
Received 12 February 2023, accepted 5 April 2023, date of publication 10 April 2023, date of current version 13 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3265731

Enhancing Bug Localization Using Phase-Based
Approach
AMR MANSOUR MOHSEN 1, HESHAM A. HASSAN2, KHALED T. WASSIF 2,
RAMADAN MOAWAD 1, AND SOHA H. MAKADY 2
1Department of Computer Science, Faculty of Computers and Information Technology, Future University in Egypt, Cairo 11835, Egypt
2Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University, Cairo 11865, Egypt

Corresponding author: Amr Mansour Mohsen (Amr.Mansour@fue.edu.eg)

This work was supported by Future University in Egypt.

ABSTRACT Software bug localization is an important step in the software maintenance process. Automatic
bug localization can reduce the time consumed in the process of localization. Some techniques are applied
in the bug localization process, but those techniques suffer from limitations in time and accuracy. This
paper proposes a phase-based bug localization approach to overcome these limitations. The approach is
composed of three main phases which are raw data preparation, package classification, and source code
recommendation. The main input to our approach is a bug report and the source code of the past versions
for the target system of interest. From the bug report, various information is utilized: the summary, the
description, the stack traces, and the fixed source code files. The raw data preparation phase is used to
restructure those inputs. The package classification phase aims to locate the package that would include the
source code to be modified as a first step, hence reducing the time needed to locate the source code file due to
the lexical mismatch between those files and the bug report data. Bidirectional Encoder Representations from
Transformers (BERT), which is a sentence embedding technique, is utilized in the package classification and
source code recommendation phases. The experimental results show that our approach outperforms existing
approaches according to TOP-N rank and Mean Reciprocal Rank (MRR) evaluation metrics.

INDEX TERMS Bug localization, bidirectional encoder representations from transformers (BERT).

I. INTRODUCTION
Themain software processes of building the software are soft-
ware specification, software design, implementation, soft-
ware validation, and software evolution [1]. The software
evolution phase involves accommodating new requirements
as well as fixing the found bugs. Such phase is the longest
phase of the software lifecycle and consumes up to 70%
of its time. Bug localization is one of the most important
tasks in software evolution. Bug localization is the process of
finding a bug or error that appeared in the software during
operation. Locating the bug manually is an expensive and
time consuming process. [2].

Many automatic bug localization techniques are applied to
find the bugs in the software. Different software artifacts are
utilized to localize bugs as the source code, past bug reports,

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Ali Babar .

and test cases. The bug report is a document that illustrates
the bugs that appeared in the software [3]. The bug report
consists of the bug summary, description, stack traces and bug
metadata like who reports the bug and who solved it. Some
techniques utilize bug report’s text directly in order to find
the location of the bug using information retrieval techniques
[4], [5], [6], [7]. Such techniques utilized similarity measures
between bug reports text and different source code files. The
calculated similarity scores for source code files are sorted in
descending order to find the most related source code file to
the bug report. Other techniques utilize machine learning to
find bugs by feeding the information of past solved bugs for
training the model [8], [9], [10], [11], [12], [13].

The above mentioned techniques suffer from three main
limitations: (1) lack of bug localization artifacts (2) con-
text mismatch, and (3) increased time to locate the bug
in large code bases. We discuss those limitations as
follows.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 35901

https://orcid.org/0000-0003-1048-5868
https://orcid.org/0000-0002-7401-5219
https://orcid.org/0000-0003-2349-8203
https://orcid.org/0000-0002-3330-6204
https://orcid.org/0000-0001-9696-3626


A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

Limitation 1: (lack of bug localization artifacts), several
techniques utilize old bug reports to locate the bug. Such
techniques would not work if the analyzed project is a new
one that does not contain any historical bug reports.
Limitation 2: (context mismatch), Information retrieval

techniques only consider the text of the source code files
to calculate the similarity measures, without considering the
context of the analyzed text during the analysis. Such con-
text would improve the classification accuracy if considered.
For example, consider source code file1 contains the tokens
[‘‘bind’’, ‘‘hello’’, ‘‘setVisible’’. . . ], and source code file2
contains the tokens [‘‘applet’’, ‘‘setVisible’’, ‘‘aspect’’ . . . ].
Consider that a bug report text contains [‘‘find’’, ‘‘bug’’,
‘‘setVisible’’ . . . ]. If only text similarity is applied depending
on an applied technique, the result may be only reference file
1 as the buggy source code file. However the source code file
2 may be the result. The context stated here is the source code
file and the word ‘‘setVisible’’ that appeared in two different
contexts which may result in misclassification.
Limitation 3: (bug localization time), some information

retrieval techniques [4] that use similarity measures between
the new bug reports text and all source code files text, take a
significant time for applying the similarity. For example, JDT
software project dataset contains more than 8000 source code
files. If we want to apply a text similarity technique [14], the
search time between the new bug report and all source code
files will be on the 8000 source code files. So the time to
search the bug would be large, and needs to be reduced.

To overcome the mentioned limitations of past techniques,
a phase-based approach is proposed. The approach consists
of three main phases. Raw data preparation phase is used
for the preparing different software artifacts such as bug
report text and source code files. Additionally, overcoming
Limitation 1 by combining the source code files text and
old bug reports text if available for a specific source code
package. Also if the old bug reports are not available, only the
available source code files could be used for locating the bugs.
Package classification which utilizes BERT [15] addresses
Limitation 3 by recommending only a software package of a
software. The recommendation phase reduces the search time
to find the buggy source code file by narrowing the space of
search. Source code files recommendation phase outputs the
specific buggy source code file by putting into consideration
the context of source code files text thus overcoming Limita-
tion 2.

The main contributions of the paper are summarized as
follows:

1) Improved bug localization technique that works for
projects that do not have historical bug reports through
a novel bug localization approach.

2) Introducing a package classification phase to pro-
duce the recommended package, in order to overcome
the time problem. The package classification phase
reduces the search space by recommending the buggy
package. The recommended package consists of defi-

FIGURE 1. The Phase-Based Bug localization Proposed Approach
Architecture.

nite source code files and not all the source code files
of the project.

3) We evaluate the performance of our phase-based bug
localization approach on two different datasets in terms
of accuracy and the needed time for bug localization.
Our approach achieves an enhancement considering
time and accuracy.

The rest of the paper will be divided as follows: Section II
describes the proposed approach. Section III presents the
experiments and evaluations that were applied to verify the
proposed approach. Section IV presents the threats to validity.
Section V shows the related work, and Section VI concludes
the paper.

II. THE PROPOSED APPROACH
In this section, the proposed Phase-based bug Localization
(PBL) approach will be presented. As shown in Figure 1,
the approach consists of three main phases: (1) raw data
preparation, (2) package classification, and (3) source code
files recommendation for fixing.

The raw data preparation phase involves preparing the arti-
facts of the project of interest for analysis. For any project, the
following artifacts are given as an input to the data preparation
phase: (a) the old resolved bug reports, (b) the source code of
that project along with its packages’ structure, and (c) the new
bug reports that need to be localized and fixed. Such software
artifacts would be extracted from some bug tracking system
and version control system for the software. The output of the
raw data preparation phase is a structured and organized form
of bug reports and source code files for further processing.

The package classification phase is a classifier that has
been trained on different features. The output of this phase
will be a recommended package of the software project that
contains the bug. Such step is needed to reduce the time
needed to localize the buggy source code files, by first local-
izing the buggy packages. The time complexity is reduced
since the result is a recommended package that would most
probably contain the bug. That phase helps the next phase
of source code files recommendation in narrowing the search
space of source code files to search in.

35902 VOLUME 11, 2023



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

The source code files recommendation works on recom-
mended package and stack traces for the input bug report if
available to recommend files that contain bugs.

To formulate the problem, the symbol NBR is used to
denote the new bug report. Also, the symbol RSF refers
to a ranked list of source code files that resulted from our
approach. Each software project will be denoted with SP
and it consists of a list of software packages PSP ∈ SP.
Therefore PSP= {psp1, psp2. . .pspp} where P is the number
of software packages. Additionally, a list of source code files
will get the notation PSF ∈ PSP ∈SP, then PSF = {psf1,
psf2. . .psfF} where F is the number of source code files. Each
source code file consists of terms PSFT which indicates the
classes’ names, methods, variables and comments. Another
notation which is BRR to indicate a list of old bug reports
extracted from the project bug repository. Furthermore the
BRR consists of old bug reports, BRR = {obr1, obr2... obrR}
where R is the number of bug reports in the system. The
unstructured natural text that located in the bug report like bug
summary or bug description will be represented with BRTN
∈ NBR for text in new bug report and BRTO for text in the old
bug report. STR will represent the stack trace located in a bug
report either a new or old bug report.

Hence our problem will be formulated as finding a list of
ranked source code files RSF for a given new bug report NBR
which contains text NBR and probably a stack trace STR
given a list of packages PSP for software, PSF source code
files with its terms PSFT. In addition to that a list of old bug
reports BRR with its text BRTO.
Within the following subsections, we will explain each

phase in more details.

A. RAW DATA PREPARATION
In this phase, all inputs to the approach (bug reports and
Source code files) will be gathered and preprocessed as
shown in Figure 2. The first task is the bug report data extrac-
tion and preparations which takes old bug reports as input
from the bug tracking system on which the bug reports are
published. The second task is the source code files extraction
and preparation, by taking the source code files with their
different versions from the version control systems as input
to put them in a structured form. Afterwards, text processing
and text combination task is performed to produce structured
bug reports and structured source code files. Such structured
information would be the input to the package recommenda-
tion phase. We explain each of those three tasks.

1) BUG REPORTS EXTRACTION AND PREPARATION
Structured and unstructured text information is extracted
from the bug report. Project name, project version, data
report time, bug report status, and assignee are all structured
metadata for the bug report that are already available within
specific fields within the bug reports. Figure 3 presents a real
bug report extracted from Eclipse bug tracking system for
JDT software project. The bug report description is not in an
organized form but it is a mix between English text, source

FIGURE 2. Raw Data Preparation Phase.

FIGURE 3. A real bug report from JDT project.

code and stack traces. The structured form will separate
the English text from the stack traces and from the source
code. Such step is needed because each item from the bug
report will have special preprocessing for the bug localization
process. The unstructured data appears in the bug summary
and the bug description. This type of textual data written in
the English natural language needs to be in an organized and

VOLUME 11, 2023 35903



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

TABLE 1. Example of a bug report applying separation by infozilla.

separated form. The bug description may consist of different
types of information like English text, stack traces, and source
code files. Such information can all be mixed as one unit
of text without any separation within the input bug report.
For example, Figure 3 shows an example for such kind of
bug reports. The bug description within the bug report in
Figure 3, starting from ‘‘in junit.awtui.TestRunner. . . ’’ till
‘‘. . . (SelectionAnalyzer.java:73)’’ is composed of three parts:
natural text, stack traces, and source code, but those parts are
currently one unit of text. Therefore, additional processing
is needed to separate such data into three separate parts:
text, stack traces, and source code as shown in Table 1. The
infozilla tool [16] is applied in our approach to perform the
bug report text separation task. Moreover, the stack traces is
extracted from the new bug report to be used as an input for
the source code classification phase to minimize the search
space. However, the stack traces of the old bug reports com-
bined with description English text will be used with old bug
report data as a one unit. The reason behind separation is that
each separated item will have special further processing to
help in finding the bug.

2) SOURCE CODE EXTRACTION AND PREPARATION
First, different software packages and their source code files
with different versions are extracted from the version control
system of the software project. The preparation phase is then
applied by going through different files and putting them in an
organized form. The organized form of each source code file
is composed of the project name, file name, project version,
file path, files’ main package, commit number, and source
code text. After that source code items extraction subtask will

take the source code file text as a one unit. Then the output
will be the (classes name, method names, identifiers, and
code comments) in separated form. The combination subtask
will modify the structured form of the old bug reports and
source code files by adding the file and package referred to
the source code or old bug report.

3) TEXT PREPROCESSING AND COMBINATION
After applying the bug reports and source code extraction
and preparation tasks, that applied by both the bug reports
and the source code files are transformed into a structured
form. Further preprocessing is needed for these files. First,
the text in the bug report passes through natural language
processing steps like (Tokenization, Stop words removal, and
Stemming) [17]. As a result of this step, we have a bag of
words for the bug reports and also source code files. Another
subtask is applied here to the source text items which is
programming terms splitting. If we have a method name
called ‘‘addTwoNumbers’’ it will be divided into [‘‘add’’,
‘‘Two’’, ‘‘Numbers’’]. This step will enhance the process of
text retrieval or matching similarities. Additionally, this sub
task will be applied to source code items and comments.

B. PACKAGE CLASSIFICATION PHASE
The output of this phase will mainly be the software package
that contains the bug. Such a phase is applied to reduce
the needed time for source code files recommendation, and
improve the accuracy of the recommended files as well.
To reduce the needed time to recommend the source code files
that contain the bug, we need to reduce the number of source
code files on which the text similarity would be computed.
For instance, one text similarity approach [18] had to apply
text similarity to more than 8000 files within the JDT dataset
in order to locate the source code files to be fixed. To reduce
such number of files, our approach will start by recommend-
ing one source code package, where such package would
have the source code file to be fixed among its files. After
locating the recommended package, the text similarity would
be applied only to the source code files within that package.
For example, if our approach recommends the package ‘‘AST
view’’ within the JDT dataset, we would need to run the text
similarity analysis only on the 7 files present within such
package, instead of the 8000 files present within the JDT
dataset. Our approach is expected to improve the accuracy
of recommendation. Some source code files or methods may
take the same name in different packages, hence limiting the
search within the recommended package, will discard such
files from the similarity matching, and hence increase the
accuracy of source code files recommendation.

Another important advantage of the proposed approach is
the ability to work under different circumstances. When the
input data for a software project is just source code files,
our approach will work. In addition, the presence of old bug
reports are also treated with our approach. Source code files
and bug reports represents input training record to classify a

35904 VOLUME 11, 2023



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

package first in this phase. Therefore, if the old bug reports
is not available, the approach will find the buggy source code
files by the utilization of available source code files that are
labelled with its package.

The package classification phase as shown in Figure 4
consists of three main tasks: pre-processing the data for the
BERT model, applying the BERT model, and fine tuning the
BERT model.
BERT is a bidirectional encoder representation of different

transformers [15]. The main operation of BERT comes from
learning the context of information. All the prepared struc-
tured data from the previous phase is fed into the BERT pre-
processing phase to prepare the needed format for the BERT
model. Such format includes a feature list. After running the
BERT model, real number vector will be received, and input
into the BERT fine tuning phase. The output of such phase
will be a trained model for the recommending the software
package. Such trained model can then receive a new bug
report as an input, and recommend the package including that
bug report. Wewill discuss each of the above mentioned tasks
in the following subsections.

1) BERT PREPROCESSING
BERT preprocessing task will consist of three main subtasks.
Which is data labelling, tokenization and padding, and finally
numbering as shown in Figure 4.
The Data Labelling subtask will label each training record

with its software package. The training records will be in
different forms: old structured bug reports, structured source
code files. To enhance the process of training, the old struc-
tured bug reports will be concatenated to their solved source
code files, and will be treated as training records as well.
Such concatenation will help the training model to capture
different contexts of bug reports terms that appear in different
source code files. Each concatenation will be counted as a
training record labeled with the classified software package.
Moreover, each source code file in different versions of the
project will be fed the training model labeled also with its
package.
Tokenization and Padding subtask is applied to each of

labelled records from the data labelling subtask. The BERT
tokenizer [18] will first split the data into small chunks. The
padding step is enforced by imposing the size of any input
training record to a fixed size for all records.
Numbering subtask is applied using the vocabulary of the

training data. Each term on the training data will be have a
unique id. Thus, the terms of each record will be converted
into numbers to be the input for the BERT model.

2) BERT MODEL PROCESS
The bert model architecture consists of about 12 layers that
consist of self-attention mechanisms [19]. The role of self- FIGURE 4. Package Classification Phase.

VOLUME 11, 2023 35905



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

FIGURE 5. Source code recommendation Phase.

attention is to enhance each token embedding input by getting
different contexts for each token.

Although the directions between different layers of bert
is an indication of the consideration of the bert to different
bidirectional contexts of each term. The output of the model
will be a 768 dimension vector for each token in each training
record which represents the sentence embedding.

3) BERT FINE TUNING
The sentence embedding of the bug reports and source code
files attached with its package classification will be the input
of the fine tuning task. The training data will enter another
layer which is the feed-forward neural networks [20] with
the softmax function. Each training record will enter the
network with its labeled package. Accordingly, the trained
output model will be utilized by entering a structured new
bug report sentence embedding to classify the new bug report
to a specific software package for the next phase.

C. SOURCE CODE RECOMMENDATION PHASE
After the package classification is finished, we got the rec-
ommended package that will contain the bug. If the new bug
report contains a stack trace, the files in this stack trace will be
taken into consideration as well. Figure 5 shows the steps in
this phase. Subsequently, the recommended package source
files and past related bugs to the specific packagewill be input
into this task. Moreover, a text similarity technique which is
sentence BERT [21] will take the new bug report structured
text to get the most similar source code file and if attached
with old bugs. The output of the source code recommendation
phase will be a list of source code files sorted in descending
order according to their similarity to new bug report that
needs to be fixed.

Sentence embedding’s usage is important for the sentence
encoding of the input text. In this task, another fine-tuning
using BERT applied here for direct text similarity. The text
similarity is applied between the new bug report text and
all files related to the software package recommended by
the previous phase. According to [21] sentence BERT is
applied to fine-tune BERT architecture for semantic similar-
ity. As in Figure 5, the input from the source code files and
related data from the software package will be entered into
the pre-trained BERT. The input will be a pair of records
to train the BERT for getting similarities between them.
After that, the model will be trained with the text for the
embedding.

The Next Step is utilizing the max pooling layer that is
located on top of the BERT layer. The role of pooling is
to combine each token vector for an input record. Besides,
it gives a fixed sentence for the two output sentences. After
the two sentences are vectorized, the similarity between these
two vectors will be calculated using cosine similarity which
is applied as a metric to get the angle [22] between the new
bug report and all source code files and data related to a
specific package. So the highest score of these results will
represent the nearest source code file to the new bug report
data.

III. EXPERIMENTS AND EVALUATION
A. RESEARCH QUESTIONS
To evaluate the performance of our Phase-based bug local-
ization approach, the following four research question will
be addressed:

RQ1 What is the effect of our approach on bug localiza-
tion?

RQ2 Can the utilization of stack traces affect our approach
results?

RQ3 Does the package recommendation phase affect the
bug localization time and accuracy?

RQ4 Does our approach outperform state-of-the-art bug
localization approaches?

B. EXPERIMENTAL DATASET
The datasets used for our experiments are JDT1 and Eclipse
platform UI2 dataset which are well known benchmarks
for bug localization. The bug localization. JDT stands for
Java Development Tools for Eclipse which is an open-source
project written in Java language constructed in 2001. Eclipse
platform UI contains a set of frameworks in addition to
common services for Eclipse. For both datasets, all their
source code files across different versions were extracted
from Git version control system. Moreover, the projects’
bug reports are available on the BUGZILLA bug tracking
system. The JDT dataset bug reports that are collected consist
of 6274 bug reports and more than 8000 source code files
with 17 main packages across more than 12 versions. The
Eclipse platform UI dataset consists of more than 6400 bug
reports andmore than 3400 source code files acrossmore than
14 versions.

35906 VOLUME 11, 2023



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

C. EXPERIMENT DESIGN AND PROCEDURE
To answer our research questions, we had to pick a dataset
that has the needed inputs for our approach: old bug reports
from the bug tracking system, and different versions of source
code files from version control systems with their packages.

To answer our research questions, we will apply our
approach to the JDT and Eclipse datasets mentioned above.
For each dataset, we will use 90% of the dataset as training
data, and the other 10% as testing data. Hence, some of the
previously fixed bugs will be used to assess if our approach
will properly recommend their relevant source code files that
need to be fixed.

To assess the accuracy of the approach across all the
research questions, each dataset will be divided 10 folds
cross-validation as applied in some past experiments [23],
[24]. The 10 folds will be divided into 9 folds for training
and one is assumed to be unfixed for testing. This process
will be repeated 10 times as each time one of the 10 folds
would be used for testing., and the remaining folds would be
for training. After that, the average of the results of all folds
is calculated for Top-1, 5, 10, 20 measures.

For RQ1, our approach will be applied to the two datasets.
For RQ2, we will apply our approach twice: once with stack
traces, and once without stack traces, and compare their accu-
racy. For RQ3, we will apply our approach twice; once while
using the package recommendation phase, and once without
using the package recommendation phase, and compare their
accuracy and time. For RQ4, we will compare our approach’s
results against other state-of-the-art approaches that utilized
the same dataset, and used the same metrics that we report.

D. EXPERIMENTS EVALUATION METRICS
The experiment performance will be measured using three
important evaluationmetrics [24]which are TOP-N andMRR
as applied by [23].

TOP-N rankmetric counts the number of tested bug reports
where at least one of the source code files appears in the top-
ranked (1 or 5 or 10) files. So, we consider that the tested bug
will be successfully localized if at least one of the retrieved
source code files is one of the files that were actually fixed
within that bug. The true counts for all tested bug reports
are counted. Then the true counts will be divided by the total
number of bug reports. Therefore, the high the score the high
performance of our approach.

Mean Reciprocal Rank (MRR) calculates the inverse posi-
tion of the source files that contains the bug. The importance
of that metric is to measure the retrieved ranked list quality.
Equation (1) represents how the MRR is calculated where the
symbol Q stands for the bug reports set and ranki indicates the
position of the retrieved files.

MRR =
1
Q

Q∑
iD0

1
ranki

(1)

Precision metric is the ratio of correctly predicted positive
classes to all items that predicted to be positive as stated

FIGURE 6. Accuracy results of Top-N rank among 10 folds for JDT Dataset
for applying our approach.

FIGURE 7. Accuracy results of Top-N rank among 10 folds for Eclipse
Platform Dataset for applying our approach.

in equation 2. Precision tells us how correct is our model,
or precise positive predictions. The metric will be utilized
only for package classification experiment.

TP
TP + FP

(2)

E. EXPERIMENTS RESULTS AND DISCUSSION
Answer to RQ1:What is the effect of our approach on the
bug localization?

We applied our approach to the JDT and Eclipse Platform
datasets to measure the bug localization performance. The
MRR got an average of 0.29 for JDT dataset and 0.27 for
Eclipse Platform. Figures 6 and 7 present the Top-N results
for each fold to JDT and Eclipse Platform datasets. As stated
above that each fold from the 10 folds will be used for testing
and the remaining folds for training. Each fold is presented on
x-axis and the accuracy results for each fold according to the
Top 1, Top 5, Top 10, and Top 20 metrics are presented on the
y-axis. Figures 6 and 7 indicate that the results are near among
the 10 files, whih implies that our approach’s performance is
stable for both datasets.

Answer to RQ2: Can the utilization of stack traces
affect our approach results?

We applied our approach while utilizing stack traces data
on both JDT and Eclipse platform datasets. Within Figures 8

VOLUME 11, 2023 35907



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

FIGURE 8. Accuracy results of Top-N rank among 10 folds for JDT Dataset
for applying our approach using stack traces.

FIGURE 9. Accuracy results of Top-N rank among 10 folds for JDT Dataset
for applying our approach using stack traces.

and 9, the results of the experiment according to top-n rank
for each fold are presented, where each fold is presented on
x-axis and the accuracy results for each fold according to the
Top 1, Top 5, Top 10, and Top 20 metrics are presented on the
y-axis. MRR also achieved a result of 0.33 and 0.31 for JDT
and Eclipse Platform respectively.

To assess whether using stack traces would improve the
accuracy or not, we applied our approach without using stack
traces on both datasets, and compared those results with our
previous results when we were utilizing stack traces. Figures
10 and 11 show the difference in results while utilizing stack
traces versus while not utilizing them. The results indicate
that using stack traces enhanced the accuracy for both datasets
across the Top n ranks and MRR metrics.

Answer to RQ3: Does the package recommendation
phase affect bug localization time and accuracy?

To answer this question, we have to test the effect of soft-
ware package recommendation phase we compared the time
and accuracy of our approach while applying the package
recommendation phase, versus without applying that phase.
Considering the time aspect: Figure 12 shows a bar chart

representing the time taken by our approach while applying
the package recommendation phase, compared to the time
taken by our approach without that phase to locate a list of
buggy files. Figure 12 explicitly shows the importance and
positive effect of utilizing the package recommendation phase
in our approach considering time aspect.

FIGURE 10. Comparing Results between not utilizing stack traces and
utilizing it for JDT Dataset.

FIGURE 11. Comparing Results between not utilizing stack traces and
utilizing it for Eclipse Platform Dataset.

FIGURE 12. Time results according to utilizing package recommendation
phase versus not utilizing.

Considering the accuracy aspect: Figure 13 and Figure 14
show the accuracy results when removing the package recom-
mendation phase for both JDT and Eclipse Platform among to
10 folds Top-1, Top-5, Top10, and Top-20 among the 10 Folds
for JDT and Eclipse platform datasets.

We compare the accuracy when applying the package rec-
ommendation phase versus when removing that phase within
Figures 15 and 16 for the JDT and Eclipse Platform datasets
respectively. Figure 15 shows that values among Top-1, 5,
10, 20 are (0.19, 0.39, 0.49, 0.54 and 0.31) decreased by

35908 VOLUME 11, 2023



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

FIGURE 13. Accuracy results for Top-N rank among 10 folds without using
package classification for JDT dataset.

FIGURE 14. Accuracy results for Top-N rank among 10 folds without using
package classification for Eclipse Platform Dataset.

FIGURE 15. Comparing accuracy results using package recommendation
versus not utilizing according to Top-N rank among 10 folds according to
Eclipse Platform.

approximately 0.01 for removing package recommendation
phase versus not removing. However the MRR remains the
same which implies that the not utilizing package recom-
mendation phase affected our approach negatively. Figure 16
presents the results applied on JDT dataset, and the results
show that Top 1 (0.25) accuracy measure decreased by 0.02,
Top 5(0.49) and MRR remains the same. The conducted
experiments imply that utilizing the package recommenda-

FIGURE 16. Comparing results between accuracy results using package
recommendation versus not utilizing according to Top-N rank among
10 folds according to JDT.

tion phase has a great role in improving the time of our
approach, and does not hinder the performance. Also, to the
best of our knowledge, no other research works on the layer
of package classification.

Answer to RQ4: Does our approach outperform other
bug localization approaches?

To evaluate our approach’s effectiveness, we have to eval-
uate our work according to two important aspects which are
time and accuracy against state-of-the-art bug localization
approaches. However some of such approaches report the
time and accuracy and some of them report accuracy only as
follows:

(1) BugLocator [4]: An information retrieval technique
used to localize bugs using rVSM for source code and
bug reports representation.

(2) NP@hypheCNN [10]: A machine learning technique
that utilizes feature from bug reports and source code
files. Additionally, a convolution neural networks used
for localizing bugs.

(3) STMLocator+ [23]: A supervised topic modelling
approach is proposed. The terms in bug reports and
source code files is utilized. Also long source code files
are phenomena are considered.

(4) cFlow [25]: An approach that learns the features of
source codes and bug reports using graph neural net-
works. A flow based procedure is applied to get the
program structure for further learning.

(5) Fast Change [26]:An approach is applied to find the
lexical gap between bug reports and source code files

(6) JINGO [27]: An approach that utilizes topic modelling
to match co change information in source code files
with bug reports by emphasizing topic spaces.

ConsideringTop-5 evaluationmetric, our approach outper-
forms all of the above mentioned state of the art approaches
that present this evaluation metric which are 5 approaches.
Figure 17 shows a comparison between our approach, and
the above mentioned approaches in terms of the Top-5 rank,

VOLUME 11, 2023 35909



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

FIGURE 17. Top-5 comparing results between our approach and other
state of the art approaches.

FIGURE 18. Top-10 comparing results between our approach and other
state of the art approaches.

FIGURE 19. MRR comparing results between our approach and other
state of the art approaches.

where our approach outperforms all those approaches in that
metric.

Considering the Top-10 evaluation metric, Figure 18 com-
pares our approach, and the above mentioned approaches in
terms of the Top-10 rank. Figure 18 shows that our phase
based approach outperforms three of the approaches. Addi-
tionally, our approach got 0.57 and cFlow got 0.77. However
cFlow applied their approach on only 5016 bug report from
6274 in JDT dataset.

FIGURE 20. Time compared results between our approach and other
state of the art approach.

Considering MRR evaluation metric, our approach out-
performs all of the mentioned state of the art techniques
that utilize this evaluation metric. Figure 19 shows that our
phase based approach outperforms three of the approaches
by improving BugLocator (0.24) by 10%, NP-CNN (0.23)
by 11% and Jingo (0.32) by 2%. Additionally, our approach
got 0.34 and cFlow got 0.55. However cFlow applied their
approach on only 5016 bug report from 6274 in JDT
dataset.

Considering the Time evaluation metric, our work exceeds
STMLocator [23] as such technique present the time to find
a buggy source code file contains the buggy file. Figure 20
shows that our work recommends the buggy source code file
within 50.4 milliseconds for JDT dataset, whereas STMLo-
cator locates the buggy file within 800 milliseconds hence,
our approach achieved a time reduction of around reduction
of time of about 750 milliseconds.

IV. THREATS TO VALIDITY
In our approach, we apply our work on benchmark datasets
as JDT and Eclipse Platform. However, the JDT and Eclipse
Platform is an open-source project written in Java language.
Hence, we do not know how our approach results would
hold for projects written in different programming languages,
specifically non object oriented ones. However, our approach
steps could generalize across other programming languages
that utilizes the same object oriented concepts and the same
structural relationships of the Java programming language.

Additional threats to validity is the effect on the number of
source code files within a specific package, on the package
recommendation phase. In some projects, the software pack-
ages could contain source code files with different counts.
For instance, one package could contain 600 files, while
another package could contain 30 files. Such variance could
result in an unbalanced dataset for training. Subsequently, the
performance of our approach may be affected.

Another threat to validity is our reliance on the MRR and
Top N ranks only. However, we picked those metrics due to
their wide usage across various state-of-the-art approaches in
the literature. However, other metrics should be considered in
our future work

35910 VOLUME 11, 2023



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

V. RELATED WORK
A. INFORMATION RETRIEVAL APPROACHES
A proposed technique called FineLocator [6] aims to pre-
dict bugs at the method level. Their work depends on the
syntax trees of the source code. Hence the bug reports and
source code artifacts were utilized. A Technique called BLIA
indicates bug localziation using integrated analysis [5]. Such
technique constructed a score of retrieval of the source code
that contains the bug. However, their score depends on the
similarity measure between the source code and bug reports.

Another approrach called bug locator [4] worked on the
text simlarity between bug report and source code files. Yao-
jing [7] proposed another technique that takes into consider-
ation the history of fixes for each source code file. Also, the
co-occurrence of source code terms with each other among
different source code files is utilized. After that a topic mod-
elling technique applied on different benchmark datasets to
validate their work. Such technique [7] was evaluated using
10 folds cross validation on the JDT, and PDE platforms. Fan
Fang et al [28] attempted to enhance the performance of the
information retrieval technique. Such technique targeted the
bug report text quality to be informative or not. Another inves-
tigation to the combination of different IR technique [29] like
VSM and LSI, the authors concluded that the combination
results in an improvement results. An IR technique called
BoostNShift [30] works with localizing the bug at method
level. The authors trying to insert bug report text as a query
with the source code to retrieve methods that contains bugs.

In [31], the authors produced an approach for localizing the
bugs automatically using ranking. The Cosine similarity is
used to measure the similarity between source code files and
bug reports. Also, the API information is used in addition to
the collaborative filtering enhance the features. Additionally,
the names of classes and the frequency of the bug appearing
considered to be featured. The average accuracy of 70%
achieved all over the top 10 ranked files for 5 benchmark
datasets. However, some of the above-mentioned techniques
suffers from lexical mismatch between bug reports and source
code files which leads to misclassification.

B. MACHINE LEARNING APPROACHES
A proposed tool called Bug2Commit [32] applied the fast
text [33] as a word embedding for retrieval of source code
files, metadata and stack traces are utilized besides the
bug reports. Such technique main difference that approach
achieved a good accuracy for a dataset which is not a bench-
mark but the nature of the software project is different Face-
book application. A mathematical model are created by [34]
based on past work [4]. The main aim of the mathematical
model is to help in enhancing the past technique applied in [4]
accuracy with the new solved bug reports. Moreover reducing
the time of model by 77.7%.

An integrated model [24] is applied between word embed-
ding and deep neural networks to localize bugs. The rVSM
role is to capture the similarity between the source code and

bug reports. Additionally the skip gram word embedding
model is utilized to get the semantic similarity between bug
reports and source code files. The deep neural networks get
these features to get the source code files that contains the
bug. The authors evaluated their work on 5 known benchmark
datasets like SWT, AspectJ, Eclipse and JDT and perform-
ing good results. A technique called smell ware based [35].
The code smells which may be results from design issue or
problem in source code. The code smells is utilized here to
enhance the process of IR based. A proposed approach called
DRAST [36] aims at enhancing the generality of the bug
localization so it can supports different languages. Random
forest and deep learning in addition to a vector space model.
This approach achieves an enhancement according to MRR
and MAP of about 90%.

Another technique called Blesser [37] that get the source
abstract syntax trees and code embedding. They tested their
work on 5 C++ source code projects. A two phase’s model
are used to predict the bugs in the fixed model [13]. The
machine learning approach is applied for the bug reports to
be predictable or not. The bug report summary, metadata,
reporter and bug report description are utilized as features.
Then in phase two, the predicted bug report to be fixed for
the multi-class classification model. The average accuracy
achieved for predicting files is 70 percent.

A system proposed [2] by using a deep learning system
to localize bugs. The text terms of Bug reports are utilized
in addition to the terms of source code files. The works are
evaluated on four datasets (AspectJ, SWT, JDT, and Tomcat)
with enhanced accuracy. A topic modeling approach applied
to localize bugs in JINGO [27] by utilization of bug reports
and source codes. A genetic algorithm is applied in [38] for
enhancement of text retrieval. The algorithm trying to find the
optimal query to retrieve the true results from the source code
files. However, some of above-mentioned techniques would
not work if the software project is a new one that does not
contain any historical bug reports or any source code projects
changes.

VI. CONCLUSION
In this paper, a phase based bug localization is presented to
overcome some appeared limitations in previous techniques.
Raw data preparation phase role is to prepare different arti-
facts like bug reports and source code files for next phases.
Package classification phase utilizes BERT to capture differ-
ent contexts of text in different source code files. Such a phase
recommends the package that is most probably contains the
bug. Finally, the source file recommendation phase produces
the buggy source code files.

Our phase based bug localization improves the bug local-
ization time compared to other state-of-the-art techniques.
Furthermore, the package classification phase narrows the
search space of the code files to search in. Several empirical
evaluations were conducted to assess the accuracy of our
approach, and the effect of the utilized artifacts. The results
show that utilizing the recommendation phase improves the

VOLUME 11, 2023 35911



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

accuracy and time for finding bugs. Additionally, the pres-
ence of stack traces artifact shows an enhanced results in the
bug localization process versus not.

REFERENCES
[1] I. Sommerville, Software Engineering, 9th ed. London, U.K.: Pearson,

2011.
[2] H. Liang, L. Sun, M. Wang, and Y. Yang, ‘‘Deep learning with cus-

tomized abstract syntax tree for bug localization,’’ IEEE Access, vol. 7,
pp. 116309–116320, 2019.

[3] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, ‘‘A survey on
bug-report analysis,’’ Sci. China Inf. Sci., vol. 58, no. 2, pp. 1–24, 2015.

[4] J. Zhou, H. Zhang, and D. Lo, ‘‘Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug
reports,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012, pp. 14–24.

[5] K. C. Youm, J. Ahn, and E. Lee, ‘‘Improved bug localization based on
code change histories and bug reports,’’ Inf. Softw. Technol., vol. 82,
pp. 177–192, Feb. 2017.

[6] W. Zhang, Z. Li, Q. Wang, and J. Li, ‘‘FineLocator: A novel approach to
method-level fine-grained bug localization by query expansion,’’ Inf. Softw.
Technol., vol. 110, pp. 121–135, Jun. 2019.

[7] Y. Wang, Y. Yao, H. Tong, X. Huo, M. Li, F. Xu, and J. Lu, ‘‘Bug
localization via supervised topic modeling,’’ in Proc. IEEE Int. Conf. Data
Mining (ICDM), Nov. 2018, pp. 607–616.

[8] H. Xuan, T. Ferdian, L. Ming, L. David, and S. Shu-Ting, ‘‘Deep transfer
bug localization,’’ IEEE Trans. Softw. Eng., vol. 47, no. 7, pp. 1368–1380,
Jul. 2021.

[9] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, ‘‘Bug localization with
semantic and structural features using convolutional neural network and
cascade forest,’’ in Proc. 22nd Int. Conf. Eval. Assessment Softw. Eng.,
Jun. 2018, pp. 101–111.

[10] H. Xuan, L.Ming, and Z. Zhi-Hua, ‘‘Learning unified features from natural
and programming languages for locating buggy source code,’’ in Proc.
IJCAI, 2016, pp. 1–7.

[11] X. Ye, R. Bunescu, and C. Liu, ‘‘Learning to rank relevant files for bug
reports using domain knowledge,’’ inProc. 22nd ACMSIGSOFT Int. Symp.
Found. Softw. Eng., Nov. 2014, pp. 689–699.

[12] N. An, T. Anh, A. Hoan, and N. Tien, ‘‘Combining deep learning with
information retrieval to localize buggy files for bug reports (N),’’ in Proc.
30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2015,
pp. 476–481.

[13] D. Kim, Y. Tao, S. Kim, and A. Zeller, ‘‘Where should we fix this bug?
A two-phase recommendation model,’’ IEEE Trans. Softw. Eng., vol. 39,
no. 11, pp. 1597–1610, Nov. 2013.

[14] S. Qaiser and R. Ali, ‘‘Text mining: Use of TF-IDF to examine the
relevance of words to documents,’’ Int. J. Comput. Appl., vol. 181, no. 1,
pp. 25–29, Jul. 2018.

[15] S. Das, N. Deb, A. Cortesi, and N. Chaki, ‘‘Sentence embedding models
for similarity detection of software requirements,’’ Social Netw. Comput.
Sci., vol. 2, no. 2, pp. 1–11, Apr. 2021.

[16] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, ‘‘Extracting
structural information from bug reports,’’ in Proc. Int. Work. Conf. Mining
Softw. Repositories, May 2008, pp. 27–30.

[17] J. Atwan, M. Wedyan, Q. Bsoul, A. Hammadeen, and R. Alturki, ‘‘The
use of stemming in the Arabic text and its impact on the accuracy of
classification,’’ Sci. Program., vol. 2021, pp. 1–9, Nov. 2021.

[18] H. Chouikhi, H. Chniter, and F. Jarray, ‘‘Arabic sentiment analysis using
BERT model,’’ in Proc. Int. Conf. Comput. Collective Intell., 2021,
pp. 621–632.

[19] N. M. Duc Tuan and P. Quang Nhat Minh, ‘‘Multimodal fusion with BERT
and attentionmechanism for fake news detection,’’ inProc. RIVF Int. Conf.
Comput. Commun. Technol. (RIVF), Aug. 2021, pp. 1–6.

[20] J. Xin, R. Tang, Y. Yu, and J. Lin, ‘‘BERxiT: Early exiting for BERT with
better fine-tuning and extension to regression,’’ in Proc. 16th Conf. Eur.
Chapter Assoc. Comput. Linguistics: Main Volume, 2021, pp. 1–14.

[21] J. Seo, S. Lee, L. Liu, andW. Choi, ‘‘TA-SBERT: Token attention sentence-
BERT for improving sentence representation,’’ IEEE Access, vol. 10,
pp. 39119–39128, 2022.

[22] B. Li and L. Han, ‘‘Distance weighted cosine similarity measure for text
classification,’’ in Proc. Int. Conf. Intell. Data Eng. Automated Learn.,
2013, pp. 611–618.

[23] Y. Wang, Y. Yao, H. Tong, X. Huo, M. Li, F. Xu, and J. Lu, ‘‘Enhancing
supervised bug localization with metadata and stack-trace,’’ Knowl. Inf.
Syst., vol. 62, no. 6, pp. 2461–2484, Jun. 2020.

[24] S. Cheng, X. Yan, and A. A. Khan, ‘‘A similarity integration method
based information retrieval and word embedding in bug localization,’’ in
Proc. IEEE 20th Int. Conf. Softw. Qual., Rel. Secur. (QRS), Dec. 2020,
pp. 180–187.

[25] Y.-F. Ma and M. Li, ‘‘The flowing nature matters: Feature learning from
the control flow graph of source code for bug localization,’’Mach. Learn.,
vol. 111, no. 3, pp. 853–870, Mar. 2022.

[26] A. Ciborowska and K. Damevski, ‘‘Fast changeset-based bug localization
with BERT,’’ in Proc. 44th Int. Conf. Softw. Eng., May 2022, pp. 946–957.

[27] A. Ciborowska, M. J. Decker, and K. Damevski, ‘‘Online adaptable bug
localization for rapidly evolving software,’’ 2022, arXiv:2203.03544.

[28] F. Fang, J. Wu, Y. Li, X. Ye, W. Aljedaani, and M. W. Mkaouer, ‘‘On the
classification of bug reports to improve bug localization,’’ Soft Comput.,
vol. 25, no. 11, pp. 7307–7323, Jun. 2021.

[29] S. Khatiwada, M. Tushev, and A. Mahmoud, ‘‘On combining IR methods
to improve bug localization,’’ in Proc. 28th Int. Conf. Program Compre-
hension, Jul. 2020, pp. 252–262.

[30] A. Razzaq, J. Buckley, J. V. Patten, M. Chochlov, and A. R. Sai, ‘‘Boost-
NSift: A query boosting and code sifting technique for method level bug
localization,’’ in Proc. IEEE 21st Int. Work. Conf. Source Code Anal.
Manipulation (SCAM), Sep. 2021, pp. 81–91.

[31] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Bug
localization with combination of deep learning and information retrieval,’’
in Proc. IEEE/ACM 25th Int. Conf. Program Comprehension (ICPC),
May 2017, pp. 218–229.

[32] V. Murali, L. Gross, R. Qian, and S. Chandra, ‘‘Industry-scale IR-based
bug localization: A perspective from Facebook,’’ in Proc. IEEE/ACM
43rd Int. Conf. Softw. Eng., Softw. Eng. Pract. (ICSE-SEIP), May 2021,
pp. 188–197.

[33] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, ‘‘TextBoxes: A fast text
detector with a single deep neural network,’’ in Proc. 31st AAAI Conf. Artif.
Intell., 2017.

[34] Z. Yang, J. Shi, S. Wang, and D. Lo, ‘‘IncBL: Incremental bug localiza-
tion,’’ in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Nov. 2021, pp. 1223–1226.

[35] A. Takahashi, N. Sae-Lim, S. Hayashi, and M. Saeki, ‘‘An extensive study
on smell-aware bug localization,’’ J. Syst. Softw., vol. 178, Aug. 2021,
Art. no. 110986.

[36] S. Sangle, S. Muvva, S. Chimalakonda, K. Ponnalagu, and V. Gopalan
Venkoparao, ‘‘DRAST—A deep learning and AST based approach for bug
localization,’’ 2020, arXiv:2011.03449.

[37] W. Zou, E. Li, and C. Fang, ‘‘BLESER: Bug localization based on
enhanced semantic retrieval,’’ 2021, arXiv:2109.03555.

[38] S. Wang, D. Lo, and J. Lawall, ‘‘Compositional vector space models for
improved bug localization,’’ in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., Sep. 2014, pp. 171–180.

[39] X. Huo and M. Li, ‘‘Enhancing the unified features to locate buggy files
by exploiting the sequential nature of source code,’’ in Proc. IJCAI, 2017,
pp. 1909–1915.

[40] C. Sun, X. Qiu, Y. Xu, and X. Huang, ‘‘How to fine-tune BERT for
text classification?’’ in Proc. China Nat. Conf. Chin. Comput. Linguistics,
2019, pp. 194–206.

AMR MANSOUR MOHSEN received the B.Sc.
degree in computer science from the Faculty of
Computers and Artificial Intelligence, Cairo Uni-
versity, and the master’s degree in computer sci-
ence from the Faculty of Computers and Infor-
mation, Cairo University, in 2016. He has been
an Assistant Lecturer with the Computer Science
Department, Faculty of Computers and Informa-
tion Technology, Future University in Egypt, since
2012. His research interests include artificial intel-

ligence, text mining, opinion mining, and software engineering.

35912 VOLUME 11, 2023



A. M. Mohsen et al.: Enhancing Bug Localization Using Phase-Based Approach

HESHAM A. HASSAN is a professor at the faculty
of computers and artificial intelligence, Cairo Uni-
versity as the head of the computer science depart-
ment. He worked as an IT Consultant with the
Central Laboratory of Agricultural Expert System,
National Agricultural Research Center. He has
published over 140 research papers in interna-
tional journals and conference proceedings. His
research interests include knowledge modeling,
sharing and reuse, intelligent information retrieval,

intelligent tutoring systems, software engineering, cloud computing, and
service-oriented architecture (SOA).

KHALED T. WASSIF received the B.Sc. degree
(Hons.) in accounting from the Faculty of Com-
merce, Cairo University, in 1983, the Postgradu-
ate Diploma degree in computer and information
science from the Institute of Statistical Studies
and Research, Cairo University, in 1986, and the
master’s and Ph.D. degrees in artificial intelligence
from Cairo University, in 1991 and 1998, respec-
tively. He is currently a Professor with the Faculty
of Computers and Artificial Intelligence, Cairo

University. His research interests includemachine learning, datamining, web
mining, case-based reasoning, big data, and knowledge engineering. He has
supervised or co-supervised 12 students on their Ph.D. dissertations and
M.S. theses. He has published 30 research papers in international journals
and conference proceedings. He is a reviewer in the international Egyptian
Informatics Journal and the Egyptian Computer Journal.

RAMADAN MOAWAD received the B.Sc. degree
in Electric Engineering and the M.Sc. degree
in computer engineering from Military Technical
College, and the Ph.D. degree in Software Engi-
neering from the ENSAE College, France. He
taught several courses in CS and CE in several
institutions including the American University in
Cairo, the Military Technical College, Cairo Uni-
versity and the Arab Academy for Science and
Technology. He joined Future University in 2011

and currently working as Vice-Dean of FCIT. He published over 60 papers in
different journals and conferences locally and internationally. His research
interests include software engineering and software quality assurance. He has
reviewed several papers in IEEE TRANSACTIONS in Software Engineering
Journal and many other international and national journals.

SOHA H. MAKADY received the B.Sc. and M.Sc.
degrees (Hons.) in computer science from the Fac-
ulty of Computers and Information, Cairo Univer-
sity, Egypt, in 2002 and 2005, respectively, and
the Ph.D. degree in software engineering from the
University of Calgary, Canada, in 2015. She is
currently an Assistant Professor with the Faculty
of Computers and Artificial Intelligence, Cairo
University. She has supervised two M.Sc. students
and one Ph.D. student. She is currently supervising

three M.Sc. and Ph.D. students. She has ten refereed research papers in
international journals and conference proceedings. Her research interests
include software evolution, software architecture, and software testing.

VOLUME 11, 2023 35913


