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ABSTRACT Convolutional neural networks trained on large datasets can generalize various down-streaming
tasks, including industrial anomaly detection and localization, which is critical in modern large-scale
industrial manufacturing. Whereas previous methods have demonstrated that the feature fusion strategy
across multiple layers is effective for better performance on industrial anomaly detection and localization,
they lack flexibility in intervening and manipulating the local and global information composition process.
Through experiments, we demonstrate that the brute-force feature fusion strategy used in previous methods
leads to sub-optimal performance in most industrial anomaly detection scenarios. To this end, we propose
a novel feature factorization and reversion framework based on invertible neural networks, enabling the
selective emphasis or suppression of distinct information in a continuous space by request to fit various
preferences for detecting different abnormalities. The preferred local and global info-combination for
detecting different defects on 15 objects is studied by experiments exhaustively on the popular benchmark
MVTec-AD. Based on feature factorization and reversion, ourmethod is able to outperform previous state-of-
the-art methods by a noticeable margin, achieving an image-level anomaly detection AUROC score of up to
99.67% (previously 99.4%), pixel-level anomaly localization AUROC score of 98.61% (previously 98.5%),
and AUPRO of 95.15% (previously 94.6%), which validates the effectiveness of the proposed method for
industrial anomaly detection and localization.

INDEX TERMS Industrial anomaly detection and localization, invertible neural network, feature factoriza-
tion and reversion.

I. INTRODUCTION
Formany years, industrial anomaly detection and localization
aims at pursuing the human ability to differentiate between
expected variance in the data and outliers given only a small
number of normal samples. As the types of abnormality
in industrial images could be unexpected and the defect
variations are costly to specify in full, it is better to fit an
anomaly detection and localization model using only non-
defective examples. Previous works have explored Auto-
Encoder [1], Variational Auto-Encoder [2], or Generative
Adversarial Net [3] to restore the input samples to normal
samples for comparison based on certain distance-based met-
rics, where the farther distance indicates a higher possibility
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for abnormalities to happen. However, these methods can be
limited by the ability of powerful neural networks to learn an
‘‘identical shortcut’’ [4], where both normal and anomalous
samples can be well reconstructed with similar errors, and
hence fail to spot abnormalities.

Recently, representation-based methods [5], [6] have been
applied to industrial anomaly detection and localization,
leveraging deep representations obtained from ImageNet
classification models [7], [8]. Inspired by the multi-level fea-
ture fusion strategy used in other computer vision tasks [9],
[10], [11], the feature fusion operation that integrates local
information encoded in low-level features and the global
information in high-level features could improve the model
performance for anomaly detection and localization [12],
[13], [14]. The success of thesemethods relies on the heuristic
insight that abnormalities can be spotted if unusual local
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semantic patterns are present or the global relations are topo-
logically anomalous, i.e., desired patterns are not shown in
the area as they ought to locate.

Whereas multi-level feature fusion strategies have shown
promising results for improving the accuracy of industrial
anomaly detection and localization, the proportion of local
against global information encoded in multi-level features
is fixed after training under the supervision of proxy tasks,
which would be sub-optimal for unsupervised industrial
anomaly detection and localization using the feature fused
across multiple feature pyramids: the inherited local and
global info-combination determined by pre-trained models is
NOT ideal for industrial anomaly detection and localization.
Unfortunately, previous works primarily focused on training
objectives of proxy tasks or the distance metric for feature
matching based on the conventional feature fusion operations
such as concatenation and neighborhood pooling, failing to
study the information composition process for better perfor-
mance in industrial anomaly detection and localization.

In this paper, we propose a novel method for industrial
anomaly detection and localization, namely Feature Fac-
torization and Reversion (F2R), based on invertible neural
networks [15]. Unlike previous methods that rely on the
inherited info-combination determined by pre-trained mod-
els, F2R intervenes in the feature fusion process through three
steps: (1) factorizing the pre-trained multi-level features into
separated local semantic and global positional representa-
tions, (2) emphasizing or suppressing distinct information
by scaling the representations individually, and (3) reversing
the scaled representations back to the original feature space
with the preferred proportion of local versus global infor-
mation. Notably, F2R can be trained under an unsupervised
setting and can serve as a plug-in module with arbitrary deep
feature extractors. The experimental results on the popular
benchmark MVTec-AD [16] demonstrate the superiority of
the proposed F2R over previous state-of-the-art methods,
achieving an image-level anomaly detection AUROC score
of up to 99.67%, which almost halving the error compared to
the previous best score of 99.4%. Additionally, F2R achieves
a pixel-level anomaly localization AUROC score of 98.61%
and AUPRO score of 95.15%, improved from the previous
best score of 98.5% and 94.6%, respectively. Our main con-
tributions are as follows:

• The conventional feature fusion strategy used in indus-
trial anomaly detection and localization is verified to
be sub-optimal, where the inherited local and global
info-combination determined by pre-trained models
needs to be delicately controlled to accommodate var-
ious preferences for detecting different defects.

• To this end, a novel method namely Feature Factoriza-
tion and Reversion (F2R) is proposed to intervene in
the feature fusion process based on invertible neural
networks, where the local and global information can be
emphasized or suppressed in a continuous space. With
the customized feature, abnormalities can be detected
and localized using existing distance-based metrics.

As the result, F2R can be plugged into any deep fea-
ture extractors to boost the performance of industrial
anomaly detection and localization.

• The proposed method achieves a new state-of-the-art
performance in industrial anomaly detection and local-
ization, validating our insights on the optimality of fea-
ture fusion strategy and showing the effectiveness of the
proposed method.

In the following of this paper, related works are summa-
rized in section II. The proposed method is presented in
section III, including the overall pipeline and the detailed
components. Experiments are conducted in section IV with
ablation studies and discussions. Finally, the conclusion is
drawn in Section V.

II. RELATED WORKS
A. INDUSTRIAL ANOMALY DETECTION
Usually, industrial anomaly detection methods can be cate-
gorized into reconstruction-based and representation-based
methods. Reconstruction-based methods assume that the
anomalous regions cannot be reconstructed if the model
is trained only on normal samples, where the reconstruc-
tion model could be Auto-Encoders [17], [18], [19], [20],
Variational Auto-Encoders [21], [22], [23] or Generative
Adversarial Nets [24], [25], [26], [27], [28]. However,
reconstruction-based methods are strong enough to recon-
struct anomalies, and hence fail to spot these defects. Accord-
ingly, memory mechanism [29], [30] and iteration mecha-
nism [31] are introduced to relieve this issue. Other works
propose to generate pseudo-anomaly samples [32], [33], [34]
for training as the proxy task. However, these methods partly
rely on how well pseudo-anomalies match the real anomalies
that are not known [35].

On the other hand, representation-based methods argue
that large-scale natural image datasets such as ImageNet [36]
can be more representative for pretraining compared to
small application-specific datasets. Based on the multi-level
feature extracted from ImageNet classification models,
representation-based methods are able to fit a normal distri-
bution using only features from normal instances, where the
anomaly score could be formalized as Euclidean distance [12]
or Mahalanobis distance [13] between the test and gallery
samples. Our method is most related to the unsupervised
representation learning methods via normalizing flow [37],
a typical invertible neural network. Both DifferNet [38] and
FastFlow [39] transform the feature into a tractable mul-
tidimensional Gaussian distribution and assign the likeli-
hood to recognize anomalies, whereas our method differs
from them in representation factorization to encode local
and global information individually, which allows for flex-
ible information integration. While previous methods have
discussed the combination of local and global information
in time series classification [40], [41], [42], our method is
specifically designed for industrial anomaly detection and
localization, where CFLOW-AD [43] is a related method that
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FIGURE 1. The overall pipeline of the proposed method consists of two neural networks, the pre-trained encoder E for feature extraction and an
invertible neural network T for information intervention. Specifically, the multi-level feature f is formalized by fusing feature maps from two
layers of E for both normal and anomaly samples, and there are three steps to intervene in the information integration: (1) the flattened
multi-level feature f is projected to the latent representation z using T , where z follows a spherical multivariate Gaussian distribution
p(z) ∼ N (z; 0, I); (2) the latent representation z is factorized into two statistically independent variables zl and zg that encode local and global
information respectively, and then both zl and zg are scaled by factors α and β to emphasize or suppress distinct information; and (3) the
intervened latent representation z̃ = [αzl, βzg] is reversed back to f̃ = T −1(z̃) in the original feature space for feature matching, where the
minimum Euclidean distance serves as the anomaly score for detection and localization.

explicitly adds positional information into transformed rep-
resentations, assuming that the feature vectors lack a global
view to perceive their spatial location. On the contrary, our
method only intervenes in the inherent information already
encoded in the pre-trained multi-level features and achieves
better performance, showing the existence of both local and
global information in multi-level features.

B. FEATURE FACTORIZATION
Principal component analysis [44] is a well-known technique
for feature factorization, being used for reducing the dimen-
sionality and enabling the visualization of multidimensional
data. However, the principal component may not be inter-
pretable in terms of human semantics. Therefore, deep feature
factorization [45] is proposed to discover human semantic
concepts in deep features, the most works of which focus
on the context of image generation, where the semantic fac-
tors are manipulated to generate novel images with desired
attributes [46], [47], [48], [49].

Besides the image generation, feature factorization has
also been studied in domain generalization that fits a model
to perform well on unseen target domains given multiple
observed source domains during the training [50], [51],
[52], [53]. To this end, deep features are decomposed into
domain-invariant features and domain-specific features. Dur-
ing the testing, only domain-invariant features are retained
when applied to target domains. Recently, feature factoriza-
tion is adapted for image retrieval [54] and network factor-
ization [55]. To the best of our knowledge, the proposed
method is the first work that adopts feature factorization in
industrial anomaly detection and localization and discusses
the information preferences for spotting various defects.

III. METHODOLOGY
In this section, we first introduce the pipeline of our method,
as shown in Fig.1, followed by the details of proposed

objectives for training the invertible neural network, includ-
ing the losses for invertible transformation and feature factor-
ization.

A. OVERVIEW OF THE PROPOSED METHOD
Given a pre-trained feature extractor E , the multi-level fea-
ture f can be formalized by fusing multiple feature maps at
different layers. In order to intervene in the connatural local
and global information encoded in f to fit the preferences for
detecting different defects, the very naive way is to factorize f
into local semantic feature fl and global position feature fg in
the original feature space for manipulation. However, it could
be challenging to conduct such feature factorization as the
true distribution f ∼ pθ (f) with parameters θ is unknown.
On the other hand, factorizing features that follow a tractable
density, e.g. a spherical multivariate Gaussian distribution
p(z) ∼ N (z; 0, I ), is more viable. To this end, an invertible
transformation T that satisfies z = T (f) and f = T−1(z)
is learnt, where the latent representation z is supervised to
encode local semantic representation zl and global position
representation zg channel-wisely, i.e., z = [zl, zg], where [·, ·]
denotes the concatenated tensor. Then, the local and global
information can be intervened by z̃ = [αzl, βzg], where α

and β are scaling coefficients as two hyper-parameters.When
α > 1 (β > 1), the local (global) information is emphasized,
otherwise the corresponding information is suppressed. Espe-
cially, when α = β = 1, the reversed feature f̃ = T−1(z̃)
should keep intact and the information is not intervened to
affect the original performance for anomaly detection and
localization.

B. INVERTIBLE TRANSFORMATION OF FEATURES
Optionally, the invertible neural network T can be imple-
mented by flow-based generative models [56], [57], [58].
Given a multi-level feature f ∈ Rh×w×c, where h, w, and
c denote the height, width and the hidden dimension, the
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multi-level feature can be flattened into the shape of Rhw×c

and z = T (f) is as the same shape of f. In this way, each input
image can generate hw high-demensional vectors following
unknown true distribution f ∼ pθ (f) with parameters θ and
the log-likelihood of f can be written as:

log pθ (f) = log pθ (z) + log | det(dz/df)|

(1)

where the log-determinant log | det(dz/df)| is the logarithm
of the absolute value of the determinant of the Jacobianmatrix
(dz/df) of the transformation function T [37]. Besides, when
the latent representation z follows spherical multivariate
Gaussian distribution p(z) ∼ N (z; 0, I ), minimizing the
negative log-likelihood of f is equivalent to minimize Gaus-
sian negative log-likelihood of the latent variable z and the
negative log-determinant of the transformation function T .
As the result, the loss function to minimize the negative
log-likelihood can be written as:

Lnll = ||T (f)||2 − log|dz/df|

= ||z||2 − log|dz/df| (2)

where the log-determinant can be efficiently computed when
the Jacobian of the transformation function is a triangular
matrix [58]. Based on the invertible neural network T , the
representation f can be mapped to a latent representation z
and vice versa, which works as the basic tool for predicting
factorized features and re-integrate the disentangled informa-
tion during the feature reversion.

C. FEATURE FACTORIZATION
In order to factorize z into zl and zg that encode local semantic
information and global position information respectively, the
mutual information between zl and zg, denoted as I(Zl,Zg),
should be minimized. In addition, the local representation zl
should mirror the semantic patterns in the original feature
embedding f, which requires a maximization of the mutual
information I(Zl,F). Similarly, the global representation zg
should be able to preserve the absolute position informa-
tion P. Thus, the mutual information I(Zg,P) should be
maximized as well. In summary, we propose the loss function
for feature factorization as:

Lf = I(Zl,Zg) − I(Zl,F) − I(Zg,P) (3)

Due to the difficulty to estimate mutual information
for continuous variables, the variational lower and upper
bounds [55] are adopted as the proxy for optimization:

I(X ,Y ) ≥ Ep(y,x)[log q(y|x)]

I(X ,Y ) ≤ Ep(y) [DKL[p(y|x)∥q(y)]] (4)

where q(y|x) and q(y) are the approximations of p(y|x) and
the marginal distribution of p(y), both of which can be esti-
mated by Multi-Layer Perceptrons (MLP) [59]. Based on (4),

FIGURE 2. Objectives for training the invertible neural network T assisted
by two auxiliary MLPs, including (1) Lnll that trains T to predict z
following the distribution of Gaussian, (2) the first term of Lf (Lf .1) that
factorizes zl and zg, (3) the second term of Lf (Lf .2) that trains zl to
encode local semantic information by approximating the original
features, and (4) the third term of Lf (Lf .3) that trains zg to encode
global positional information by predicting the positional label
Yp ∈ [0, N − 1], i.e., the index of its corresponding feature. Both Lnll and
Lf can be calculated in an unsupervised manner.

Lf can be upper bounded as:

Lf = I
(
Zl,Zg

)
− I (Zl,F) − I

(
Zg,P

)
≤ Ep(zl)

[
DKL

[
p

(
zl|zg

)
∥q(zl)

]]
− Ep(f,zl)

[
log q (f|zl)

]
− Ep(p,zg)

[
log q

(
p|zg

)]
(5)

where these three terms can be further simplified as the
latent variable z is supervised by Lnll to follow spherical
multivariate Gaussian distribution p(z) ∼ N (z; 0, I ).
Term 1: the KL divergence between p(zl|zg) and q(zl) can

be minimized when p(zl|zg) = q(zl) ∼ N (z; 0, I ), i.e., zl
is independent to zg. For two variables following zero-mean
unit-variance Gaussian distribution, this term can be simpli-
fied as optimizing the covariance between zl and zg to zero,
which could be represented as |6(zl)(zg)T | → 0. During
the training, the covariance is approximately estimated batch-
wisely.
Term 2: the negative log-likelihood of f with respect to zl.

The maximization of Ep(f,zl)
[
log q (f|zl)

]
can be achieved

when ||f − MLPl(zl)||2 is minimized for regression task or
cos(f,MLPl(zl)) is maximized for binary classification task,
where MLPl denotes a MLP model with zl as input and cos
denotes the cosine similarity between the two vectors.
Term 3: the negative log-likelihood of position informa-

tion P with respect to Zg. Similar to term 2,MLPg is adopted
to predict the position label Yp ∈ [0, 1, 2, . . . ,N − 1] with
input zg as the proxy task, where N equals to hw, the spatial
size of the feature map. By default, the cross-entropy is
adopted as the supervision loss to optimize this term.

To sum up, the invertible neural network T can be opti-
mized through the combination of Lnll and Lf in an unsuper-
vised manner:

L = γLnll + Lf (6)

where γ = 0.001 is the default weight coefficient in all
experiments if not specially specified.
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FIGURE 3. Examples of anomaly localization results on MVTec-AD, where odd rows display the input images with ground truth labeled in red
edges, and even rows display the corresponding anomaly localization heatmaps.

Please Note that the proposed objective depends only on
the outputs of the feature extractor and the invertible neural
network, except the position label Yp that can be inferred
by the indexes of the feature vectors on the corresponding
multi-level feature map. Consequently, the model can be
trained in an unsupervised manner as shown in Fig.2.

IV. EXPERIMENTAL RESULTS
A. IMPLEMENT DETAILS
1) GENERAL SETTINGS
In all experiments, a pre-trained WideResNet-50 [8] model
is used as the feature extractor. As shown in previous
representation-based methods [12], [13], [14], [60], the fea-
ture maps from stages 2 and 3 are verified to be effec-
tive for anomaly detection and localization. Therefore, the
multi-level feature is also formed in our experiments for a
fair comparison. In addition, the invertible neural network T
is implemented following [58] with 6 flow steps, while both
MLPl and MLPg have 4 linear layers with BatchNorm [61]
and LeakyReLU [62] layers in between.

For training, AdamW optimizer [63] is used with a learn-
ing rate of 2e-4 and the coefficient betas are (0.9, 0.999).
The batch size is 32 and the weight decay is set to 0.05.
Besides, a simple image augmentation of random rotation in
30 degrees is adopted. The training process lasts 300 epochs
with a cosine learning rate annealing strategy. After the train-
ing, two auxiliary MLPs are discarded.

For testing, the reversed features f̃normal of normal samples
are collected as the gallery. In order to reduce the gallery set

for fast feature matching, a subset of the whole gallery is
selected following [14]. Specifically, multiple feature vectors
that locate closely are considered redundant, therefore only a
few representative vectors are selected as the centroids while
others are discarded. Consequently, the minimum Euclidean
distances between f̃test and f̃normal on each position are used
as the anomaly heatmap for anomaly localization and the
maximum value on the heatmap serves as the anomaly score
for image-level anomaly detection.

2) DATASET
To study the information preferences for industrial anomaly
detection and localization, the MVTec Anomaly Detection
benchmark [16] is used, which contains 15 sub-datasets with
3629 images for training and 1725 images for testing. Each
sub-dataset is divided into a nominal-only training set and
a testing set containing both normal and anomalous sam-
ples with various defects as well as respective ground truth
anomaly masks. All training and test images are resized to
256×256 and center-cropped to 224×224 for feature extrac-
tion, factorization, reversion, and anomaly score calculation.

3) EVALUATION METRICS
As the metrics of True Positive Rate and False Positive Rate
are threshold-specific and the optimal threshold may vary
to satisfy different scenarios, the commonly used threshold-
agnostic metric, the area under the receiver operator curve
(AUROC), is reported for the evaluation of image-level
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TABLE 1. Anomaly detection performance on MVTec-AD in the term of image-level AUROC, where bold values denote the best results and underlined
values are the results just following. Our method achieves superior performance on 12 out of 15 objects and the best anomaly detection result on average.

TABLE 2. Anomaly localization performance on MVTec-AD in the term of pixel-level AUROC, where bold values denote the best results and underlined
values are the results just following. Our method achieves superior performance on 8 out of 15 objects and the best pixel-level AUROC on average.

anomaly detection performance. As to the evaluation of the
pixel-wise anomaly localization performance, the pixel-wise
AUROC and the area under the per-region-overlap curve
(AUPRO) are reported, where the AUPRO score accounts
better for varying anomaly sizes. Please refer to [64] for more
evaluation details.

B. COMPARISON TO STATE-OF-THE-ARTS
1) ANOMALY DETECTION ON MVTec-AD
The results of image-level anomaly detection on MVTec-AD
benchmark are reported in Table.1, where recent state-of-the-
art methods [4], [12], [13], [14], [33], [34], [38], [39], [43] are
listed for comparison. DRAEM [34] and UniAD [4] are two
reconstruction-based methods. SPADE [12], CutPaste [33],
PaDiM [13], and PatchCore [14] are representation-based
methods. In addition, DifferNet [38], FastFlow [39], and
CFLOW-AD [43] are listed as they adopt normalizing flow

models to project features to latent representation before
anomaly score calculation. On the contrary, our method
reversed the latent representation back to the original fea-
ture space for anomaly score calculation. The best setting of
hyperparameter α and β is found by grid search from 0.0 to
1.2 with a step size of 0.1 and the best results of each object
are reported for comparison. With the ability to intervene in
the process of information integration, our method achieves
an averaged image-level anomaly detection AUROC score
of up to 99.67%, almost halving the error compared to the
next best competitor, which is 99.4%. Besides, our method
achieves superior performance in detecting defects on 12 out
of 15 objects.

2) ANOMALY LOCALIZATION ON MVTec-AD
Examples of visualized qualitative results are shown in Fig.3.
In addition, the detailed quantitative results are reported in the
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FIGURE 4. Anomaly heatmaps of localization examples with different α and β. The information preferences from left to right objects are
roughly ordered from local to global, whereas the samples in the middle prefer balanced local and global information to spot abnormalities.

TABLE 3. Anomaly localization performance on MVTec-AD in the term of
AUPRO, where bold values denote the best results and underlined values
are the results just following. Our method achieves superior performance
on 11 out of 15 objects and the best AUPRO on average.

term of pixel-wise AUROC in Table.2, andAUPRO in Table.3
if available. Consistently, our method achieves the best aver-
aged pixel-level AUROC and AUPRO of 98.61% and 95.15%
respectively. For previous methods that fail to intervene in
the inherited local and global information determined by
pre-trained models, they may perform better when spotting
defects on certain objects but compromises on others. For
example, DRAEM outperforms other methods on the bottle,
grid, hazelnut, and metal nut data. However, it performs
unsatisfactorily on other objects, resulting in a lower average
pixel-wise AUROC. For the second best method, FastFlow
performs closely to ours but misses the importance and effec-
tiveness of the intervention in local and global information,
which empowers our method to achieve better performance
in industrial anomaly detection and localization.

In particular, CFLOW-AD explicitly adds positional
embedding into features using a conditional flow-based
model, implying that the feature embedding lacks global
information to perceive its position. In contrast, our method
assumes that the feature map extracted by pre-trained models
contains both local semantic and global position information

TABLE 4. Anomaly detection and localization results on MVTec-AD of the
two implementations of the proposed method. The metrics are reported
in a triplet of image-level AUROC, pixel-wise AUROC, and AUPRO, where
bold values denote superior results.

as an entirety, of which the insight guides us to conduct
feature factorization and achieves better results in general.

C. ABLATION STUDY
1) ON THE IMPLEMENTATION OF FEATURE FACTORIZATION
LOSS
Our method has two implementations depending on the real-
ization of the second term in representation factorization
loss Lf . Specifically, when q (f|zl) is assumed to follow
Gaussian, the second term of Lf could be supervised as a
regression task, denoted asOurs (Reg.). Besides, when q (f|zl)
is assumed to follow the binomial distribution, this term
could be supervised as a binary classification task, denoted
as Ours (Cls.). Accordingly, the performance of anomaly
detection and localization on MVTec-AD of these two vari-
ants is reported in terms of image-level AUROC, pixel-wise
AUROC, and AUPRO in Table.4, which shows that Ours
(Cls.) performs a little better on most objects and q (f|zl) may
be more realistic to be a binomial distribution. Consequently,
Ours (Cls.) is used as the default implementation in other
experiments.
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TABLE 5. Spearman (Partial) Correlations between the variable and
pixel-wise AUROC, where variable includes α, β, and −|α − β|, showing
information preferences and the necessity of information equilibrium.

2) ON THE INFORMATION PREFERENCES TO SPOT
ABNORMALITIES
The performance of the proposed method depends on the val-
ues of scaling factors α and β, reflecting the information pref-
erences for spotting different types of abnormalities. Fig.4
illustrates examples of anomaly heatmaps for all objects in the
MVTec-AD dataset, where objects on the left demand local
information to detect defects, while objects on the right bene-
fit from global information. In most cases of texture data and
unaligned objects, global information would introduce more
background noise to the heatmaps, as seen in the samples
from leather to hazelnut. In contrast, aligned objects require
global information to refine the results of anomaly localiza-
tion, as shown by the clearer and more salient heatmaps from
pill to cable samples. Additionally, heatmaps that prioritize
local information (β = 0.1) are more similar to the unaltered
anomaly heatmaps (α = β = 1.0) than those prioritizing
global information (α = 0.1), indicating thatmost defects can
be detected using only local semantic information. However,
global information could be more useful in detecting missing
parts, as in the cases of cable, capsule, and transistor samples.

In addition, Table.5 reports the Spearman partial correla-
tions [65] between α (β) and pixel-wise AUROC, as well
as the Spearman correlations between negative difference
−|α − β| and pixel-wise AUROC as the quantitative result
for the stated discovery, which shows that most texture data
and unaligned objects prefer local semantic information for
anomaly detection and localization, as evidenced by highly
positive correlations between α and pixel-wise AUROC.
On the other hand, capsule and transistor samples prefer only
global information, as evidenced by relatively high positive
correlations between β and pixel-wise AUROCwith negative
correlations between α and pixel-wise AUROC. For other
objects, both local and global information are required in
equilibrium, as shown by relatively high positive correlations
between −|α − β| and pixel-wise AUROC. Therefore, these
quantitative results confirm the discovery that different types
of defects require distinct information to spot.

TABLE 6. Computational complexity versus the performance of industrial
anomaly detection and localization in terms of averaged image-level
AUROC (iAUROC) and pixel-wise AUROC (pAUROC). Our method achieves
the best performance on average with decent computational complexity,
inferred by the number of multiply-accumulate operations (MACs) and
parameters (Params).

3) ON THE COMPUTATIONAL COMPLEXITY VERSUS THE
ANOMALY DETECTION AND LOCALIZATION PERFORMANCE
Table.6 compares the performance and computational com-
plexity of severalmethods based on different neural networks,
including UNet [66],WideResNet-50 (WR50) [8], and differ-
ent invertible neural networks (INN) [15], [57], [58], [67].
DRAEM, as a reconstruction-based method, requires the
most multiply-accumulate operations (MACs) for image
reconstruction. On the contrary, representation-based meth-
ods, such as SPADE, PaDiM, and PatchCore, require fewer
computational operations and have a smaller number of
network parameters (Params). However, SPADE performs
k-nearest-neighbor clustering between the test and gallery
samples, which is typically slower than convolutional neural
networks, while PaDiM stores training-time statistics that
demand large memory. To this end, PatchCore proposes a
feature selection process to reduce the required memory.

Regarding the methods based on both WR50 and INN,
DifferNet has the highest computational operations and the
number of network parameters. For the remaining methods,
CFLOW-AD adopts a relatively large model, and FastFlow
still requires a large amount of computational operations.
In comparison, our method achieves the best performance
with decent computational complexity. Furthermore, when
compared to the methods based only onWR50, F2R achieves
the most significant performance gain among the methods
based on both WR50 and INN, demonstrating the effective-
ness of the information intervention process in the proposed
method.

V. CONCLUSION
In this paper, we studied the information preferences for
spotting different defects in industrial anomaly detection and
localization. To this end, a framework termed F2R is pro-
posed to factorize multi-level features into two latent repre-
sentations that encode local semantic information and global
positional information respectively, based on which distinct
information can be emphasized or suppressed by request to
recognize different defects. As the result, our method not only
outperforms previous state-of-the-art methods but also pro-
vides more insights into information preferences for spotting
different defects by ablation studies.
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As to the limitation of the proposed method, there are two
hyper-parameters α and β that need manual adjustment in
this work, which is expected to be automatic via reinforce-
ment learning. Besides, the ablation study shows that it could
be reasonable when q (f|zl) is trained following a binomial
distribution, whereas a more comprehensive and preferable
distribution needs investigation in the future work.
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