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ABSTRACT Approaches for diagnosis and prognosis of the health of engineering systems are divided into
data-driven, model-based, and hybrid methods. Data-driven methods depend on the availability of data.
Model-based methods require knowledge of the degradation process. A great effort of data generation
along with the high complexity of degradation processes often limits both approaches. To mitigate these
limitations, the combination of data and knowledge through hybrid methods is examined in this paper. This
approach is compared to the alternative approach of reducing the effort of generating training data, as both are
gaining importance in diagnostics and prognostics. A new categorization of hybrid prognostic methods for
combining data-driven and physics-based models is presented, along with references to existing realizations
of these methods. Based on the categorization, a case study on the hybrid remaining useful life prediction of a
filtration process is conducted. Several hybrid methods are implemented and tested in this study. Through the
combination of models, an improvement in predictive accuracy is achieved. In addition, the paper examines
systematic attributes of the individual hybrid methods. Statements on the influence of data scarcity on the
predictive accuracy, data-driven models with high variance, and the computational efficiency of the hybrid
methods are made. It is shown that these statements are supported by the case study’s results.

INDEX TERMS Data-driven methods, filtration, hybrid methods, model-based methods, physics-informed
machine learning, prognostics and health management, PHM, remaining useful life prediction.

I. INTRODUCTION
A fundamental feature that characterizes the engineering
discipline of prognostics and health management (PHM) is
the assessment of degradation or health of the individual
engineering system in use. By evaluating data, such as the
system’s sensor readings or operating data, inferences are
made about its condition. These inferences can be divided
into the following four main tasks: fault detection, diagnosis
of the fault cause, health assessment, and prediction of the
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future health or remaining useful life (RUL) [1]. The purpose
of these tasks is to provide condition information on the
engineering system for its health management.

In general, approaches to these diagnostic and prognostic
tasks are categorized as data-driven, model-based, or hybrid.
In the literature on PHM, data-driven methods are cur-
rently the predominant methods addressed. They stem from
the fundamental research areas of statistics and machine
learning. Examples of data-driven methods that are com-
monly employed for diagnostics and prognostics include
artificial neural networks, Gaussian processes, and Wiener
processes [2]. Major advantages of data-driven methods
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compared to model-based and hybrid methods are their
comparatively small implementation effort, the reduced
amount of knowledge required about the system as well
as its degradation process, and their rather wide range of
applicability [3].

Data-driven methods are based on inductive inference,
which underlies the statistical modeling of the training data
provided [4]. This results in the causal relationships that
constitute the characteristics of the training data not being
learned. The general training objective of a data-driven
method is to achieve good generalization, especially in areas
of sufficient data density. However, since they lack under-
standing of the cause-effect relationships, they are not suit-
able for making predictions in areas of the state space with
little or no training data. Accordingly, their purposeful use
requires sufficient coverage of the relevant state space [5].
A fundamental problem in industrial applications of diag-
nostics and prognostics, as well as in the overarching field
of reliability engineering in general, is the availability of
a sufficient amount of data. A long service life as well as
high investment and operating costs are reasons why the
availability of a sufficient amount of run-to-failure data sets
for each fault mode often represents a high or unattainable
challenge.

If there are not enough training data available, a likely
consequence is that data-driven methods do not achieve the
required predictive accuracy of the respective modeling task,
despite intensive optimization attempts. Thereby, the predic-
tive accuracy can be evaluated according to different met-
rics depending on the diagnostic or prognostic task, such
as for diagnosis by the fault isolation rate and for RUL
prediction by the mean squared error or prognostic hori-
zon [6], [7]. In the case of insufficient predictive accuracy,
two solutions are available. On the one hand, according to
the general machine learning principle ‘‘More data beats a
cleverer algorithm‘‘ [8], a solution may be to directly address
their deficiency by generating additional training data. Yet
this is bound by the often impossibly high effort described
previously. On the other hand, accuracy can also be increased
by including knowledge about the causal relationships of the
system and its degradation process. This knowledge enriches
the data-driven model (DM), providing an additional source
of information besides the data themselves. In addition to
the poor data availability, however, an equally relevant chal-
lenge for diagnostics and prognostics in industrial applica-
tions is that the degradation processes of many engineering
systems are exceptionally complex. This is the reason why
a highly precise physics-based model (PM) of the cause-
effect relationships is also hardly attainable [9]. Nevertheless,
basic knowledge about the system under consideration and
its degradation process is usually available, which allows the
specification of individual boundary conditions or a coarse
physics-based modeling.

This paper addresses the case where both approaches, data-
driven and model-based, are insufficient on their own due to
the limitations discussed previously. The aim, therefore, is to

contribute to the research on hybrid methods for combining
both types of models, with a focus on the task of RUL predic-
tion. In doing so, the paper targets the following innovations
compared to the state of the art:

• A structuring of hybrid methods for combining DMs and
PMs sharing the same target variable.

• Conducting a case study on RUL prediction of air filters
that assesses four hybrid methods.

• Conclusions about the attributes of specific hybridmeth-
ods are drawn and empirically underlined on the basis of
the case study.

The structure of this paper is as follows: Section II intro-
duces approaches for improving the predictive accuracy of
data-driven methods, which include approaches that reduce
the effort required to generate additional training data and
approaches that integrate knowledge. As a specific approach
for combining data-driven methods and knowledge, the
fusion of DMs and PMs is examined in Section III. Different
types of hybrid methods are described in detail and references
are given to their use in diagnostics and prognostics. This is
followed by a detailed case study on RUL prediction using
hybrid methods. For this, Section IV first introduces the filter
loading process on which the case study is based. Then, the
applied PM, DM, and hybrid methods are described. At the
end of Section IV, the results of the case study are analyzed.
Building on this, Section V evaluates the individual hybrid
methods with respect to systematic attributes that are relevant
for prognostics. In Section VI, conclusions on this paper are
drawn.

II. APPROACHES FOR IMPROVING DATA-DRIVEN
PREDICTIONS
As argued above, the scarcity of training data is a major chal-
lenge in diagnostics and prognostics. For this reason, research
on reducing the effort of generating training data as well as
on fusing machine learning with knowledge is gaining sig-
nificant attention. Several approaches for effort reduction are
described in Section II-A. Since these are particularly induced
by deep learning (DL), it is described at the beginning of
this section. Section II-B introduces the emerging research
segment of machine learning, which focuses on knowledge
as a second source of information in addition to data.

A. REDUCING THE EFFORT OF GENERATING
TRAINING DATA
In the field of machine learning, DL has proven to be
a powerful instrument. Neural networks like deep convo-
lutional neural networks or long short-term memory net-
works provide significant advancements in natural language
processing, speech recognition, computer vision, and other
areas [10], [11], [12]. In diagnostics and prognostics, there
is also a rapidly rising number of studies on DL [13].
The fundamental concept of DL is to create a model that
includes several layers in which data representations are
learned at different levels of abstraction. Through nonlinear
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transformation, each layer gradually increases the abstrac-
tion of the input data. Overall, this results in a highly com-
plex transformation function, requiring a lot of data for
training [10].

The general problem of a shortage of training data when
using data-driven methods for diagnosis and prognosis is
particularly severe in DL [11]. In order to exploit the potential
of DL in domains where there is a lack of data, approaches
exist to at least reduce the effort of data generation. Common
approaches are transfer learning, active learning, and data
augmentation, for which there is already research in the field
of diagnostics and prognostics as well. Transfer learning aims
to use data or models from other domains to increase predic-
tive accuracy or training efficiency in the domain concerned.
In diagnostics and prognostics, transfer learning can be used
to leverage data from other operating conditions or even
from similar engineering systems [14]. In active learning,
it is estimated which data points are the most informative for
training. By labeling only these data points, the effort of data
labeling is kept as low as possible [15]. The data augmenta-
tion approach consists of making small modifications to the
original data. These modified data form additional training
data and are useful in avoiding overfitting [13], [16].

B. FUSING MACHINE LEARNING WITH KNOWLEDGE
The integration of knowledge is not a fundamentally new
topic in machine learning, but in the last five years in particu-
lar, this research segment has experienced a holistic consider-
ation and, especially with the development of new methods,
a considerable increase in research activities. As a result of
the short period of intensive study so far, the establishment
of a uniform terminology is still in progress. Thus, the seg-
ment is referred to in the literature as (physics-) informed
machine learning [17], [18], [19], physics-based (machine)
learning [20], [21], physics guided machine learning [22],
knowledge-embedded machine learning [23], and theory-
guided data science [5]. In the following, the term physics-
informed machine learning (PML) is used, as the authors see
this term becoming more and more prevalent.

The guiding principle for fusing knowledge and data-
driven methods is to include as much information as possible
from both sources. To achieve such fusion of data and knowl-
edge, a wide range of methods has been developed [19]. The
spectrum starts with the integration of partial knowledge that
is not sufficient for a complete physics-based modeling. For
instance, it could be knowledge about valid bounds, mono-
tonicity constraints, or correlations of intermediate or target
variables. An overview of PML methods for this purpose
is given in [24]. The spectrum of PML methods continues
with the existence of sufficient knowledge to create an entire
PM. This PM, although often containing considerable errors,
provides an estimate of the actual value of the target variable.
Such a PM can be combined with the DM in various ways,
as studied in this paper. The existence of a highly precise PM
could be regarded as the end of the spectrum. In such a case,

the often small amount of available data is not used to learn a
data-driven prediction of the target variable. Instead, the data
are used to narrow down the imprecise knowledge about the
distribution of model parameters [2], [22].

A comprehensive survey on the whole topic of knowledge
integration is provided in [19], which not only considers the
process of integrating knowledge into the learning process
itself but also the way in which knowledge is represented.
An alternative form of survey can be found in [22], which
focuses on the modeling of cyber-physical systems. The main
criteria for categorization in [22] are physics-based prepro-
cessing, physics-based network architectures, and physics-
based regularization. A cornerstone in the research segment
has been laid in [5] with its survey and the introduction of the
term theory-guided data science. Further examples of studies
on this subject using a different classification are provided
in [25] and [26]. The reviews listed in this section address
PML in general, unrelated to the subject of PHM. Therefore,
in Section III, an overview of PML with regards to PHM is
given.

What are the main advantages of knowledge integra-
tion over approaches that reduce the effort of data genera-
tion? With the latter, the fundamental source of information
remains data. Hence, the inherent advantages of knowledge
integration over a purely data-driven approach do not change.
One advantage of PML is that knowledge of causal rela-
tionships applies beyond the support of the collected data,
reducing the general dependency on data availability [12].
Moreover, a deep neural network like other DMs may pro-
vide predictions that do not comply with physical laws or
other boundary conditions. A behavior that can be inhibited
by knowledge integration. Another advantage is that PML
can improve the explainability of models and their predic-
tions [19]. All three advantages mentioned are highly relevant
in diagnostic and prognostic applications and emphasize the
relevance of fusing machine learning with knowledge for
PHM.

III. STATE OF THE RESEARCH ON HYBRID
PROGNOSTIC METHODS
The problems of insufficient training data and the complex-
ity of physics-based modeling are identified in [27] as the
two major challenges in the application of RUL prediction.
For this reason, PML, which promises improvement through
a combination of both approaches, is of great importance
for PHM. The literature on diagnostics and prognostics has
already begun to consider the topic of PML, mostly under
the designation hybrid approach, which is also the term
used in the subsequent overview. In the following, the state
of research on hybrid methods in prognostics is presented
along with references to related approaches in diagnostics.
Thereby, methods are only considered in which data-driven
and physics-based modeling explain the same relationship
between input and target variables. This paper does not
address the numerous hybrid methods where the DM and PM
perform different subtasks and thus complement each other.
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FIGURE 1. Illustration of the functional principle of the hybrid prognostic methods (a) physics-based generation of synthetic training data and
(b) final hypothesis set validation.

An example of such an excluded method would be estimating
the future load profile with a DM and using a PM to generate
an RUL prediction based on that estimated load profile. This
type of hybrid method has been studied extensively compared
to those where PM and DM share the same objective [28].

To differentiate between hybrid methods in the following,
the characteristic of a passive and an active use of the PM
is introduced. In the case of a passive use, the PM is not
involved in the formation of the overall prediction; instead,
its outputs foster the training and validation of DMs. Thus,
for these methods, computation of the PM is only required
during the training phase of a prognostic application. When
the PM is actively used, its output is involved in the formation
of the overall result for a specific query point. Consequently,
these methods also require the PM to be computed during the
application phase. Based on the distinction between passive
and active, Sections III-A and III-B present hybrid methods.
Thereby, the functionality of a method is first introduced.
Subsequently, its applications in prognostics and, if relevant,
related approaches in diagnostics are outlined. The function-
ality is presented with the help of Figs. 1 to 3. In these
figures, PMs are visualized by blue boxes and DMs along
with their training data are visualized by red-yellow boxes.
Operations performed in the training phase are represented
by dashed lines and those in the application phase by solid
lines. Input data are denoted by x and the target variable or its
estimates are denoted by y. The index train is used to specify
training data. To express that data are from a query during the
application phase, the index query is used for input data and
pred is used for output data.

A. HYBRID METHODS FOR RUL PREDICTION WITH
PASSIVE USE OF THE PHYSICS-BASED MODEL
In the presence of one or more PMs as well as DMs, two
passive methods for model combination exist. These are des-
ignated in this paper as physics-based generation of synthetic
training data and final hypothesis set validation.

1) PHYSICS-BASED GENERATION OF SYNTHETIC
TRAINING DATA
This method focuses on the availability of data. Therefore,
the PM is computed to generate additional labeled data. These
synthetic data are utilized to extend the set of actual training
data, e.g., field data. Fig. 1a illustrates this approach. Specific
features of this method are, on the one hand, that data can be
generated in all areas of the state space in which the PM is
valid. Thus, areas where less actual training data is available
can be selectively covered by synthetic data. On the other
hand, the synthetic data can be used for a pre-training of a
DM in the sense of a physics-guided initialization [25]. The
trainingwith actual data, especially for small data sets, is used
to subsequently fine-tune the pre-trained model [29].

Regarding the application of physics-based generation of
synthetic training data in prognostics, [18] and [30] are to
be highlighted. Both use a PM that can be described as a
low-fidelity PM. The model is used to pre-train a recurrent
neural network whose structure is specifically adapted to the
given problem. In addition to these works on prognostics,
there are also various studies on diagnostics in which a PM
enhances the training data. As shown by [31], [32], and [33],
these studies often use high-fidelity PMs and apply transfer
learning approaches to combine synthetic and actual data.

2) FINAL HYPOTHESIS SET VALIDATION
Another form of the passive use of entire PMs is a final
hypothesis set validation. The entirety of the possible parame-
terizations of aDMconstitute its so-called hypothesis set. The
objective of the training process is to select one parameteri-
zation from this set as the final hypothesis. The development
of a diagnostic and prognostic application often involves
the training of several models with different initializations,
hyperparameters, or even entirely different learning methods.
A sufficient generalization of these models cannot be guaran-
teed. In order to validate trained models, extensive test data
are usually required, which is specifically retained from the
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FIGURE 2. Illustration of the functional principle of the hybrid prognostic methods (a) physics-based model as input and (b) physics-based
model within the data-driven model.

training. If knowledge or even a complete PM is available,
it can be used for an extended validation as well [19], [34].
Given one or more complete PMs, agreement with those can
be used as one of the validation aspects for the training results.
This method of knowledge integration is shown in Fig. 1b.

The authors are not aware of a final hypothesis set vali-
dation in diagnostics and prognostics that uses an entire PM.
A check against partial knowledge on the problem, however,
exists. This falls within the scope of post-hoc explanation in
explainable machine learning, where the fundamental admis-
sibility of a learned model based on human knowledge is
examined [35].

B. HYBRID METHODS FOR RUL PREDICTION WITH
ACTIVE USE OF THE PHYSICS-BASED MODEL
The following hybrid methods are characterized by the fact
that the output of a PM at the given query point contributes
directly to the overall output of the hybrid method. Some
of these methods can be further subdivided by their topol-
ogy, using the designations serial and parallel. In serial
approaches, the output of one model becomes the input of
a subsequent model. In parallel methods, DMs and PMs
generate their outputs independently of each other, which are
then joined by a mathematical function [36]. The methods of
active use also share many similarities with the conventional
ensemble methods of machine learning, as noted below.

1) PHYSICS-BASED MODEL AS INPUT
The method physics-based model as input corresponds to the
definition of the serial approach. The outputs of one or more
PMs form additional input features of the DM. Thus, in the
case of prognostics, the estimates of the PMs on the future
health or the RUL, are contained in the input vector of the DM
alongside the regular input values [37]. This functionality,
which is shown in Fig. 2a, is similar to the ensemble method
of stacking. Stacking uses the outputs of an ensemble of DMs
as an input of a higher-level meta learner. Themain difference
compared to the hybrid variant is that no PM provides input
to the higher-level learner.

So far, there is limited research on the use of physics-based
model as input regarding a hybrid prediction of health or
RUL. The closest to this hybrid method is the work of [28],
where the PM provides a prediction for short-term effects

on health. This short-term prediction is taken up by a data-
driven, similarity-based approach that generates a long-term
prediction. Additionally, in [28], it is stated that the presented
approach is the first hybrid prediction in which both types
of models relate to the same task and are connected serially.
In contrast, there are various papers on physics-based models
as input in diagnostics. However, the twomodel types usually
have different prediction tasks in that the PM describes the
system behavior in the normal state. The actual diagnosis is
only performed by the DM. This type of hybrid diagnosis is
studied in [38], [39], [40], and [41].

2) PHYSICS-BASED MODEL WITHIN THE
DATA-DRIVEN MODEL
This hybrid method incorporates the PM into the structure
of the DM, as illustrated in Fig. 2b. It is the only hybrid
method in this section that cannot be compared to conven-
tional ensemble methods and also cannot be designated as
serial or parallel. Here the PM provides its prediction of the
future health or the RUL, not as a part of the input features but
at an intermediate stage of the DM’s data processing. For this,
the use of probabilistic graphical models is particularly suit-
able. This is because of the inherent interpretability of these
models, which allows elements of the model to be assigned a
specificmeaning like damage level or future health. It enables
the specification of edges and nodes based on individual
knowledge but also the inclusion of entire PMs.

Whether physics-based model as input or physics-based
model within the data-driven model, both methods are similar
in that insights about the quantity to be estimated are available
to the DM at a certain stage of its data processing. This can
be shown by expressing these methods as equations, using
the same variable designations as in Fig. 2. For the method
physics-based model as input, it results in

ypred = f
([
ỹpred, xquery

])
. (1)

The square brackets denote that ỹpred and xquery are combined
within one input vector. The method physics-based model
within the data-driven model can be written as

ypred = f
(
ỹpred, xquery

)
. (2)

Hence, the learning task for both methods is to generate a
mapping from the estimate of the PM ỹpred, in conjunction
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FIGURE 3. Illustration of the functional principle of the hybrid prognostic methods (a) residual modeling and (b) regions of
competence.

with additional input values xquery, to the target variable’s
actual value [19], [22]. Both methods are therefore related
to knowledge-based and highly in-depth feature engineering,
as applied in [42]. While the first method matches a regular
ensemble approach, the second does not. The second one is
particularly suitable if the chosen structure of the DM and the
embedding of the PM are based on a physical context.

There are several examples of the integration of knowledge
into probabilistic graphical models in diagnostics and prog-
nostics. The incorporation of entire PMs, however, is scarce.
The only example of this in the case of prognostics is pre-
sented in [20]. It introduces a research project whose objec-
tive is to develop a predictive system that not only assesses
the safety status of aircraft but also that of the entire airspace.
As a central element of information fusion, a probabilistic
graphical model is utilized that incorporates PMs, among
others.

3) RESIDUAL MODELING
Another hybrid method for an active use of the PM is residual
modeling. It intends to compensate for deviations of the
PM’s predictions from the target value using a DM. When
developing the prognostic application, first the PM’s residuals
regarding the training data are determined

1ytrain = ỹtrain − ytrain. (3)

Subsequently, the DM is trained to predict these residuals.
During the application phase, both models calculate predic-
tions independently of each other, which are then added [25]

ypred = ypred,1 + ypred,2. (4)

The described procedure is also visualized in Fig. 3a.
In residual modeling, the outputs of the DM and the PM

refer to the same quantity, e.g., the RUL. However, these
models do not share the same prognostic objective, with the

DM predicting residuals of the PM. Thus, residual modeling
is a borderline case regarding the definition of hybridmethods
considered in this paper.Residual modeling can be considered
a parallel hybrid method. Furthermore, it is similar in func-
tion to the basic principle of the ensemble method of boost-
ing. In boosting, the model ensemble is trained sequentially.
During the training of one ensemble element, the objec-
tive is to compensate for errors of the previously trained
models [43].

The only paper on residual modeling in prognostics known
to the authors is [44]. In this, the voltage degradation of
fuel cells is predicted. A PM is used to describe the overall
degradation trend. Added to this is the output of the DM.
It serves as a model for specific degradation effects, such as
reversible degradation. Besides, the study on the diagnosis
of heat exchangers in [45] is particularly relevant. On the
one hand, the method’s basic effectiveness in comparison to
the purely physics-based approach is confirmed. On the other
hand, it is also reported that residual modeling is inferior to
the serial hybrid approach.

4) REGIONS OF COMPETENCE
The method regions of competence is based on the presence
of a model ensemble that consists of one or more PMs and
DMs. The fusion of these models is done by a weighted sum
of their outputs, as shown in Fig. 3b. Expressing the hybrid
method as an equation yields

ypred =

m+n∑
i=1

wi(xquery) · ypred,i, (5)

where wi is the weight of the i-th output and m + n
is the amount of models. The weighting is based on a
local competence assessment, for which various approaches
exist. Thereby, the value of wi is adapted to how high the
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competence of the corresponding model is estimated for the
position xquery.

Fundamentally, the designation and functionality of the
hybrid method are the same as for the corresponding purely
data-driven ensemble method [43]. The difference is that the
hybrid method also includes PMs within the model ensem-
ble. The motivation behind the hybrid and the data-driven
variant is that no model by itself performs best throughout
the entire state space. Otherwise, the effort of having mul-
tiple models would be unnecessary [46]. Since the models
within the ensemble provide estimates independently of each
other, regions of competence is to be designated as a parallel
method.

Regarding the application in prognostics, [46] presents a
variant of regions of competence that enables embedding
knowledge about the costs of a misestimate into the com-
petence assessment. Using the example of a turbofan engine
degradation data set, it is shown how an underestimation of
the RUL can be preferred to an overestimation. Further work
on combining different models based on local competence
includes, for example, [47], [48], and [49].

IV. CASE STUDY ON THE USE OF HYBRID METHODS
FOR RUL PREDICTION OF FILTERS
In the following, a case study on the predictive accuracy of
hybrid RUL predictions for a filtration process is conducted.
As a foundation for the hybrid prediction, a physics-based
filtration model and a Gaussian process as DM are created.
For the case study, four of the previously presented hybrid
methods are applied to the RUL prediction of filters. For this
purpose, the subject of the case study is first presented in
detail. Next, the development of the PM and DM as baseline
models is explained. Thereafter, the implementation of the
different hybrid methods is presented. Finally, the predictive
accuracy of these methods is analyzed.

A. SUBJECT OF THE CASE STUDY
Filtration to separate solids from a fluid, in this case gas, is a
process that can be found in almost every branch of industry
and therefore has already been the subject of research on
diagnostics and prognostics, as [9], [50], and [51] show. In the
present case, a test rig is used for performing automated life
testing of filter mats. During testing, the differential pressure
across the filter increases as a result of the filter being loaded
with dust particles. The filter is considered to have failed as
soon as its differential pressure exceeds a threshold of 600 Pa.

The parameters and measured values of the test rig,
together with their range of values within the case study, are

• the particle size distributions of the test dust {dust types
ISO 12103-1 A2, A3 and A4},

• the amount of dust feed per time {60, 80, 119, 159, 178,
237, 238, 317 mm3/s},

• the nominal flow rate {54, 82 l/min},
• the current test time [0, 336 s],
• the measured flow rate [0, 84 l/min], and
• the measured differential pressure [0, 600 Pa].

FIGURE 4. Differential pressure trajectories of filter loading under
identical conditions except for (a) the type of dust and (b) the dust supply
per time. There are (a) three types of dust and (b) three levels of dust
feed with three trajectories each.

The differential pressure trajectories of run-to-failure tests
with different dust types and different levels of dust feed
are shown in Fig. 4. The differential pressure trajectories
show a typical characteristic despite disturbing influences.
They start from a convex slope due to the initially prevailing
depth filtration and transition into a linear slope of the cake
filtration [52]. Further information on the filtration test bench
and the life tests can be found in [53] and [54].

B. PHYSICS-BASED MODELING OF FILTER LOADING
The scientific literature contains various PMs for the cal-
culation of filter loading. The models range from low- to
high-fidelity approaches, as shown by [55] and [56]. For the
modeling of the test scenario, a model is chosen that can be
classified as a middle ground between low- and high-fidelity.
The model is based on the works of [52], [55], [57], and [58].

The fundamental concept of the model is to divide the filter
into separate layers. In the present case, the number of layers
J is five. At one simulation time, the current filter efficiency
and the mass of absorbed particles in the foremost layer are
calculated as a function of the previous loading in accordance
with the equations given by [52]. These equations account
for the particle collection mechanisms of diffusion and inter-
ception. Based on the calculated absorbed particle mass, the
reduced particle concentration of the aerosol flowing into the
subsequent layer is determined by

ft,j+1,i = ft,j,i − mt,j,i, (6)

where ft,j represents the particle mass flowing into the
j-th layer at the discrete simulation time t . The particle mass
collected in the j-th filter layer at time t is designated as m.
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FIGURE 5. Visualization of the physics-based modeling of the filter loading process. The progressive filter loading is illustrated as (a) start of
the filtration process, (b) pure depth filtration, (c) onset of cake filtration, and (d) dominating cake filtration.

Since the distribution of particle sizes contained in the
dust is known, the filter efficiency and collected mass are
calculated for different particle sizes, which are indicated
by i. According to this scheme, the loading of each layer
from the front to the back of the filter is calculated iteratively
for the current simulation time. Since the incoming particle
concentration is highest in the first layer, the most particles
are captured there. This effect is intensified by the fact that
the filter efficiency of a layer rises with its increasing loading.
The packing density of a layer αt,j is the sum of the constant
packing density of filter fibers αf ,j and the collected particles
αp,t,j. As soon as αt,1, the packing density of the front layer,
reaches the loading limit αlim, a filter cake is formed in
front of it. The calculation of its filtration effect and growth
due to its increasing loading is performed ahead of the first
layer following the iterative calculation of (6). The overall
procedure for filter loading calculation is illustrated in Fig. 5.

Once the amount of dust collected by the filter cake and
filter layers is calculated for time t , the resulting differential
pressure is determined. If a filter cake has already formed at t ,
its differential pressure is calculated in accordance with [57]
and [59] as

1Pt,cake =
UMt,0

ρ
·

αc

(1 − αc)
3 ·

36K ckµ

Cd̄2p
. (7)

In the equation, U is the flow velocity, Mt,0 is the total mass
of the filter cake per area at time t , and ρ is the density
of the dust. The fraction in the middle reflects the influ-
ence of the cake packing density αc. The latter part of the
formula includes the Kozeny constant Kck , the gas dynamic
viscosity µ, the slip correction factor C and the mean particle
diameter d̄2p .

The differential pressure of a filter layer is calculated using
a modified equation from [52]

1Pt,j = 64µUZ
α
3/2
p,t,j

d̄2p

(
1 + 56

(
αt,j

)3)
. (8)

The differential pressure at time t across the j-th layer is
1Pt,j. The width of a filter layer in the direction of the air
flow is denoted as Z . The total differential pressure is then
calculated as the sum of the differential pressures of the filter
cake and the filter layers

1Pt = 1Pt,cake +

∑J

j=1
1Pt,j. (9)

A simulation of filter loading with the PM described requires
detailed knowledge of various parameters. This involves the
fiber diameter, the packing density of the fibers within the
filter, the filter geometry, the inflowing particlemass per time,
the statistical distribution of the particle size, the volumetric
flow rate, and the density of the dust. However, three param-
eters with great importance for the predicted trajectory are
highly difficult to measure or are subject to strong fluctu-
ations between individual life tests. These are the packing
density of the fibers in the filter αf , the loading limit αlim, and
the packing density of the filter cake αc. The first parameter
αf is subject to significant manufacturing tolerances due to
the spunbond manufacturing of the filter mats. The effect of
manufacturing tolerances is particularly pronounced due to
the fact that a comparatively small filter area of 61.3 cm2

is tested. The second parameter αlim, represents the loading
limit above which the formation of a filter cake starts. The
method of calculation proposed by [52] is suitable for thin
high-efficiency particulate air filters (HEPA) and ultra-low
penetration air filters (ULPA) with an early onset of cake
filtration. The given filter, instead, has a significantly lower
average packing density and greater depth filtration. There-
fore, no precise knowledge is available for the loading limit.
Furthermore, this parameter depends on the filter packing
density, which is affected by production tolerances. Conse-
quently, both parameters also fluctuate significantly between
different run-to-failure tests. The third parameter αc describes
the density with which the filter cake builds up in front of the
filter, which is also difficult to measure directly and strongly
depends on the test setup [57], [59].
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FIGURE 6. The marginal distributions of the unitless parameters (a) αf ,
(b) αlim, and (c) αc obtained by the MCMC sampling for a prediction of
the PM.

Besides the actual modeling, determining uncertainties is
also a central element in the development of a diagnostic or
prognostic application. In the present case, the two governing
sources of uncertainty are, first, the imprecise information on
the value of αf , αlim, and αc, and second, uncertainties due
to measurement noise and other disturbing influences. The
former is designated as epistemic uncertainty and the latter
as aleatory uncertainty. This assignment is based on the fact
that the parameter uncertainty, in contrast to that caused by
the noise, can be reduced with additional data [4].

In this case study, Markov chain Monte Carlo (MCMC)
sampling is used, which has already been employed in diag-
nostic and prognostic applications [60]. Thus, for every pre-
diction of the PM, an MCMC sampling is performed with
the differential pressure measurements available up to the
point of prediction. The result is a posterior distribution of the
parameters αf , αlim, and αc containing 1500 samples. Based
on this distribution, the differential pressure prediction of the
PM is calculated. As an example of an MCMC sampling, the
marginal distributions of αf , αlim, and αc for a prediction with
the intermediate dust size A3 are illustrated in Fig. 6. The
prediction itself is presented below and shown in Fig. 7b.
Besides the parameter uncertainty, another major source

of uncertainty in this case is measurement noise and other
disturbing influences, resulting in aleatory uncertainty. They
are assumed here to be independent and normally distributed.
Both epistemic and aleatory uncertainties are an inherent part
of diagnostic and prognostic applications, which, more than
being reduced, must be properly quantified [61]. In this case,
the MCMC samples of the three model parameters are used
to calculate differential pressure trajectories, which in turn

FIGURE 7. Exemplary differential pressure predictions of the PM for
run-to-failure trajectories of the three dust types ISO 12103-1 a) A2,
b) A3, and c) A4. The pressure readings colored green are those available
at the time of prediction that are used for MCMC sampling. The further
progression of the readings, which are colored blue, is to be predicted.
The prediction of the PM is represented by a prediction median and a
prediction interval (PI). The selected significance level of the PI is 90%.

are additively superimposed by normally distributed noise.
The two-sided prediction interval is determined as the 5th and
95th percentiles of the noisy trajectories at each calculation
step. Examples of model-based predictions, including uncer-
tainty quantification, are shown in Fig. 7 for each dust type.
Based on this, the RUL prediction of the PM is determined
as the intersection of the differential pressure prediction with
the threshold of 600 Pa. From the pressure measurements
shown, it is evident that the influence of disturbances or noise
tends to increasewith rising filter loading. Here, this so-called
heteroskedasticity is neglected in the uncertainty analysis of
the PM, as a constant noise level is assumed.

C. DATA-DRIVEN MODELING OF THE REMAINING
USEFUL LIFE OF FILTERS
For data-driven RUL prediction, a Gaussian process (GP)
is used due to its rigorous uncertainty representation.
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Data-driven methods can be used for direct or indirect RUL
prediction. On the one hand, a direct prediction of the failure
time or the RUL can be learned. This is equivalent to the
application of multivariate pattern mapping with RUL as the
target variable. On the other hand, an indirect RUL prediction
can be learned by iteratively predicting the evolution of the
damage-determining variable over time. In order to obtain an
RUL estimate, the time when the predicted damage trajectory
reaches the failure criterion is computed [62]. In this case
study, the hybrid prediction is studied only for the RUL of
filters. The additional complexity of an indirect prediction is
not required, so the GP is implemented in the form of a direct
prediction.

Due to the direct prediction, the GP’s target variable ypred
is the RUL. The input features x are based on parameters
and sensor data of the test rig that are listed in Section IV-A.
The vector x contains the dust type as dummy coding, the
current test time, the mass of dust supplied per time, the mea-
sured values of flow rate and differential pressure, as well as
the logarithmized differential pressure. Fundamentally, a GP
regression is structured as

ypred (x) ∼ GP
(
m (x) , k

(
x, x′

))
, (10)

with the mean function m (x) and covariance function
k

(
x, x′

)
[63]. Thereby, m (x) reflects an overall trend of the

target variable and thus allows the integration of knowledge
to a certain degree, comparable to feature engineering. In the
present case, the highest predictive accuracy with respect
to the test data is obtained by a zero-mean function m (x).
Additionally, in this configuration, a model that is ‘‘as data-
driven as possible’’ is obtained. The similarity of ypred (x)
to the observed values in the training data is represented by
k

(
x, x

′
)
. Here, an isotropic exponential kernel is used for

this.
The filter test rig enables run-to-failure tests to be carried

out with comparatively little experimental effort. As a result,
50 run-to-failure trajectories are available just for the training
of the GP. This amount of data is extensive enough that it
allows the GP to perform significantly better than the PM,
with an RMSE of 7.89 s for the test data. The PM, in contrast,
shows an RMSE of 19.4 s. However, this neither corresponds
to typical prognostic applications nor to the case discussed in
the paper. Therefore, the number of trajectories for the GP’s
training is reduced to 15 by sampling without replacement.
To minimize the influence of the sampling, it is repeated
30 times, so that the hybrid methods are also calculated corre-
spondingly many times. The results of these 30 repetitions are
averaged. Moreover, the training trajectories selected during
sampling are the same for each hybrid method.

As a representative test criterion, the censored test data
from the ‘‘Preventive to Predictive Maintenance’’ data set
provided on the machine learning platform Kaggle are
used [54]. These are 50 additional run-to-failure trajecto-
ries of the test rig. Each of the test trajectories is censored
at a random time for which the RUL is to be predicted.

FIGURE 8. General procedure of data handling within the case study.

The described general handling of training and test data is
summarized in Fig. 8. Changes to this procedure that arise
depending on the concept of a hybrid method are explicitly
stated in Section IV-D.

D. IMPLEMENTATION OF HYBRID METHODS FOR
COMBINING PHYSICS-BASED AND
DATA-DRIVEN MODELS
Using the PM presented in Section IV-B and the DM from
Section IV-C, hybrid methods for RUL prediction are imple-
mented. This implementation includes the four hybrid meth-
ods physics-based generation of synthetic training data,
physics-based model as input, residual modeling, and regions
of competence. As the method final hypothesis set validation
is highly dependent on the selected search space of possible
DMs, the comparability with the other methods is limited.
Therefore, it is not included in this case study. Furthermore,
due to the similarity between physics-based model as input
and physics-based model within the data-driven model, only
the former is applied. In the following, important character-
istics and special features concerning the implementation of
the four hybrid methods are discussed.

1) PHYSICS-BASED GENERATION OF SYNTHETIC
TRAINING DATA
Thismethod intends to address a lack of training data by using
the PM to generate synthetic training data. In the present
case, the operating conditions of the filter are determined by
three parameters: dust type, dust feed per time, and nominal
flow rate. The values of these parameters occurring within
the case study are listed in Section IV-A. The combinatorics
of these values results in 48 different operating conditions.
However, only 15 run-to-failure trajectories are taken for
training, for which even duplications of the operating con-
ditions can occur. Consequently, as in many diagnostic and
prognostic applications, only a part of the possible operating
conditions can be covered by the training data. As an imple-
mentation of the method physics-based generation of syn-
thetic training data, on average 36 run-to-failure trajectories
are computed using the physics-based filter model for those
operating conditions that are not present in the training data.
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These trajectories are then used as synthetic training data
along with the actual training data. Both types of data are
weighted equally in the training of the GP. Regarding the pro-
cedure in Fig. 8, this hybrid method requires the generation of
synthetic training data to be added after line 4. For the testing
of the hybrid method in line 7, however, the PM is not needed.

2) PHYSICS-BASED MODEL AS INPUT
The first step in the implementation is to compute the RUL
prediction of the PM for the 15 randomly selected run-to-
failure trajectories taken as training data. Within one training
trajectory, the RUL prediction of the PM is recalculated at
intervals of 2 s, including the MCMC sampling with the data
accumulated up to that point. In the subsequent training of the
GP, the original input features remain. They are only extended
by the current RUL prediction of the PM as an additional
input feature. For the procedure in Fig. 8, this method would
entail adding after line 4 the additional computation of PM
predictions for the sampled training data.

3) RESIDUAL MODELING
In the same way as for the method physics-based model as
input, the PM predictions are calculated for the training data.
Instead of an additional input feature, the predictions are used
for transforming the labels of the training data. The GP’s
target variable becomes the deviation of these PM predictions
from the actual RUL values. Therefore, this method would
require adding the calculation of the PM’s residuals after
line 4 in Fig. 8. In the application phase, the output of residual
modeling is calculated by summing the outputs of the GP
and the PM. This also has to be considered in the uncertainty
analysis. An analytical summation of the output distributions
of both model types is not feasible due to the PM and its
MCMC sampling. Therefore, a distribution reflecting the
uncertainty of the overall output is obtained by aMonte-Carlo
simulation.

4) REGIONS OF COMPETENCE
The model ensemble used for the method regions of compe-
tence consists of the GP and the PM. The local competence of
both models is assessed during runtime based on the 40 val-
idation data points closest to the query point. The proximity
of validation data points is determined using the Euclidean
distance norm. For the competence measure, the sum of the
residual squares is applied. For the competence assessment,
separate validation data – in the best case, entire trajectories –
have to be withheld from the GP’s training. The consequence
of such a reduction of training data would be a less accu-
rate GP and, thus, a different data-driven baseline model
compared to the other hybrid methods. Hence, for compa-
rability among the hybrid methods, 15 additional validation
trajectories are intentionally sampled from the 50 training
trajectories.

The model assessed as most competent locally is used for
the overall output. This corresponds to a model selection
where the weighting of the more competent model is 1 and

the output of the other model is weighted with 0. In the
literature, such an approach is often referred to as dynamic
model selection [64]. The choice of using a selection is based
on the heuristic recommendation on ensemble methods for
classification tasks in [43]. This recommendation can be
transferred to the regression problem of an RUL prediction.
For heterogeneous ensembles consisting of a few strongmod-
els, as here, a selection is recommended. For a large number
of weak learners, a combination of the output values should
be performed, e.g., by bagging. The described procedure for
the implemented method regions of competence is identical
to the one shown in Fig. 8.

E. ANALYSIS OF THE PREDICTIVE ACCURACY OF THE
IMPLEMENTED HYBRID METHODS
The predictive accuracy of the hybrid methods is determined
by using 15 randomly selected run-to-failure trajectories as
training data and 50 censored trajectories as test data, as the
procedure in Fig. 8 shows. The first metric used for assess-
ing the predictive accuracy is the root-mean-square error
(RMSE). To calculate the RMSE, a representative point pre-
diction needs to be determined from the prediction distribu-
tion. In the present case, this is the median. In addition to
the accuracy of the point prediction, the uncertainty estimates
are also evaluated. For this purpose, the coverage rate of the
prediction interval is calculated as a second metric. It spec-
ifies the rate at which the observed RUL values fall within
the calculated prediction interval. Since the test data impose
a specific time of prediction, no metrics can be used for
assessments that consider the behavior of the RUL prediction
within a run-to-failure, such as the prognostic horizon [7].
Due to the variation of the 15 trajectories used for the training,
the accuracy of the GP also changes, as does the hybrid
method’s accuracy. To account for this variation, the mean
and standard deviation of the RMSE values and coverage rate
are determined.

The results of implementing four hybrid methods as well
as the results of the physics-based and data-driven baseline
models are provided in Table 1. On the test data, the GP
has an RMSE of 14.9 s. Despite the reduced amount of 15
run-to-failure trajectories for the GP’s training, the physics-
based filter model has a 30% higher RMSE of 19.4 s. The
RMSE values of the hybrid methods show, in two cases,
a significant improvement over both baseline models. The
method physics-based generation of synthetic training data
achieves the lowest RMSE of 10.4 s, which is a 30% improve-
ment compared to the purely data-driven GP. With a standard
deviation of 0.8 s, its range of variation is also significantly
smaller than the GP’s. The method physics-based model as
input also provides a significant improvement over the GP
with an RMSE of 12.8 s. The residual modeling in contrast,
does not provide any improvement over the GP. However, due
to its mode of operation, it may rather be compared to the PM.
In residual modeling, the GP is specifically trained to com-
pensate for the errors of the PM, which it does to some extent
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TABLE 1. Test results of the two baseline models and the implemented
hybrid methods. The values of the two metrics, RMSE and coverage rate,
are given as the arithmetic mean and empirical standard deviation.

with an RMSE of 19.1 s and its small standard deviation of
0.4 s. The method regions of competence performs better than
the GP and the PM as well. The improvement over the GP,
though, is only 0.2 s.

Considering the metric coverage rate, the PM and DM
show minor or no deviations from the targeted coverage
of 90%. Thus, both models provide a suitable baseline for
the hybrid methods. These methods also yield only small
deviations, except for the residual modeling. This hybrid
method yields a coverage rate of 99.5%. It is found that
the compensating GP returns such wide uncertainty bounds
that those of the overall output also become unnecessarily
wide. Looking at the calculated standard deviation of the
coverage rate, the GP has the highest range of variation at
8.3%. Except for physics-based model as input, the hybrid
methods also reduce the standard deviation by at least 3.7%.
However, since the mean coverage rate of residual modeling
is close to the maximum of 100%, its range of variation is
only comparable to a limited extent.

Taking into account the RMSE and the coverage rate,
the preliminary conclusion is that for the case study, the
method physics-based generation of synthetic training data
provides the highest predictive accuracy. Regarding bothmet-
rics, residual modeling provides the worst accuracy, which
also confirms the results mentioned in Section III-B about the
inferiority of this hybrid method reported in [45].

V. EVALUATION OF THE HYBRID METHODS
Following the no-free-lunch-theorem that no predictive algo-
rithm universally performs best, the observed performance
differences between the hybrid methods cannot be considered
universal across prognostic applications [65]. Nevertheless,
conclusions about individual attributes of the hybrid methods
can be drawn based on their functionality and supported by
the case study. Section V-A assesses the ability to provide
accurate RUL predictions in areas of the state space with
little or no training data. Section V-B analyzes which hybrid
methods are particularly affected by a high variance of the
DM. In Section V-C, the computational efficiency of the
hybrid methods is examined. A summary of the results and
a discussion of their scope are provided in Section V-D.

A. PREDICTION IN AREAS OF THE STATE SPACE WITH
LITTLE OR NO DATA
In the section above, the predictive accuracy of the hybrid
model is analyzed with respect to the given set of test data.
As argued in Section I, due to the common shortage of data,
a key challenge in using data-driven methods is when query
points occur that fall in regions of the state space where
little or no training data are available. Therefore, this section
specifically discusses how the hybrid methods handle this
challenge.

DMs are capable of extrapolation to a limited extent [66].
Nevertheless, there is a strong trend that as the distance to
training data increases, the accuracy of the DM decreases.
In this context, extrapolation is defined as a query point
falling outside the convex hull of the training data [66]. How-
ever, the predictive accuracy of the PM is often independent
from training data. Under the assumption that its validity
extends to areas with little or no training data, it provides an
additional source of information. To illustrate this on the basis
of this study, a correlation analysis is performed. The cor-
relation is determined between the prediction error and the
distance to the nearest point in the training data. The calcu-
lated correlation factors are listed in Table 2. A special case
is the method physics-based generation of synthetic training
data where synthetic training data is generated. In order to
still capture the reduction in correlation due to the PM, these
synthetic data are omitted from the calculation of the distance
to the nearest training data points.

The average correlation for the GP of 0.31 supports the
argued accuracy decline of DMs with increasing distance to
training data. In contrast, the PM even shows a negative corre-
lation of −0.12, which does not have to be the case generally.
Nevertheless, it reduces the correlation between error and
distance to data points for the applied hybrid methods and
thus reduces the dependency on nearby data.

The methods that employ the PM in a manner that specifi-
cally counteracts the problem of insufficient coverage of the
state space with data are, from the authors’ point of view, par-
ticularly physics-based generation of synthetic training data
but also residual modeling and regions of competence. The
first method, as implemented in the present study, enables the
generation of additional synthetic training data in areas that
are not covered by the actual training data. Residual modeling
can also ensure reliance on the PM’s predictions in such areas,
particularly by using a parameterization or training of the DM
that causes its predictions to tend to zero at points far from the
training data. In the present study, such behavior is obtained
by using a zero-mean function for the GP. A similar approach
can be applied to the method regions of competence. For this
purpose, when evaluating competencies, the weighting of the
PM would increase in proportion to the distance to training
data. However, this approach is not applied to the method
regions of competence within this case study. The other three
hybrid methods continue to use the DM to make predictions
for data points that are distant from the training data, even if
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TABLE 2. Analysis of the error correlation for the two baseline models
and the implemented hybrid methods. The Pearson correlation coefficient
(PCC) is determined between the prediction error on the test data and the
mean Euclidean distance to the nearest five points of the standardized
training data. The table lists the mean and standard deviation of the PCC.

TABLE 3. Test results of the two baseline models and the implemented
hybrid methods with 5 run-to-failure trajectories as training data as well
as the change in the RMSE values compared to Table 1 with
15 trajectories.

these predictions are supported, for example, by a physics-
based input feature.

To support the statements made above about the individual
hybrid methods, they are calculated for comparison with a
reduced and an increased amount of training data. Instead
of the 15 run-to-failure trajectories used for the results in
Table 1, 5 and 25 trajectories are taken as training data. The
procedure of randomly selecting run-to-failure trajectories as
training data and its 30 times repetition is the same as in
Section IV-E. The results for the modified amount of training
data and the differences from the initial results with 15 run-to-
failure trajectories are shown in Tables 3 and 4. Overall, these
results show a dependency on training data volume for both
the GP and the hybrid methods. The only result that does not
correspond to the expected behavior is that of the residual
modeling, which does not provide any further improvement
when increasing the training data set to 25 trajectories.

Additionally, the results strongly support the statements
on the suitability of the hybrid methods for predictions in
areas with little or no training data. Especially when reduced
to 5 run-to-failure trajectories, the methods physics-based
generation of synthetic training data and residual modeling
show a significantly smaller increase in RMSE than the GP
or the method physics-based model as input. The method
regions of competence also has a relatively small increase
in RMSE, even without an increased weighting of PMs with

TABLE 4. Test results of the two baseline models and the implemented
hybrid methods with 25 run-to-failure trajectories as training data as well
as the change in the RMSE values compared to Table 1 with
15 trajectories.

growing distance to training data, like proposed above. With
25 trajectories much more data are available; still physics-
based generation of synthetic training data performs best, but
the gap in particular to the method physics-based model as
input is significantly smaller than for 5 and 15 trajectories.

In the tests with 5 and 25 run-to-failure trajectories, the
coverage rate of the hybrid methods shows only slight devi-
ations from the target of 90%. The only exception is still
the method residual modeling, which yields for the test with
25 trajectories a coverage rate of 99.9%. This almost com-
plete coverage of the test data points thus deviates signifi-
cantly from the target value.

B. EMPLOYING DATA-DRIVEN MODELS WITH
HIGH VARIANCE
Another attribute that systematically influences the effective-
ness of some hybrid methods is the variance of the DM.
Fundamentally, the accuracy of a DM is affected by the DM’s
variance. According to the concept of the bias-variance trade-
off, the bias and the variance of a model are counterparts,
which together with the noise result in the squared prediction
error [67]. Therefore, the variance of the DM fundamentally
affects its accuracy, as well as the accuracy of all hybrid
methods. However, besides this, an excessive variance also
has a further negative impact on the hybrid methods regions
of competence and final hypothesis set validation.

For the former method, the local competence of the base-
line models is typically assessed using labeled validation data
close to the query point. If the predictions of these models
show a high degree of variability that is unrelated to sys-
tem dynamics, there is only a small correlation between the
accuracy on the validation data and the accuracy at the query
point. As a result, in the case of high variance, the competence
assessment would not be able to infer the model performance
at the query point based on the validation data and thus
would be unable to identify the local best model [64], [68].
Especially for complex DMs, such a high variance might
occur.

Another form of competence assessment takes place in
the final hypothesis set validation, but in this case globally
and not locally. The PM is used to determine the suitability
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TABLE 5. Implementations of the method regions of competence, each
with a different DM.

of different training results. If the accuracy of the DM is
highly variable, this validation is affected in the same way.
As a result, it is either necessary to perform the validation
much more densely in the feature space, which increases the
validation effort, or it causes the validation to be less accurate.

In the remaining hybrid methods, no consecutive step is
based on the output of the DM. Thus, for them, no further
negative impact of the variance of the DM beyond its mere
accuracy is apparent.

Since the method regions of competence is also used in the
case study, the statements made can also be empirically stud-
ied. For this purpose, the hybridmethod is implemented based
on three different DMs. This includes a linear regression
model, a GP, and a random forest (RF). The input features
of the three DMs are the same as described in Section IV-C.
Since the linear model has a higher RMSE than the GP and
RF, 10 trajectories are used for its regression, while only
5 trajectories are used for the training of the other two DMs.
The validation data for the local competence assessment are
the same for each of the three variants. Furthermore, in order
to achieve a high variance for the RF, it consists of only
five decision trees. To further enhance the influence of the
model variance, different from the implementation described
in Section IV-D, the 10 nearest validation data points are used
for the competence assessment. Other than that, the procedure
is the same as for the other studies on regions of competence.
The results of the three implementations of regions of com-

petence, each with a different DM, are listed in Table 5. The
RMSE of the three models is at a similar level, with the linear
model having the largest standard deviation. Nevertheless, the
RMSE of the hybridmethod is the lowest for the linear model.
In addition to the RMSE, another aspect that can be analyzed
is how often the competence assessment correctly selects the
most accurate model for the 50 trajectories of the test data.
Again, the linear model shows the best performance. Even
though it has the largest variation in terms of RMSE in this
study, locally, a linear model has a small variance, which is
why these results support the statement that variance affects
the method regions of competence [67]. In contrast to the
linear model, the competence assessment using the RF as DM
selects the correct model least frequently. Given that the RF,
with its few decision trees, is likely to have a high variance,

TABLE 6. Frequency of calculating a PM prediction when applying the
hybrid methods within the case study. The given frequency refers to the
training and the test phases of one data sample with 15 trajectories.

this also supports the statement about regions of competence.
Summarized, although the differences in the results are small,
the statements about the method regions of competence being
affected by the model variance are supported by these empir-
ical results.

C. EXAMINATION OF THE COMPUTATIONAL EFFORT
OF THE HYBRID METHODS

The computational capacity in prognostic applications is
often highly limited. Therefore, another attribute that deci-
sively influences the choice of a prognostic method to be
used is the computational effort [69]. In this case study,
the calculation of one PM prediction, including an MCMC
sampling with 1500 samples, requires an average of 523.8 s
of computation time. By using the same computing infras-
tructure, the GP takes less than 10−2 s for one prediction.
This computational efficiency of machine learning models is
also repeatedly discussed in the literature on diagnostics and
prognostics. Data-drivenmodels are used as surrogatemodels
of the PM in order to reduce computation time. Examples of
such work include [70] and [71].

Due to the different combination strategies of DMs and
PMs, the hybrid methods differ significantly in the computa-
tional effort they require for training and making new predic-
tions. As training mostly takes place during the development
phase and the computation of predictions mostly occurs in
the application phase of diagnostic or prognostic applications,
conclusions can be drawn about the computational efficiency
in these phases.

If an attempt is made to minimize the computational
effort during training, the method regions of competence
is advisable. In accordance with the case study, the local
competence estimation can be performed dynamically when
a prediction of the hybrid method is calculated. Thus, it is
the only hybrid method considered where no computation of
the PM is necessary for the DM’s training. If, however, the
computational capacity for the application phase is limited,
which occurs often in industrial diagnostic and prognostic
applications [72], the methods physics-based generation of
synthetic training data and final hypothesis set validation
instead are well suited. Consistent with the characterization

35750 VOLUME 11, 2023



S. Hagmeyer, P. Zeiler: Comparative Study on Methods for Fusing Data-Driven and Physics-Based Models

TABLE 7. Summary on the beneficial attributes of individual hybrid
prognostic methods, denoted by a dot. The distinction between the
training and application phases used in the analysis of the computational
efficiency of hybrid methods is indicated by the numbers 1 and 2.

of a passive use of the PM from Section III, these methods
only employ the PM during the development phase.

The statements on computational efficiency are also con-
firmed by the case study. Since the effort of calculating the
PM dominates, Table 6 lists how often a PM prediction is
computed during the training and test phases of the hybrid
methods. As stated, of the hybrid methods implemented, the
method regions of competence requires the least computa-
tional effort during the training phase. During testing, the
method physics-based generation of synthetic training data
is the most computationally efficient.

D. SUMMARY OF THE RESULTS OBTAINED AND
DISCUSSION OF THEIR GENERALIZATION
Hybrid methods for combining entire DMs and PMs are qual-
itatively analyzed for their attributes regarding three aspects.
These aspects are

• the ability to provide accurate RUL predictions in areas
of the state space where training data is scarce,

• the influence of a high variance of the DM on the hybrid
method itself, and

• the computational efficiency of the hybrid methods dur-
ing the development and application phases due to their
different use of PMs.

A summary of the results regarding these aspects for each
hybrid method is given in Table 7. Overall, the method
physics-based generation of synthetic training data possesses
positive attributes with respect to all three aspects. Residual
modeling is assigned two positive attributes. Only one posi-
tive attribute is determined for the methods final hypothesis
set validation, physics-based model as input, and physics-
based model within the data-driven.

In the case study on the RUL prediction of filters, the
applied hybrid methods show different predictive accura-
cies. The results achieved by the hybrid methods possess
no claim of transferability to prognostic applications in gen-
eral. At most, they can be regarded as an indicator for the

applicability of individual methods. The identified attributes
of the individual hybrid methods, in contrast, are based on a
qualitative analysis of these methods and their functionality.
Thus, the results listed in Table 7 characterize the hybrid
methods beyond the case study and therefore have a claim
to transferability to other prognostic applications. However,
this transferability is limited to the qualitative statements and
does not include any claims about the degree to which, for
example, a hybrid method is more computationally efficient.
Furthermore, although the three aspects considered are of
high relevance, it must be assumed that there are many more
challenges and requirements when developing a prognostic
application. One such requirement, which goes beyond the
scope of this study but is also highly relevant, could be
the explainability of methods and models [73]. Thus, the
choice of a prognostic method will not be solely based on
the investigation of this work.

VI. CONCLUSION
The paper focuses on improving data-driven RUL predictions
by integrating knowledge using hybrid methods. Advantages
of this approach over purely data-driven approaches, where
the effort of data generation is reduced, are highlighted.
As this paper addresses the combination of complete DMs
and PMs, a new categorization of corresponding hybrid meth-
ods is presented, and previous works utilizing these methods
are identified.

Four hybrid methods are applied within a case study on
the RUL prediction for a filter loading process. The results
of these methods show that although the PM has a 30%
higher RMSE than the GP, its incorporation as a comple-
mentary source of information in addition to data provides a
significant improvement in predictive accuracy. In terms of
the metrics RMSE and coverage rate, the method physics-
based generation of synthetic training data performs best.
The mean RMSE of this method is 10.4 s, while the GP
shows an RMSE of 14.9 s. The coverage rate of the hybrid
method is on average consistent with the targeted 90% and
has a standard deviation of 2.4%, which is also significantly
lower than the GP with 8.3%. Of the hybrid methods applied,
residual modeling performs the worst. It has an 84% higher
RMSE than physics-based generation of synthetic training
data, making it the only hybrid method with a higher RMSE
than the DM.

The analyses of hybrid methods based on the case study
provide insights on individual hybrid methods that have not
yet been studied in the literature. Threemethods are identified
that are less affected by a shortage of training data. These
methods rely on the PM’s prediction in areas with little or
no training data and thus hold advantages over the other
hybrid methods. This finding is supported by tests performed
with different amounts of training data. Another observation
of these tests is that, also in this case, the method physics-
based generation of synthetic training data consistently has
the lowest RMSE.
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In addition, two hybrid methods are identified where the
use of a DM with high variance is of particular disadvantage.
One of them is the method regions of competence. The tests
on this method with different DMs underline this. The greater
the variance of the DM, the less likely it is that the correct
model is selected during the competence assessment.

It is observed that, for the case study, the calculation of the
PM’s prediction requires a 5 ·104 times higher computational
effort than the DM’s prediction. Based on this, conclusions
are drawn about the computational efficiency of the hybrid
methods during the development and application phases.

Overall, attributes of the individual hybrid methods are
discovered. Thereby, the method physics-based generation
of synthetic training data provides the highest number of
positive attributes. These attributes are, on the one hand,
highly relevant for prognostic applications and, on the other
hand, since they are derived from qualitative analyses, not
limited to the scope of the case study.
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