX (e)
j are sorted in decreasing order of their

similarities to the query s(X (m)
q ,X (e)

j ), and the performance
is evaluated by checking the rank of the emotion associated
with the query music sample. Similarly, E2M is executed Q
times by adopting each of the Q emotions X (e)

j as a query and

examining the rank of its associated music sample X (m)
j .

In this framework, only one sample (i.e, emotion or music
sample) is associated with a query (i.e., query music sample
or query emotion). We use theMean Reciprocal Rank (MRR)
as the main evaluation metric as it is commonly employed in
retrieval studies [11], [12], [54]. TheMRR is calculated based

3https://github.com/HuiZhangDB/PMEmo

on rq that is the rank of the sample associated with a query
q in the sorted list of samples (1 ≤ rq ≤ Q). The MRR is
defined as the average of reciprocals of all rq over Q queries,
that is, MRR = 1

|Q|

∑|Q|
q=1

1
rq
. However, the MRR is biased in

the sense that it puts much higher priorities on samples ranked
at high positions than those at low positions. This can lead to
low MRR values even if the rank of the sample associated to
the query is low. For example, rq = 1 leads to a reciprocal of
1 while it is close to 0 (0.05) for rq = 20, even though rq =
20 might still be a very good retrieval result. In our case, sam-
ples associated with queries are rarely ranked at the very top
positions because each query in either the DEAM or PMEmo
dataset has many ‘close neighbours’ (i.e., samples annotated
with similar emotions, or from the same music style) that
may easily be ranked above the sample associated with the
query. The MRR values might therefore be non-intuitive and
not trivially interpretable when checking the performances of
our system. Thus, we additionally compute the Average Rank
(AR) that is the average of all rq over Q queries, namely
AR = 1

|Q|

∑|Q|
q=1 rq. Using the AR, samples can be equally

evaluated regardless of their ranks. Although the median of
all rq is one popular evaluation measure for embedding-based
retrieval [53], we use their average to be consistent with the
calculation of the MRR. To sum up, our evaluation is based
on the MRR and AR that respectively become higher and
lower as a better performance is obtained. Finally, all models
in each configuration are run 10 times. In each of them, all
the parameters in EMER-CL (i.e., parameters of music and
emotion encoders and six branches of FC layers in Fig. 2)
are randomly initialised, and a dataset is randomly split into
training and test partitions with a proportion of 8 : 2. The
mean and standard-deviation of MRRs and ARs obtained in
10 runs are reported.

C. IMPLEMENTATION DETAILS
We tested various combinations of an MLP and RNN for
music and emotion encoders on DEAM and PMEmo. To sim-
plify the selection of encoders, MLPs (or RNNs) with the
same architecture were used regardless of encoder types.
We found that for the music encoder, an MLP and RNN
performed the best on DEAM and PMEmo, respectively. For
the emotion encoder, RNNs are the best on both datasets.

The numbers of layers and units per layer of the MLP
and RNNs were chosen by grid search. The MLP consists
of five FC layers, each of which performs a non-linear trans-
formation based on units using softplus σ (x) = log(1 + ex)
as their activation function. The number of units in each
layer is 256 for the first layer, 512 for the second and third
layers, and 1024 units for the fourth and fifth layers. That is,
D(m)
v = 1024 when the encoder is an MLP. A dropout layer

with a dropout rate of 0.5 is inserted between two consecutive
layers.

Each RNN based on bidirectional GRU has a single layer
with a 512-dimensional hidden state (i.e., D(m)

h = D(e)
h =

512), and finally outputs a 1024-dimensional vector by
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concatenating the hidden states obtained in the forward and
backward directions. This vector is subsequently passed to an
MLP consisting of five FC layers where units use softplus as
their activation function. The number of units per FC layer
was chosen as 512 for the first three ones, and 1024 for the
two last ones (i.e., D(m)

v = D(e)
v = 1024). A dropout layer

with a dropout rate of 0.5 is also added behind all layers
except the RNN layer and the output layer.

Regarding the embedding spaces based on the CCA
and KL-divergence losses, their dimensionalities are set to
D(cca)

= D(kl)
= 1024. Based on our experiments,

we recommend to set the threshold for the correlation-based
similarity P, the margin in the KL-divergence loss α and the
combination weight for the composite loss λ to default values
of (P, α, λ) = (0.4, 1.0, 0.5) when testing our approach on
a new dataset. It is nevertheless possible to optimise these
values on a specific dataset by following the optimisation
strategy detailed in Appendix A. The results in the next sub-
sections were obtained using the optimal hyper-parameters
(P, α, λ) = (0.5, 1.0, 0.6) on DEAM and (P, α, λ) =
(0.7, 2.0, 0.5) on PMEmo.

Our EMER-CL model is trained using Adam [55] as the
optimiser with an initial learning rate of 1e−5. The model was
trained for 5001 and 10001 epochs on DEAM and PMEmo,
respectively. We implemented all the codes using Tensor-
Flow library (version 1.15) on a machine equipped with Intel
i9-9900KCPU, 64GBRAM,NVIDIARTX 2080Ti GPU and
CUDA version 10.0.

D. EVALUATION OF THE COMPOSITE LOSS
To evaluate the effectiveness of our proposed composite
loss (Composite), we compare its performance to the ones
individually obtained only using the CCA loss (CCA-Loss)
or KL-divergence loss (KL-Loss). In addition, to examine
the effectiveness of projecting music samples and emotions
as probability distributions, we implement the most popular
embedding approach that projects them as points based on
their cosine similarities in an embedding space [53]. For this
approach, all the configurations of our EMER-CL model are
the same except that v(m) and v(e) from the music and emotion
encoders are projected into vectors instead of multivariate
Gaussian distributions, and ψ(·, ·) in Eq. (6) is replaced
with the negative of their cosine similarity. We report both
the performance only using the loss based on cosine sim-
ilarities (Cos-Loss) and the one obtained by the composite
loss combining CCA-Loss and Cos-Loss (Composite-C). Fol-
lowing the optimisation strategy described in Appendix B,
the hyper-parameters of Cos-Loss and Composite-C were
also optimised to (P, α, λ) = (0.9, 0.3, 0.7) on DEAM and
(P, α, λ) = (0.9, 0.1, 0.1) on PMEmo
Table 1 shows the results obtained with the five losses

described previously. For both DEAM and PMEmo, the
MRRs and ARs using KL-Loss are better than those using
CCA-Loss. This may be due to the fact that CCA-Loss
alone only considers the correlation between music sam-
ples and emotions, and does not necessarily make sure that

TABLE 1. Comparison of MRRs and ARs using five different losses. The
average and standard deviation of each metric over 10 runs are reported
on both datasets.

music samples and emotions in positive pairs are placed
close to each other in the embedding space. On the other
hand, KL-Loss assigns music samples and emotions in pos-
itive pairs to similar multivariate Gaussian distributions
while distinguishing the ones in negative pairs by dissim-
ilar distributions. Furthermore, the performances are sig-
nificantly improved when using Composite compared to
using only KL-Loss or CCA-Loss. This verifies the effec-
tiveness of Composite that simultaneously considers CCA-
Loss and KL-Loss. Also, the fact that KL-Loss outperforms
Cos-Loss and Composite outperforms Composite-C on both
DEAM and PMEmo datasets indicates the effectiveness
of distribution-based embeddings compared to point-based
ones.

Finally, it can be noted that the performances on PMEmo
are significantly better than those on DEAM. This could
be attributed to the fact that music samples in PMEmo are
more standardised, for instance by including only chorus
parts of pop songs, which leads the music encoder to find
more specialised feature. In other words, the higher diversity
in music samples on DEAM makes M2E and E2M on this
dataset likely to be more difficult.

E. COMPARISON WITH THE BASELINE MODELS
To the best of our knowledge, no existing EMER method
that can be directly compared to EMER-CL has been pro-
posed yet. In addition, all the existing approaches using
continuous emotion modelling only perform M2E based on
a regression approach to predict real-valued characteristics
of the arousal/valence sequence (e.g., the average arousal or
valence) for a given music sample [28], [29], [36], [37], [38],
[40], [41], [42], [43], [56], [57], [58]. Moreover, no existing
method can handle E2M to predict acoustic features of the
music sample for a given arousal/valence sequence. Consid-
ering the aforementioned state of the current MER research,

36588 VOLUME 11, 2023



N. Takashima et al.: Embedding-Based Music Emotion Recognition Using Composite Loss

we define the following regression-based baselines to show
the effectiveness of EMER-CL.

1) M2E BASELINES
TwoM2E baselinesRegBiGRU-M2E andRegMLP-M2E train
a regression model that analyses a query music sample and
outputs a two-dimensional emotion vector x̄′(e) represent-
ing the arousal and valence averaged over time for this
query music sample. In particular, RegBiGRU-M2E predicts
x̄′(e) by applying an RNN based on bidirectional GRU to
a sequence of acoustic features X (m), while RegMLP-M2E
employs an MLP that uses the mean x̄(m) of features in X (m)

over time to compute x̄′(e). Both baselines are trained to
minimise the Mean Absolute Error (MAE) between x̄′(e) and
the ground-truth mean emotion x̄(e) computed from the actual
arousal/valence sequence X (e).

In the evaluation, given the qth test music sample as a
query, we evaluate the trained model by predicting its mean
emotion x̄′(e)q and checking whether x̄′(e)q is similar to the
ground-truth mean emotion x̄(e)q . To this end, we compute
the similarities of x̄′(e)q to the ground-truth mean emotions
{x̄(e)t }

Q
t=1 for all the Q test music samples. The Absolute

Error (AE) between x̄′(e)q and x̄(e)t is used as their dissimilarity.
Then, the ground-truthmean emotions are sorted in ascending
order of their AEs to get the rank rq of x̄

(e)
q . Finally, rq is used

to calculate an MRR and AR.

2) E2M BASELINES
Similarly to the M2E baselines, an RNN based on bidirec-
tional GRU (RegBiGRU-E2M) and anMLPmodel (RegMLP-
E2M) are used as E2M baselines to predict a mean acoustic
feature x̄′(m). RegBiGRU-E2M and RegMLP-E2M take as
input an arousal/valence sequence X (e) and the mean vec-
tor x̄(e) of X (e), respectively. RegBiGRU-E2M and RegMLP-
E2M are trained to minimise the MAE between x̄′(m) and
the ground-truth mean acoustic feature x̄(m) computed from a
sequence of acoustic features X (m). Like M2E, an MRR and
AR is computed by predicting x̄′(m)q for the qth test emotion,
measuring the AEs of x̄′(m)q to the ground-truth mean acoustic
features {x̄(m)t }

Q
t=1 for all the Q music samples, and check the

rank rq of x̄
(m)
q .

The baseline models were tuned by grid search to find
the hyper-parameters leading to the best performances on
each dataset. Details about this hyper-parameter tuning can be
found in Appendix C. Table 2 shows the comparison between
the above-mentioned baselines and EMER-CL (referred to
as Composite in Table 1). EMER-CL significantly outper-
forms the baselines based on one-way regression of emotion
or acoustic features. This highlights the superiority of our
embedding-based approach over traditional regression meth-
ods not using embeddings.

F. COMPARISON TO THE MER STATE-OF-THE-ART
To evaluate the features learnt by EMER-CL, we performed a
comparison of the latter against the state-of-the-art on DEAM

TABLE 2. Comparison between the baselines and EMER-CL (Composite).
The average and standard deviation of each metric over 10 runs are
reported on both datasets.

and PMEmo. To the best of our knowledge, the EMER prob-
lem remains still unexplored in the literature, which makes
it difficult to find a past study with which our results can be
directly compared. Therefore, we carry out the evaluation on
the significantly more popular task of MER.

The MER literature is fairly scattered, with each study
carrying out experiments on different datasets, choosing dif-
ferent evaluation metrics and strategies. Our experiments on
both DEAM and PMEmo were carried out based on the most
commonly used setting, that is, a K-fold cross validation
evaluated either using the RootMean Squared Error (RMSE),
the Pearson correlation coefficient R or the coefficient of
determination R2.

Our EMER-CLmodel is trained forK = 10 folds using the
default values of α = 1 and λ = 0.5 (P is only required for
a retrieval problem, not a regression one). After training the
whole of our EMER-CL model, three vectors obtained from
the music model (i.e., φ(m), µ(m) and σ (m) in Fig. 2) are used
to train a soft-margin Support Vector Regression model (C-
SVR) with Radial Basis Function (RBF) kernel that attempts
to predict the arousal and valence intensities associated with
a music sample that is input to the music model. Three dif-
ferent configurations for the input to C-SVR are tested: φ(m)

used alone (also referred to as EMER-CL (cca)), µ(m) and
σ (m) concatenated together (EMER-CL (kl)), and all the three
vectors concatenated together (EMER-CL (all)). On DEAM,
the target to predict was chosen as x̄(e), the average of an
arousal/valence sequenceX (e) over time. On PMEmo, the last
arousal and valence values of the emotion sequenceX (e) were
predicted instead. The hyper-parameters of the C-SVR (soft-
margin and kernel parameters) were optimised by maximis-
ing the average R2 after grid search.

Table 3 shows the results obtained for arousal and valence
prediction on DEAM and PMEmo. The learnt features φ(m),
µ(m) and σ (m) can compete with the state-of-the-art for MER.
This indicates that our EMER-CLmodel can still yield proper
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TABLE 3. Comparison between EMER-CL and the state-of-the-art for
M2E. The metrics for EMER-CL are provided as the average obtained on
10 folds.

MER performances. Curiously, φ(m), µ(m) and σ (m) yield
average results for arousal prediction, and notably good ones
for valence prediction which is commonly considered as
the most difficult of the two problems. All the three tested
combinations of φ(m), µ(m) and σ (m) return fairly similar
performances.

V. DETAILED ANALYSIS
MRRs and ARs are global metrics that only depend on the
rank rq of the music sample or emotion associated with
a query. It is also desirable to check the relevance of the
top-ranked music samples (or emotions) to the query. For
this, we compute for M2E an average cosine similarity that
averages the cosine similarities between the mean acoustic
feature of the query music sample x̄(m)q and the ones asso-
ciated with the top 5% emotions retrieved by EMER-CL,
i.e., {x̄(m)j |1 ≤ j ≤ Q, rj ≤ 0.05× Q}. For E2M, this average
cosine similarity is computed in a likewise way by taking the
mean of the cosine similarities computed between the query
emotion averaged over time x̄(e)q and the ones associated with
the top 5% retrievedmusic samples in E2M, i.e., {x̄(e)j |1 ≤ j ≤
Q, rj ≤ 0.05 × Q}. A high average cosine similarity means
that EMER-CL can recognise music samples that express
emotions similar to a query emotion, or emotions expressed
in music samples which are acoustically similar to a query
music sample.

In what follows, we present the analysis for E2M since
the mean emotion for each music sample is two-dimensional
and can be interpreted easily. It should be noted that
arousal/valence intensities are in [−1, 1] and [0, 1] for
DEAM and PMEmo respectively, meaning that average
cosine similarities range between -1 and 1 on DEAM, and
0 and 1 on PMEmo. Fig. 3 shows the average cosine similari-
ties for DEAM and PMEmo. In the bar graphs in the left side

FIGURE 3. Bar graphs showing average cosine similarities and their box
plots on DEAM and PMEmo.

of Fig. 3 (a) and (b), each query emotion on the horizontal axis
is sorted in increasing order of the rank rq of its associated
music sample. That is, the more to the left a query emotion
is, the higher its ground truth music sample was ranked for
E2M, meaning that the music sample associated with the
query emotion was well recognised.

As shown in the bar graphs of Fig. 3 (a) and (b), the average
cosine similarities obtained on both DEAM and PMEmo are
fairly high (close to 1), showing that the top 5% recognised
music samples are relevant to most query emotions regard-
less of the ranks of their ground-truth music samples. More
specifically, the median of these average cosine similarities
is 0.873 for DEAM and 0.994 for PMEmo (the reason for the
very high average cosine similarities on PMEmo is provided
in Appendix E). In addition, the box plots in the right side of
Fig. 3 (a) and (b) show the variations in the average cosine
similarities. Here, at least 75 percent of all the average cosine
similarities are higher than the 25th percentile (first quartile).
The fact that the 25th percentile for DEAM and PMEmo
are 0.692 and 0.989 respectively, indicates that EMER-CL is
able to robustly recognise music samples associated to highly
similar emotions to a query emotion. In other words, even if
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FIGURE 4. t-SNE projections of the music embeddings φ(m), µ(m) and σ (m) (respectively first, second and third rows) on the DEAM training (left column)
and testing (right column) sets. The t-SNE projections are labelled with their associated emotional quadrants, i.e., high arousal/high valence (HA, HV),
high arousal/low valence (HA, LV), low arousal/low valence (LA, LV) and low arousal/high valence (LA, HV).

FIGURE 5. t-SNE projections of the emotion embeddings φ(e), µ(e) and σ (e) (respectively first, second and third rows) on the DEAM training (left column)
and testing (right column) sets. The t-SNE projections are labelled with their associated emotional quadrants, i.e., high arousal/high valence (HA, HV),
high arousal/low valence (HA, LV), low arousal/low valence (LA, LV) and low arousal/high valence (LA, HV).

the music sample associated to a query emotion was ranked
at a low position, the top 5% music samples recognised by

EMER-CL still exhibit emotions close to the query emo-
tion. Nevertheless, average cosine similarities for some query
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emotions inDEAMare low, indicating room for improvement
in the future.

The same experiment for M2E that computes the average
cosine similarity between the acoustic feature of a query
music sample and those of music samples associated with
the top 5% emotions in M2E showed similarly good perfor-
mances. Figures showing such average cosine similarities can
be found in Appendix D, and the medians of average cosine
similarities on DEAM and PMEmo are 0.753 and 0.837,
respectively.

Finally as a last check of the validity of our approach,
we also visualise the embeddings learnt by our music and
emotion models on the training and testing sets of both
DEAM and PMEmo using t-SNE [63]. We plotted the
correlation-based and probabilistic-based embeddings pro-
duced by the music model (φ(m), µ(m) and σ (m)) and the
emotion model (φ(e), µ(e) and σ (e)). The t-SNE projections
were labelled with the emotion-related information avail-
able on both DEAM and PMEmo datasets as follows: each
emotion sequence X (e)

j in either the training or testing set
was first averaged over time to obtain the two-dimensional
emotion vector x̄(e)j , and then associated to one of the four
quadrants of the arousal/valence space: high arousal/high
valence (HA/HV), high arousal/low valence (HA/LV), low
arousal/low valence (LA/LV) and low arousal/high valence
(LA/HV). The t-SNE projections of the embeddings obtained
either from X (e)

j or its associated music sample X (m)
j were

then annotated with one of these four labels. The t-SNE plots
for the DEAM dataset are provided in Figs. 4 and 5 for the
music and emotion embeddings, respectively. Since DEAM
emotion annotations lie in the range [−1, 1], the cut-off value
for the definition of the quadrants was set to 0 for both arousal
and valence.

It can be seen from both Figs. 4 and 5 that the DEAMmusic
and emotion embeddings associated with opposite emotional
quadrants (e.g. HA/HV and LA/LV, or HA/LV and LA/HV)
are very well separated in their respective embedding spaces
for both the training and testing examples. This indicates that
our EMER-CL approach was successful in learning to project
music samples associated to similar emotions close to each
other in the embedding space, while simultaneouslymaximis-
ing the distance between embeddings of dissimilar emotions.
Similar plots can be obtained for the PMEmo dataset and are
provided in Appendix G.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced an Embedding-based Music
Emotion Recognition using Composite Loss (EMER-CL)
approach that projects music samples and emotions into
embedding spaces, in order to consider both general
emotional categories and fine-grained discrimination within
each category. In particular, to deal with the emotional
uncertainty, EMER-CL uses the composite loss consisting
of the CCA loss to maximise the correlation between music
samples and their associated emotions in an embedding
space, and the KL-divergence loss to project them as similar

multivariate Gaussian distributions in another embedding
space. The experimental results on DEAM and PMEmo val-
idate the effectiveness of the composite loss, embedding-
based approach and features learned by EMER-CL. In addi-
tion, a detailed analysis of EMER-CL’s results demonstrates
that it can robustly recognise reasonable music samples (or
emotions) evenwhen failing to identify the ground-truth ones.

To further improve the performance of EMER-CL, we aim
to extend the music and emotion encoders by pre-training
them with self-supervised learning [64] which can learn
underlying feature representations using unlabelled data.
We also plan to adopt a self-attention layer [65] which can
capture long-term dependencies of features, and have led to
promising performances when jointly used with bidirectional
LSTM and GRU, in particular for sentiment analysis [66] or
sensor-based emotion recognition [67]. Because emotions are
also strongly dependent on cultural background, we also plan
to use MER datasets that provide detailed background infor-
mation about their raters in future work. The generality of our
approach across cultures could be then be demonstrated.

Finally, the codes (and the instruction of data usage) used
in this paper are available on our GitLab repository4, in order
for other researchers to reproduce the results and extend the
current EMER-CL more easily.

APPENDIX A
HYPER-PARAMETER TUNING FOR EMER-CL
This section presents how to tune EMER-CL’s hyper-
parameters, especiallyP ∈ [0, 1] used in the correlation-based
similarity to filter out useless dimensions characterised by
weak correlations between music samples and their associ-
ated emotions, α ∈ R+ used in the KL-divergence loss to
handle the margin between associated music-emotion pairs
and non-associated ones, and λ ∈ [0, 1] to control the
combination weights of the CCA and KL-divergence losses.
Only using either of these losses, an embedding space can be
constructed to performM2E and E2M. Thus,P is firstly tuned
based on the performances of M2E and E2M only using the
CCA loss. Similarly, α is tuned by carrying outM2E and E2M
only with the KL-divergence loss. Finally, λ is tuned based
onM2E and E2M by combining the CCA and KL-divergence
losses that are configured by the separately optimised P and
α, respectively.

A. TUNING P
Fig. 6 shows the various performances obtained only using
the CCA loss configured by different values of P. As pre-
viously described in Section IV, a performance is measured
by an MRR and AR. A good performance is indicated by a
high MRR and a low AR. Fig. 6 shows the box plots of the
MRR and AR performances obtained for each value of P over
10 runs. They were computed as follows: Since building an
embedding space based on the CCA loss is independent of
the choice of P, 10 spaces are firstly constructed by randomly

4https://mu-lab.info/naoki_takashima/emer-cl
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initialising all parameters in EMER-CL (i.e., the parameters
of both music and emotion encoders and the ones of six
branches of FC layers in Fig. 25), and randomly splitting
a dataset into training and test partitions with a proportion
fixed to 8 : 2. Then, every value of P is used to filter out
useless dimensions in each of these 10 embedding spaces to
get 10 performances.

To determine a range of values to be tested for P, we check
the maximum correlations among the 1024 dimensions of
each embedding space. In particular, among the 10 embed-
ding spaces constructed for each dataset, the maximum cor-
relation is 0.783-0.833 and 0.719-0.774 for DEAM and
PMEmo, respectively.6 We test values between 0 and the
maximum correlation with increments of 0.1 for P.
In each graph of Fig. 6, the larger P is, the smaller the

number of dimensions used in the correlation-based simi-
larity is. In other words, if P is large, only a small number
of dimensions characterised by correlations higher than it
are used to compute correlation-based similarities. For each
dataset, the optimal value ofP is selected as the one that yields
the best ‘overall’ performance by considering both M2E and
E2M performances. We provide an example of how to select
the optimal P value on DEAM by referring to Fig. 6. As seen
from this figure, although P = 0.2 yields the highest median
of MRRs in M2E, P = 0.5 and 0.6 both lead to the highest
median of MRRs in E2M and the lowest medians of ARs in
both M2E and E2M. Thus, P = 0.5 or 0.6 can be considered
as optimal on DEAM. In this case in particular, P = 0.5 is
selected after observing that its neighbouring value P =
0.4 yields higher performances than P = 0.7 neighbouring
P = 0.6. For PMEmo, P = 0.7 is chosen because of its
significantly higher performances on E2M compared to the
other P values. It can be noted that the performances of CCA-
Loss in the comparative study in Section IV-D are nothing but
the ones that are obtained only using the CCA loss based on
the aforementioned optimal P values.

B. TUNING α

Unlike P that is bounded, the margin α can theoretically
take any positive value. We decided to test values between
0 and 1.5 with increments of 0.1, and powers of 2 between
2 and 128. Using the same box plot format as Fig. 6, Fig. 7
illustrates the performances obtained using only the KL-
divergence loss, which is configured by different values of
α. Using a similar strategy as for P, we select the optimal
α value in Fig. 7 as the one that leads to the best overall

5Since the KL-divergence loss is always zero in this setting, the four
branches of FC layers to produce mean and variance vectors of multivariate
Gaussian distributions are not trained.

6When the composite loss is used, the maximum correlations for 10 CCA-
based embedding spaces increase to 0.856-0.857 and 0.9995-0.9997 for
DEAM and PMEmo, respectively. This is possibly due to more gener-
alised music and emotion encoders being trained by exploiting both the
CCA and KL-divergence losses, which leads to higher-quality embedding
spaces. Thus, better EMER-CL’s performances than those reported in this
paper might be obtained by carrying out grid search on P, α and λ. But,
due to its expensive computational cost, we opt to separately tune these
hyper-parameters in this paper.

performance. As it can be seen from Fig. 7, the performances
are similar for all tested values, with the exception of small
values 0.0, 0.1 and 0.2 for which the performances are sig-
nificantly worse. We decide to select α = 1.0 and 2.0 as the
optimal values for DEAM and PMEmo respectively, on the
basis that the overall performances with these P values are
slightly higher than those with the others. It can be noted that
the performances acquired by the aforementioned optimal α
values are reported as the ones of KL-Loss in the comparative
study in Section IV-D.

C. TUNING λ

We tested values of λ between 0 and 1 with increments of
0.1. In the same manner as Figs. 6 and 7, Fig. 8 illustrates
EMER-CL’s performances obtained for different values of λ.
For each of them, the CCA and KL-divergence losses that
are configured by the optimal P and α values (found from
Figs. 6 and 7 respectively) are used to compute the composite
loss. The higher λ is, the higher the weight of the CCA loss
is. In particular, λ = 0 means only using the KL-divergence
loss while only the CCA loss is used with λ = 1. Following
the same strategy as the ones employed for choosing the
optimal P and λ values, λ = 0.6 is chosen as the optimal
value yielding the best overall performance on DEAM, and
similarly λ = 0.5 is regarded as optimal for PMEmo.

To summarise the whole EMER-CL hyper-parameter
selection process, the optimal values found are P = 0.5,
α = 1.0 and λ = 0.6 on DEAM, and P = 0.7, α = 2.0 and
λ = 0.5 on PMEmo. The performances of EMER-CL using
these optimal values are reported as the ones of Composite
in Section IV-D. In addition, it should be noted that these
optimal hyper-parameter values only marginally differ from
the default ones (i.e., P = 0.4, α = 1.0 and λ = 0.5).
Table 4 shows the performances of EMER-CLwith optimised
parameters - referred to as Composite - and the ones obtained
with the default parameters - referred to asComposite-d. As it
can be seen from this table, the performances of the latter
are relatively similar to the ones of the former. The marginal
difference in hyper-parameter values between Composite and
Composite-d and their similar performances validate the rel-
evance of the default values.

APPENDIX B
HYPER-PARAMETER TUNING FOR COMPOSITE-C
In this section, we tune hyper-parameters of the two methods
Cos-loss and Composite-C used in the comparative study in
Section IV-D. Cos-Loss produces point-based embeddings
using the loss based on cosine similarities between music
samples and emotions [53], and is used to examine the effec-
tiveness of our proposed KL-Loss implementing distribution-
based embeddings. Both of Cos-Loss and KL-Loss construct
an embedding space in the same ranking loss framework
that involves α to control the margin between associated
music-emotion pairs and non-associated ones. Thus, α for
Cos-Loss is tuned in the same manner as α for KL-Loss in
Section A-B.
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FIGURE 6. Transitions of EMER-CL performances (MRRs and ARs) obtained only using the CCA loss that is configured by different values of P . The
optimal P value is selected as 0.5 and 0.7 for DEAM and PMEmo, respectively.

Similarly to Composite, Composite-C is characterised by λ
that handles the combination weights of CCA-Los and Cos-
Loss. However, whileCos-Loss is based on normalised cosine
similarities ranging from −1 to 1, the KL-divergences used
in KL-Loss are contained in a much wider range, like on
average about 5.1 for DEAMand 423.7 for PMEmo. It should
be noted that P impacts the range of correlation-based

similarities because it determines the number of dimension-
wise similarities counted to compute an overall similarity,
as seen from Eq. (9). Thus, both P and λ can be tuned to
balance the combination of CCA-Loss and Cos-Loss, and the
P values found in Fig. 6 for Composite may not be suitable
for Composite-C. Consequently, after selecting the optimal α
for Cos-Loss, grid search on P and λ is carried out to avoid
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FIGURE 7. Transitions of EMER-CL performances (MRRs and ARs) obtained only using the KL-divergence loss that is configured by different values of α.
The optimal α value is selected as 1.0 and 2.0 for DEAM and PMEmo, respectively.

missing an effective combination of CCA-Loss and Cos-Loss
for Composite-C. This grid search for Composite-C is more
exhaustive and favourable than the separate optimisation of P
and λ employed for Composite.

A. TUNING α OF COS-LOSS
The same values as in Section A-B were tested to tune α
for Cos-Loss, i.e., values between 0 and 1.5 with increments

of 0.1, and powers of 2 between 2 and 128. Using the
same box plot format as Figs. 6, 7 and 8, Fig. 9 dis-
plays various performances on DEAM and PMEmo only
using Cos-Loss configured by different values of α. By fol-
lowing the aforementioned criteria addressing the best
overall performance on M2E and E2M, α = 0.3 for
DEAM and α = 0.1 for PMEmo are chosen as the
optimal values. The performances of Cos-Loss configured
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FIGURE 8. Transitions of EMER-CL performances (MRRs and ARs) obtained by different λ values, each of which is used to combine the CCA and
KL-divergence losses configured by the optimal P and λ values found from Figs. 6 and 7, respectively. The optimal λ value is selected as 0.6 and 0.5 for
DEAM and PMEmo, respectively.

with these α values are used in the comparative study in
Section IV-D.

B. TUNING P AND λ OF COMPOSITE-C BY GRID SEARCH
Fig. 10 presents grid search results for different pairs of P
and λ values, where P ranges between 0 and the maximum

correlation on the considered dataset with an increment of
0.1 and λ ∈ {0.1, · · · 0.9}. Each bar in a three-dimensional
bar graph indicates the mean of 10 performances (i.e., MRRs
or ARs) obtained using a pair of P and λ values.
Like for the hyper-parameter tuning procedure previously
described, these 10 performances are acquired by randomly
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FIGURE 9. Transition of Composite-C performances (MRRs and ARs) obtained using Cos-Loss configured by different values of α. The optimal α value is
selected as 0.3 and 0.1 for DEAM and PMEmo, respectively.

initialising all parameters in Composite-C and randomly
splitting a dataset into training and test partitions with a ratio
of 8 : 2. In addition, the computational cost of grid search
can be reduced by considering that P is only related to the test
process as described in Section A-A. More specifically, after
training 10 Composite-C models (i.e., music and emotion

encoders, and embedding spaces based on CCA-Loss and
Cos-Loss) using the α value optimised in the previous section
and a specific λ value, their test processes are repeatedly run
to obtain 10 performances for each of the different P values.
Note that to make visual interpretation of the results easier,
the axes of λ and P are depicted in the horizontal and depth
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FIGURE 10. Transitions of Composite-C performances (MRRs and ARs) obtained by different pairs of P and λ values. Here, α of Cos-Loss is set to
the optimal values found from Fig. 9. As indicated by the red arrows, the optimal pair of P and λ values is selected as (P = 0.9, λ = 0.7) and
(P = 0.9, λ = 0.1) for DEAM and PMEmo, respectively.
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TABLE 4. Performance comparison between EMER-CL using the optimal
hyper-parameter values (Composite) and EMER-CL using the default ones
(Composite-d).

directions for the MRR histograms, while the directions of
these axes are swapped for the AR histograms in Fig. 10.
As indicated by the red arrows in Fig. 10, the best overall

performance is attained using P = 0.9 and λ = 0.7 for
DEAM and P = 0.9 and λ = 0.1 for PMEmo. The perfor-
mances obtained using these optimal P and λ are reported
as the ones of Composite-C in the comparative study in
Section IV-D. The fact that the Composite-C performances
are significantly worse than the ones of Composite veri-
fies the effectiveness of our proposed EMER-CL based on
distribution-based embeddings.

APPENDIX C
TUNING BASELINES
We explain how to tune the hyper-parameters of the
regression-based baselines, RegMLP-M2E, RegMLP-E2M,
RegBiGRU-M2E and RegBiGRU-E2M, used in Section IV-E.
RegMLP-M2E and RegMLP-E2M employ an MLP, and
RegBiGRU-M2E and RegBiGRU-E2M adopt an RNN based
on bidirectional GRU. The inputs of RegBiGRU-M2E and
RegMLP-M2E are a sequence X (m) of 128-dimensional
acoustic features extracted by VGGish, and their mean
x̄(m), respectively. The outputs of these baselines are a
2-dimensional emotion vector x̄′(e) that is a prediction of
the average arousal and valence for the music sample cor-
responding to X (m) or x̄(m). In contrast, RegBiGRU-E2M
and RegMLP-E2M take as input an arousal/valence sequence
X (e) of two-dimensional emotion vectors, and their mean
x̄(e), respectively. These baselines output a 128-dimensional
acoustic feature x̄′(m) as a prediction of the mean acous-
tic feature for the music sample associated with X (e) or
x̄(e). Below, we describe hyper-parameter tuning for hid-
den layers used between the above-mentioned inputs and
outputs.

Using the same music and emotion encoder architectures
as the ones optimised for EMER-CL (as reported in Sec-
tion IV-C) did not yield satisfactory performances for the

regression-based baselines. More specifically, the M2E base-
line obtained an MRR of 0.035 ± 0.001 and AR of 109.9 ±
0.3 on DEAM, and an MRR of 0.071 ± 0.004 and AR of
46.5 ± 0.7 on PMEmo. The E2M baseline yielded an MRR
of 0.018 ± 2e−6 and AR of 181.0 ± 0.006 on DEAM, and
an MRR of 0.057± 0.003 and AR of 65.9± 1.2 on PMEmo.
These performances are orders of magnitude worse than the
ones of EMER-CL reported in our paper. For this reason,
we attempted to improve the performances of the baselines
by further tuning their hyper-parameters.

We focus especially on the number of hidden layers and the
number of units per hidden layer, and carry out grid search on
them. More specifically, we tested configurations involving a
number of layers between one and five, and a number of units
per layer in {16, 32, 64, 128, 256, 512}. That is, when using
one, two, three, four and five hidden layers, the numbers of
possible architectures are 61, 62, 63, 64 and 65, respectively.
Thus, our grid search examines in total 9330 architectures.
Note that for RegBiGRU-M2E and RegBiGRU-E2M, the first
hidden layer is defined as a bidirectional GRU layer while
the others are defined as FC layers. For RegMLP-M2E and
RegMLP-E2M, all the hidden layers are defined as FC layers.
The activation function of units in FC layers is always soft-
plus, and a dropout rate of 0.5 is applied to FC layers that have
256 or 512 units. For a bidirectional GRU layer, the activation
functions are used as specified in [49], and no dropout is
employed. Furthermore, the MRR of each architecture is
monitored every 100 epochs until 10000 epochs, and the
model trained at the epoch that yielded the highest MRR is
selected for this architecture. One exception is that this per-
formance monitoring is continued until 50000 epochs unless
the training converges after 10000 epochs. It should be noted
that this setting to train the baselines is very favourable, con-
sidering that the performance of EMER-CL (i.e., Composite)
is evaluated only after the last epoch (5001 and 10001 epochs
for DEAM and PMEmo, respectively).

Finally, the architecture with the highest MRR after grid
search is always used for the comparison with EMER-CL
for all baselines, with one exception. In some configurations,
an architecture might yield a slightly lower MRR than the
highest one, but also a significantly better (lower) AR. It can
be considered that the architecture with the highest MRR is
relatively subject to overfitting, in which for some queries
(i.e., query music samples or query emotions), their associ-
ated samples (i.e., emotions or music samples) are ranked at
very high positions, while the ranks of samples associated
with other queries are very low. In these configurations,
we manually select the architecture with the notably better
AR among the ones returning the five highest MRRs.

Table 5 shows the selected architecture for each
of RegMLP-M2E, RegMLP-E2M, RegBiGRU-M2E and
RegBiGRU-E2M on DEAM and PMEmo. As seen from
Table 2, these baselines are significantly outperformed
by EMER-CL despite the comprehensive and careful
hyper-parameter tuning strategy. This verifies the effective-
ness of EMER-CL’s embedding approach.
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TABLE 5. Hyper-parameters of the baselines after grid search.

APPENDIX D
DETAILED ANALYSIS RESULTS FOR M2E
Fig. 11 shows the average cosine similarities computed for
M2E on DEAM and PMEmo. Cosine similarities are com-
puted between the mean acoustic feature of a query music
sample, and the one of the music sample associated to each
emotion ranked in the top 5% by EMER-CL. A high average
cosine similarity means that EMER-CL recognises emotions
expressed in music samples that are acoustically similar to a
query music sample. In other words, even if EMER-CL fails
to properly recognise the ground-truth emotion associated
with the query music sample, emotions reasonably relevant
to the query are still recognised because they are associated
with acoustically similar music samples to the query.

Just like Fig. 3, the bar graphs in the left part of
Fig. 11 (a) and (b) are drawn by sorting query music samples
in ascending order of the ranks rq of their associated ground-
truth emotions. The more to the left a query music sample
is located, the higher its associated emotion is ranked by
EMER-CL. It should be noted that the median of pairwise
cosine similarities among acoustic features of music samples
is 0.674 and 0.800 onDEAMand PMEmo, respectively. Each
of these numbers can be interpreted as the cosine similarity
between the acoustic features of two randomly selectedmusic
samples. The bar graphs and box plots in Fig. 11 show that the
median of average cosine similarities is 0.753 and 0.837 on
DEAM and PMEmo, respectively. These medians are signifi-
cantly higher than the median of pairwise cosine similarities,
which validates the meaningfulness of EMER-CL’s M2E
results. In addition, as shown by the box plots in Fig. 11, the
25th percentile (first quartile) of average cosine similarities
on DEAM and PMEmo are 0.709 and 0.810, respectively.
The fact that even these 25th percentiles are higher than the
medians of pairwise cosine similarities, indicates that in most
cases EMER-CL’sM2Eworks better than randomly selecting
an emotion for a query music sample.

APPENDIX E
ABOUT THE DETAILED ANALYSIS FOR E2M ON PMEmo
Fig. 3 (b) shows that the average cosine similarities in E2M
on PMEmo are very high, with a median of 0.994 close to

FIGURE 11. Bar graphs showing average cosine similarities and their box
plots for M2E on DEAM and PMEmo.

the maximum value of 1. The reasons behind this are dis-
cussed below. Fig. 12 depicts the distribution of 141 test emo-
tions, each of which is represented by the two-dimensional
mean emotion vector x̄(e) of an arousal/valence sequence
X (e). Here, arousal and valence intensities in PMEmo are in
[0, 1], so all the emotions are distributed only in the first
quadrant. Furthermore, the variance of this distribution is
small in particular, as illustrated in Fig. 12. As a result, the
average of pairwise cosine similarities among these emotions
is 0.9884±0.0196, and even the smallest pairwise cosine sim-
ilarity characterised by the emotions marked by the crosses in
Fig. 12 is 0.7846.
It should be noted that if the emotion ratings in Fig. 12

could be translated so that their origin is (0, 0), the
range of average cosine similarities would be much wider
and a detailed analysis based on them would be much
clearer. However, it is difficult to precisely locate the ori-
gin of the arousal/valence space in Fig. 12. For example,
z-normalisation can be carried out so that emotions have
zero mean and unit variance, but there is no guarantee that
the resulting zero vector corresponds to the origin. Cosine
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FIGURE 12. Distribution of PMEmo test emotions in the valence/arousal
space.

similarities significantly rely on the location of the origin
because they measure similarities between the angles of two
vectors. In addition, considering Russell’s circumplex model
where emotions are circularly located in the arousal/valence
space [4], an angle-based similarity measure like cosine sim-
ilarity is preferred to other types of measures like Euclidean
distance. Thus, reliable analysis is impossible when the exact
location of the origin is unknown. For this reason, our detailed
analysis on PMEmo is performed using the original arousal
and valence intensities without any modification.

APPENDIX F
COMPUTATIONAL COSTS OF EMER-CL
We discuss about the computational costs of EMER-CL by
referring to Table 6. Each number in this table indicates the
average runtime of 10 runs to train or test an EMER-CL
model with a random initialisation of all parameters and a
random 8 : 2 split of a dataset into training and test partitions.
The runtime for testing the EMER-CL model is the average
elapsed time to get an M2E (or E2M) result given a query
music sample (or query emotion). The hyper-parameters of
the EMER-CL model are set to the optimal values found in
Section A. Furthermore, the runtimes in Table 6 are measured
using a computer equipped with Intel i9-7900X CPU, 128GB
RAM and NVIDIA RTX 2080Ti GPU. The codes are written
using the TensorFlow library (version 1.15) based on CUDA
version 11.2.7

As it can be seen from the first column in Table 6, training
an EMER-CL model on PMEmo takes significantly longer
time than training it on DEAM, even though the training
partition of PMEmo only contains 561 music-emotion pairs.
One main reason is that both of the music and emotion
encoders for PMEmo are defined as RNNs that need to
process the acoustic feature or emotion vector sequentially
in time. To improve the scalability of EMER-CL, we plan
to define the music and emotion encoders as self-attention

7The codes are available at https://mu-lab.info/naoki_takashima/emer-cl

TABLE 6. Runtimes of EMER-CL.

models that can perform batch processing of acoustic features
or emotion vectors at all times [65].

The second and last columns in Table 6 show the very
short runtimes of EMER-CL’s test process. This is due to
the fact that the test partitions of DEAM and PMEmo only
contain 361 and 141 samples (i.e., music samples for E2M
or emotions for M2E), respectively. Nevertheless, since the
runtime of EMER-CL’s test process scales linearly with the
number of samples, the test process would still be expected
to finish within seconds even with a number of samples three
orders of magnitude higher than the currently tested numbers.

APPENDIX G
T-SNE PLOTS OF EMBEDDINGS ON THE PMEmo DATASET
In a similar way as for the DEAM dataset, we plotted the
t-SNE projections of the correlation-based and probabilistic-
based embeddings produced by both the music (φ(m), µ(m)

and σ (m)) and emotion models (φ(e), µ(e) and σ (e)) trained
on the PMEmo dataset. Plots were obtained for examples in
both the training and testing sets. For each example of either
dataset, we first computed the average emotion vector over
time x̄(e)j and used it to label the t-SNE projections in terms
of which quadrant in the arousal/valence space (HA/HV,
HA/LV, LA/LV or LA/HV) each music sample X (m)

j or mean

emotion sequence x(e)j was associated with.

Unlike for the DEAM dataset, the definition of the emo-
tional quadrants on PMEmo is not trivial. This is due to
the fact that both arousal and valence ratings are projected
into the [0, 1] interval, and that the dataset includes exclu-
sively pop songs which skew it strongly towards the quadrant
high arousal/high valence (HA/HV). Taking the centre of the
emotional space (0.5, 0.5) as cut-off point for the definition
of the quadrants leads to a very imbalanced data repartition
with 476, 53, 106 and 66 songs out of 701 associated to the
HA/HV, HA/LV, LA/LV and LA/HV quadrants, respectively.
To mitigate the effects of this imbalance, we instead take
the barycentre of all 701 PMEmo music samples in the
arousal/valence space (0.61, 0.63) as mid-point to define the
quadrants. This leads to a more balanced repartition of 306,
77, 84 and 234 songs associated to the HA/HV, HA/LV,
LA/LV and LA/HV quadrants, respectively. The t-SNE plots
of embeddings obtained with these emotion annotations are
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FIGURE 13. t-SNE projections of the music embeddings φ(m), µ(m) and σ (m) (respectively first, second and third rows) on the PMEmo training (left
column) and testing (right column) sets. The t-SNE projections are labelled with their associated emotional quadrants, i.e., high arousal/high valence
(HA, HV), high arousal/low valence (HA, LV), low arousal/low valence (LA, LV) and low arousal/high valence (LA, HV).

FIGURE 14. t-SNE projections of the emotion embeddings φ(e), µ(e) and σ (e) (respectively first, second and third rows) on the PMEmo training (left
column) and testing (right column) sets. The t-SNE projections are labelled with their associated emotional quadrants, i.e., high arousal/high valence
(HA, HV), high arousal/low valence (HA, LV), low arousal/low valence (LA, LV) and low arousal/high valence (LA, HV).

provided in Figs. 13 and 14 for themusic and emotion embed-
dings, respectively.

These figures show that embeddings tend to be grouped
by their associated emotional quadrants on both the training
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and testing sets, although this trend on the PMEmo dataset is
less clear than the one for the DEAM dataset, as some groups
mixing embeddings associated with different quadrants can
also be seen. We hypothesise that this is due to the fact that
the PMEmo dataset aggregates music samples belong to a
single genre (pop songs) that are quite similar to each other
in terms of audio features and elicited emotions. Despite this,
music samples or emotions associated to the same quadrants
still tend to be located in the same neighbourhoods of the
embedding space.
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