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ABSTRACT This paper presents a data fusion framework to enhance the accuracy of air-pollutant forecast
in the state of New South Wales (NSW), Australia using deep learning (DL) as a core model. Here,
we propose a long short-term memory Bayesian neural network (LSTM-BNN) to improve performance
of the predictive profiles via quantifying uncertainties and adjusting model parameters. For this, we develop
a new inferring technique for kernel density estimation with subdivision tuning to ensure both forecast
accuracy and computational efficiency with a limited number of samples from the prediction distributions.
Moreover, a novel algorithm called spatially-adjusted multivariate imputation by chained equation is also
developed to take into account spatial correlations between nearby air-quality stations for correctly imputing
the incoming data, and hence, to enable forecasting at a local scale. The LSTM-BNN framework is evaluated
with observed datasets collected from stations and modeling outputs generated by the Conformal Cubic
Atmospheric Model - Chemical Transport Model (CCAM-CTM) currently used in NSW. The airborne
pollutants under investigation are PM2.5 and ozone, which frequently exceed the standards. The results
obtained from data fusion with our framework demonstrated high performance of the proposed LSTM-BNN
model in air-pollutant prediction with reductions of over 30% in root mean square error compared to CCAM-
CTM and over 50 % in inferring time compared to a DL model with Gaussian-based inference. Accuracy
and reliability of the proposed model were also achieved with air pollution forecast in various seasons and
suburbs.

INDEX TERMS Air pollution, deep learning, long short term memory, spatial-correlated imputation, time-
series forecast, uncertainty.

I. INTRODUCTION
Air pollution, regardless of emissions sources, has become
an important topic in environmental research and manage-
ment [1], [2], particularly in urban areas [3]. To effectively
control air quality, it requires an accurate and reliable solution
for urban air pollution forecasting. In the state of New South
Wales (NSW), Australia, the key airborne pollutants such
as particulate matters (PM2.5, PM10) and ozone (O3) are
monitored in real-time as well as regularly predicted by
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approving it for publication was Chuan Li.

numerical modeling, using the dispersion model (Chemical
Transport Model - CTM [4] or Community Multiscale
Air Quality Modeling System - CMAQ) integrated with
meteorological models (the Conformal Cubic Atmospheric
Model - CCAM, or weather research and forecast (WRF)
model [5]). Although these models are frequently upgraded
to predict air-pollutant concentrations at a large scale, the
accuracy of the forecasts is limited due to the dependency on
initial assumptions and emission inventory defined during the
simulation of the complex process of emissions, dispersion
and transformation of air pollutants in physical-chemical
reactions [4]. In particular, concentrations of fine particles
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and ozone frequently exceed the healthy level and are
quite difficult to predict. The essential requirement is to
improve accuracy of the forecast and maintain stable per-
formance by exploiting available sources of environmental
data.

Air pollution prediction is a challenging task due to the
dynamic and non-stationary nature of the time series of pollu-
tants. For this, statistical methods have been widely applied,
integrating spatial correlations with trends and seasonal pat-
terns to estimate the chronological dependency of historical
and future values [6]. Commonly-used techniques based
on autoregressive integrated moving-average (ARIMA) with
different variants (e.g., VARIMA, SARIMA) [7], [8] have
contributed to a large number of studies, involving data
that are often stationary, detrended or deseasonalized.
These conditions may however be unfulfilled for real-world
applications, wherein temporal distributions are prone to not
only locations but also environmental perturbations and data
drifts [9].

Improving the accuracy and reliability of the forecast
would require an approach that can learn from the big data
to be less dependent on the assumptions of model-based or
statistics-based methods. In this regard, machine learning
(ML) techniques such as artificial neural networks [10],
support vector machine [11], random forest [1], K-nearest
neighbors or naïve Bayes [12] have been applied to the
time-series prediction of airborne pollutants. However, these
shallow-learning methods require intensive data processing
procedures involving high computational latency before
training and during prediction [9]. As an advanced version
of ML, deep learning (DL) models, with the ability to
learn ‘‘deeper’’ from multiple layers, can produce superior
performance comparable to human experts [13]. Among
the state-of-the-art DL networks, the convolutional neural
network (CNN) and recurrent neural network (RNN) demon-
strate their high performance for comprehensive learning
of spatial and temporal features respectively in many
applications [14], [15], including air quality forecasting [16].
The long short-term memory (LSTM) [17] as a variant
of RNN, has proved its robustness in capturing long-term
dependency of time and causal features of the inputs, espe-
cially pollutant concentrations and meteorological values.
Therefore, the LSTM is particularly promising in air-quality
estimation [18], [19].

For air-quality forecast, most of the learning-based models
result in point-wise estimation at each time step, which can
be considered as deterministic. As such, good predictions can
be achieved only when training data and remaining data share
the same statistical properties (e.g., the same distribution).
This condition is impractical for deep learning with air
pollution data in the presence of spatial-temporal correlations
and influences of external changes in emissions, weather
patterns and the multifaceted factors of environmental
volatility [20]. Indeed, as mentioned in a recent survey [21],
uncertainties associated with those conditions and incoming
data imperfectness, such as missing and out-of-distribution

values, pose a challenge in deep learning, for which the inte-
gration of probabilistic methods such as Bayesian reasoning
into deep neural networks [22] is worth exploring to deal with
uncertainties.

In this paper, we propose a new deep-learning model that
can incorporate spatially dispersed features when learning
the time series of airborne pollutant concentrations via
the fusion of historical observations and predicted values
from the CCAM-CTM output. The proposed model can
handle data uncertainties and imperfectness by using a
recursive neural networkwith Bayesian inference forming the
long short-term memory-Bayesian neural network (LSTM-
BNN). Besides, we aim to optimally approximate the
probability density function (PDF) to produce the distribution
of the pollution forecast at each time step. Therefore,
Bayesianmodeling of uncertainties with variational inference
is applied to both training and forecasting tasks. The
quantification of uncertainties from the proposed technique
presents an effective treatment of bias inference associated
with the conventional Gaussian assumption for distributions
of the forecast values and significantly reduces the sampling
numbers.

The contributions of this paper include:

• An effective LSTM-BNN framework using an LSTM
single-step recursive forecast model in combina-
tion with Bayesian reasoning for data fusion of
air pollution observations and existing numerical
estimations.

• A new algorithm for kernel density estimation with
subdivision tuning (KDEST), developed for the air
pollutant’s probability density function with a reduced
amount of samples of forecast distributions for uncer-
tainty quantification.

• A new imputation algorithm for spatially-adjusted mul-
tivariate imputation by chained equations (SAMICE),
developed to adaptively imputemissing observation data
of the target location based on correlation with neighbor
stations.

• Possible application of the proposed model with spatial
inferences to be integrated with the system managing all
stations in a region to achieve the required accuracy and
reliability of the forecast, as verified through extensive
experiments.

The paper is organized as follows. After the Introduction,
Section II presents the proposed LSTM-BNN framework.
Section III is devoted to the handling of uncertainties with
the approximation for Bayesian inference and the proposed
KDEST technique. Section IV presents the imputation
of spatio-temporal distributions of air pollutants and the
SAMICE algorithm development. The results and discussion
from comparison and ablation analysis for different model
configurations in various seasons are included in Section V,
indicating the potential of applying the proposed approach
for NSW suburbs. Finally, a conclusion is drawn in the last
section, Section VI.
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II. DEEP LEARNING FRAMEWORK FOR AIR-POLLUTANT
FORECAST
In this section, we introduce the datasets used for training,
validating and forecasting along with their collection and
preprocessing before modeling with our proposed framework
with LSTM-BNN model.

A. AIR-QUALITY DATA FROM OBSERVATIONS AND
NUMERICAL MODEL
The air-quality data are collected from two sources: (i) obser-
vations (OBS), measured from air quality stations, and
(ii) numerical model’s predicted values from CCAM-CTM.

1) OBSERVATIONS - OBS
The real observations are open databases managed and
published by NSW government through the application
programming interface (API), which provides air pollution
information from over 50 state-run stations over the whole
NSW [23]. This includes the main pollutants such as
PM2.5, PM10, O3, NO, NO2, CO, SO2, and NH3 along with
visibility andmeteorological variables (i.e., wind speed, wind
direction, air temperature, relative humidity and rainfall).

2) CCAM-CTM
From the numerical models, pollutant concentrations are
available for up to 72-hour forecasts obtained from the
combination of two numerical models currently used in NSW
state of Australia:
• The Conformal Cubic Atmospheric Model (CCAM)
is a 3D cubic atmospheric model which uses a non-
hydrostatic, semi-implicit, semi-Lagrangian dynamical
core to simulate climate and weather at fine resolu-
tions. It accounts sufficiently for the local topography,
atmospheric processes and associated climate impacts
or extreme weather features (e.g., tropical cyclones or
bushfires) [24].

• The Chemical Transport Model (CTM) is currently
deployed for predictions of particles (PM2.5 and PM10),
NO, NO2 and O3. This model employs data of emis-
sions and anthropogenic sources from the air quality
inventory of NSW-Sydney Greater Metropolitan Region
(GMR), calculated emissions for marine aerosol, wind-
blown dust, volatile organic compounds (VOC), as an
integration of the sources and distribution sizes of air
pollutants [25].

The combined CCAM-CTM has been implemented in
NSW since 2017 to flexibly scale the predictions at different
resolutions (80 km × 80 km, 27 km × 27 km, 9 km × 9 km,
and 3 km × 3 km) respectively in accordance with four grid
domains, namelyAustralia, NSW,GMRand Sydney basin for
modeling accurately the transportation of air pollutants across
a wide region [4]. In our study, we use the GMR domain
(60 × 60 grid cells at 9 km × 9 km) for CCAM-CTM
values based on the average distance between the air-quality
monitoring stations [3].

3) ACCURACY AND RELIABILITY
An essential requirement for air pollution forecasting is to
maintain its accuracy. Here, the CCAM-CTMmodel requires
highly accurate capture of variable emissions sources as
the main inputs in order to infer estimation outputs via
multiple chemical reactions and physical equations [25].
However, as a result of inaccurate predictions of organic
compounds and other chemical species, the model displays
unreliable results at different seasons such as overestimation
and underestimation of PM2.5 in winter and summer,
respectively [4].

Another problem is data leakage in OBS data due to
missing information or imperfect conditions. This may occur
at stations and low-cost sensors from unexpected failures of
instruments or various impacts of volatile environment [26].
The missing information problem degrades the capacity of
learning the dynamic features and other extreme events from
the time series. Moreover, data-driven models are ineffective
because of incomplete inputs or absent variables.

The drifting effect remains also a problem for air quality
prediction. According to a recent report from 2012-2018
in the NSW GMR [27], the pollutant concentrations vary
significantly from year to year, especially for the particle
levels. Therefore, the forecast performance is inevitably
affected by the concept drift problem in air-quality data when
using any learning technique with a pre-trained model [9].
As such, historical data may appear to be insufficient to
handle the prediction in the coming periods given chaotic
changes of air pollution.

To overcome these issues, we develop an effective tech-
nique for kernel density estimation with subdivision tuning
(KDEST) to improve prediction accuracy and smoothen
the distribution shape of limited samples obtained from
our LSTN-BNN model. Besides, an algorithm for spatially-
adjusted multivariate imputation by chained equations
(SAMICE) is proposed to handle any missing information or
abrupt changes in concentration levels to update the spatio-
temporal distributions of new incoming data from nearby
stations.

4) DATA PARTITION AND MODEL CONFIGURATION
Each variable in this work constitutes approximately
30,000 hourly-averaged values from March 2018 to August
2021 used for training, validating and testing the model. The
raw data will be scanned to remove the outliers (negative
or extreme values 3 times higher than averages), resample
missing time steps, and impute the missing values. After
preprocessing, the inputs are transformed into matrices of
three dimensions, i.e. number of samples, number of time
steps, and number of features, to create a set of spatio-
temporal data for fitting to the forecast model. Then, the
transformed dataset is divided into training and validating sets
respectively with splitting ratios of 80% and 10%, while the
testing set with a splitting ratio of 10% of the total samples.
This selection with the sliding windows method in training
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TABLE 1. Model configuration.

and testing processes accounts for the temporal nature of
the time series used in the LSTM forecast model. Indeed,
assigning 80% of the total for the training set can cover all
seasonal patterns, extreme events (e.g., bushfires in black
summer 2019-2020 in NSW, Australia) and other episodes
of air pollutants. Hence, the distributions of various features
can be considered as fully learned by the proposed model
during the training process. The 10% of hourly-averaged
data (approximate 3000 values) assigned for each validating
and testing datasets, equivalent to 125 days, can sufficiently
evaluate the generic capacity of our model for a particular
season of the year. Before training, the data were normalized
in the interval [0, 1] to increase the speed of convergence and
reduce the prediction bias.

From empirical experiments with our real data, the
hyperparameters selected in our model are summarized in
Table 1. Here, the activation function is the Rectified Linear
Unit (ReLU), and Adam optimizer is chosen for training
because it applies an adaptively stochastic optimization
method that is suitable for time series. Finally, the early
stoppingmethod is also applied with ν = 20 epochs to reduce
overfitting.

The proposed model architecture and related functions are
developed with a high-level neural network API in Python,
namely Keras running on Tensorflow, an open-source library
for machine learning tasks. We train our program on the
Interactive High Performance Computing (iHPC) server with
NVIDIA Quadro RTX 6000 GPU.

B. FUSION OF OBSERVATION AND MODEL DATA
Methods for multistep-ahead predictions can be categorized
as (i) direct or one-shot forecast and (ii) recursive forecast.
The former produces a sequence of multiple time steps at one
prediction, which is suitable for stationary data with seasonal
patterns (e.g., temperature). This method may however face
the uncertainty problem in air pollutants, causing instability
in predictive performance, especially for the long-term
forecast (e.g., 48h-, 60h- or 72h-future values). On the other
hand, the latter method, using a one-step model recursively
with its new input updated by the latest prediction values, can
flexibly produce multiple forecast time steps in an iterative
manner to reach the standard period of 72-hour forecast.

To mitigate the accumulated errors, we apply a recur-
sive model for single-step forecast with the fusion of

real-world observations and predicted CCAM-CTM data.
Here, as only historical observations are available, a recent
forecast value from the model output is fed back to join
the input sequence for the next time-step forecast. Taking
advantage of multistep-ahead forecast in physical modeling,
the predicted data from CCAM-CTM model are combined
with observations and previous forecast values to enhance
the knowledge of future trends which contribute to reducing
the predictive error at each forecast time step. During
operations, OBS data obtained from the monitoring stations
and low-cost sensor networks are updated hourly to the input
sequence for replacing the previous forecast to suppress the
model uncertainty of previous forecast. Apart from improving
prediction performance, this method also allows for the
prevention of data leakage in DL with neural networks.

C. PROPOSED ARCHITECTURE
In our approach, a recurrent neural network (RNN) model
is utilized as the main core to formulate our proposed
framework owing to its robustness of modeling sequences
and flexibility with respect to different scenarios of prediction
such as one-to-one, one-to-many, many-to-one or many-to-
many time-step predictions [13]. To control the flow of
information from the input sequences with the long-term
patterns of time series of airborne pollutants, overcome the
vanishing and exploding issues in RNNs and, more impor-
tantly, improve the forecast accuracy via quantification of
uncertainties, we propose a hybrid deep learning model using
LSTM-BNN, based on the LSTM network in integration
with Bayesian inference. Here, to implement the LSTM-BNN
predictive model, recurrent layers are stacked intermittently
with Monte-Carlo (MC) dropout layers for regularization,
prevention of overfitting and quantification of uncertainties
during prediction [28].

The sequential structure of an LSTM layer includes
multiple memory cells with inputs xt of air-pollutant concen-
trations and two other states: the previous cell state Ct−1 and
the hidden state ht−1. The LSTM cell state is described by the
following equation [17]:

Ct = ft ∗ Ct−1 + it ∗ C̃t , (1)

where ft and it are respectively the forget and input gates:

ft = σ (Wf .[ht−1, xt ]+ bf ), (2)

it = σ (Wi.[ht−1, xt ]+ bi), (3)

C̃t = tanh(WC .[ht−1, xt ]+ bC ). (4)

The hidden state ht is determined as a function of the cell state
Ct :

ht = ot ∗ tanh(Ct ), (5)

where the output gate ot is determined as:

ot = σ (Wf .[ht−1, xt ]+ bo), (6)
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σ and tanh represent respectively sigmoid and hyperbolic
activation functions:

σ (x) =
1

1+ e−x
, (7)

tanh(x) =
ex − e−x

ex + e−x
. (8)

The DL parameters Wf , Wi, WC , and bf , bi and bC
are respectively the weights and biases of the three gates,
to be iteratively updated following the pattern of air-quality
features during training. Their values depend on the level
of correlation between patterns. The cell state Ct is updated
by an element-wise product (∗) of the forget gate with the
previous state (ft ∗Ct−1) to skip the unimportant features and
add up with the new feature from the input gate (it ∗ C̃t ).
The proposed LSTM-BNN framework is depicted in Fig. 1,

where its inputs combine CCAM-CTM and the real-world
OBS collected from monitoring stations and low-cost sensor
networks with data being normalized in [0, 1] and formulated
as a matrix of m rows of historical time-step values and
n columns featuring air pollutants of interest as well as
meteorological, spatial and temporal variables. Since the raw
data are subject to intermittent missing and/or erroneous
values due to sensors’ noises, external disturbances as well as
stochastic dynamics of air pollutants, it is essential to develop
effective methods not only for the treatment of uncertainties
as mentioned above but also for data imputation, to be
addressed in the next sections.

III. BAYESIAN INFERENCE FOR MODEL UNCERTAINTY
HANDLING
As uncertainties in DL models are inevitable, we integrate
the Bayesian inference method in the LSTM model for
uncertainty quantification to improve the accuracy and
reliability of the forecast.

A. BAYESIAN INFERENCE IN NEURAL NETWORK
The degree of belief on the neural network model spec-
ifications based on new information (observations) can
be inferred from the posterior p(ω|x) determined by the
Bayesian theorem:

p(ω|x) =
p(x, ω)
P(x)

H⇒ p(ω|x) =
p(x|ω)p(ω)

P(x)
, (9)

whereω represents the learnable parameters of the network, x
denotes the input data of air-quality values as well as auxiliary
variables (e.g., temporal, meteorological or topographical
features) given to the model for training and predicting,
p(x|ω) is the likelihood of input values given ω with the
prior p(ω), and p(x) is the marginal likelihood for the input
distribution. The prior is initialized model’s weights updated
from the previous batches of data in each training epoch,
sampled from parameters ω, assumed to follow the Gaussian
distribution (ω ∼ N (µω, σω)).
For every new parameter ωi sampled in the distribution

p(ω|Xnew) of model’s posterior, a new predictive value

(yforecast - future air-pollutant value) is generated from the
new inputs Xnew of OBS and CCAM-CTM values. The
distribution of these predictions then formulates the posterior
of forecast or predictive distribution P(yforecast |Xnew):

p(yforecast |Xnew) =
∫
p(yforecast |ω)p(ω|Xnew)dω. (10)

Since the posterior of weights p(ω|Xnew) is intractable,
its approximation can be sought via (i) sampling the
model parameters, or (ii) variational inference to find an
equivalent distribution q(ω). The latter method, faster and
less computationally expensive, is applied in this study. For
variational inference, the aim is to minimize the distance
between the posterior distribution p(ω|x) and its equivalence.
A measure for this distance is the Kullback-Leibler (KL)
divergence defined as [29]:

DKL(q(ω)||p(ω|x)) =
∫
q(ω)log

q(ω)
p(ω|x)

dω. (11)

Thus, to achieve the closest approximation of p(ω|x), the KL
divergence should be minimized:

min
θ
DKL(q(ω, θ)||p(ω|x)) = min

θ
Eq(ω,θ) [logq(ω, θ)

−logp(ω|x)] , (12)

where θ ∼ N (µθ , σθ ) is an intrinsic parameter to be
obtained from the minimization, Eq(ω,θ) is the expectation of
the distribution q(ω, θ). To proceed with the minimization
of the KL divergence for airborne pollutant distributions,
we used the dropout technique with layer weights (ω)
initialized by an L2-regularization, which has been proved
to be an approximate solution to (12) [28]. In consistence
with the mathematical establishment that all-layered MC
dropout best approximates a Bayesian neural network [30],
the MC dropout has been verified as superior to other state-
of-the-art uncertainty estimation techniques, particularly with
strong robustness to noise [31]. Here, dropout is implemented
by skipping some hidden nodes in a layer of the neural
network to form a varying configuration for the network at
an inference time.

First, through multiple samplings of forecast values
yforecast given input Xnew, we form the equivalent distribution
p(yforecast |Xnew) as obtained from Bayesian inference. With
a given dropout probability pdrop, by repeated random
sampling using the Monte Carlo (MC) algorithm to omit
neurons in our LSTM-BNN, the obtained distribution can
be considered as the closest to posterior p(ω|x), considered
as equivalent to the result obtained from the minimization
of the KL divergence (12). Furthermore, since the effective
management of uncertainties by Bayesian inference using the
MC-dropout technique may incur a tradeoff in computing
expenses, we present the following a new algorithm to
estimate the smooth distribution and enhance inference
accuracy by reducing the number of samples.
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FIGURE 1. Structure of the proposed LSTM-BNN framework.

B. KERNEL DENSITY ESTIMATION WITH
SUBDIVISION TUNING
The Gaussian distribution assumption is widely used in
probabilistic models for applications with a large number

of samples for each time step according to the central limit
theorem (CLT) [32]. As such, in air-quality forecasting,
the cost of computation is quite expensive for multi-step
ahead estimation over a large region. Moreover, in addition
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FIGURE 2. Histograms and inferences of CCAM-CTM (black line), Gaussian inference by the mean of distribution (green line) and the maximum likelihood
estimation (red line) from KDEST, compared to the ground truth OBS (blue line).

to inevitable uncertainties, direct Gaussian-based inferences
from observations containing non-normal distributions could
incur some bias issues. As a remedy for that and also
taking into account the recursive fusion of CCAM-CTM
and OBS for large-area prediction, we propose to subdivide
the data for adjusting the parameters of the kernel density
estimation (KDE), a non-parametric method commonly used
to infer the smooth shape of distributions from the observed
data [33]. The idea is to obtain an optimal approximation of a
probability density function (PDF) of each forecast time step.

To estimate the distribution density at point x, we con-
sider the weighted distances with its neighbor points xi,
1 ≤ i ≤ n, where n is the number of the distribution’s
samples. Now, we firstly define an estimate of the distribution
density via a kernel function [34]:

f̂ (x) =
1
nh

n∑
i=1

K
(x − xi

h

)
, (13)

where the kernel is a Gaussian function K (x, h) ∝ exp(− x2

2h2
)

having its positive bandwidth h. This KDE parameter controls
the tradeoff between the bias (underfit) and variance (overfit)
of the estimation [35]. The large bandwidth may cause
a high bias with a very smooth density distribution and
vice versa. Here, optimized values for the bandwidth are
sought in accordance with various sets of samples from the
predictive distribution by using the proposed technique for
kernel density estimation with subdivision tuning (KDEST).
Our development is based on the unbiased cross-validation
method for kernel nonparametric density estimation. The
integrated square error (ISE) of the density estimate is then:

ISE =
∫
[(f (x)− f̂ (x)]2dx

=

∫
f 2(x)dx − 2

∫
f (x)f̂ (x)dx +

∫
f̂ 2(x)dx), (14)

where f (x) is the real density function of the forecast
posterior distribution. As f (x) does not involve the bandwidth
h, it can be ignored in the minimization of ISE for the
optimal bandwidth. Hence, when minimizing ISE in h, the
first term,

∫
f 2(x)dx, is thus omitted while the second term

containing the statistic mean of the estimate f̂ (x) in (14)
becomes approximately −2( 1n

∑n
i=1 f̂ (xi)). Therefore, the

minimization of ISE can be rendered to the minimization of
an unbiased cross variation JISE :

JISE =
∫
f̂ 2(x)dx −

2
n

n∑
i=1

f̂ (xi). (15)

To proceed, for a given bandwidth range H, we randomly
divide the posterior distribution into κ partitions (κ ≥ 2),
each of k samples, i.e. n = κk . To tune for an optimal
bandwidth hopt in the range, we consider first (κ − 1)
partitions to compute the estimated density function (13) for
each hj ∈ H with an iteration step 1h as,

f̂j(x) =
1

(n− k)hj

n−k∑
i=1

Kj
(x − xi

hj

)
, (16)

and use the last partition of k data points to obtain the average
index (15):

JISE (hj) =
1
k

( k∑
i=1

∫
f̂j
2
(x)dx

)
−

2
k

k∑
i=1

f̂j(xi). (17)

The procedure of finding optimized bandwidth (hopt )
is summarized in the pseudo-code of Algorithm 1. After
subdivision tuning and cross-variation optimization, the
kernels obtained are used to infer the forecast values of the
posterior distribution.
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FIGURE 3. Correlations of ozone at Liverpool with respect to other stations in the 1st week of January 2021.

Algorithm 1 KDEST
Input: Forecast posterior distribution at a time step
Output: Optimal bandwidth (hopt )
1: Define bandwidth rangeH.
2: Divide the posterior distribution into κ partitions of k data

points each.
3: for each hj ∈ H do (with hj = hj−1 +1h)
4: Compute the estimate (16) and index (17).
5: end for
6: hopt = argmin JISE (hj)

To illustrate our inference for forecasting three air
pollutants PM2.5 and ozone on the 3rd of May 2021 with
n = 20 samples, we selected the partition number κ = 4 and
the bandwidth h in the rangeH=[0.1, 1.5] with1h=0.1. The
histogram, in dark blue, of sampled distributions typically for
PM2.5 and ozone concentrations are depicted in of Fig. 2(a)
and (b), respectively, with the inference values obtained
respectively from KDEST (red line), Gaussian-based mean
of samples (green line), CCAM-CTM (black line), and
ground truth of observations (blue line). It is discernible
of the skewed and abnormal distribution in the discrete
samples of the posteriors. Accordingly, when the forecast
values are inferred with posterior distributions assumed to
be Gaussian [28], there will be biased predictions. In this
regard, KDEST can reduce the gap to the ground truth. Unlike
a recent probabilistic study [36], here KDEST results in a
more accurate and smoother probability density function of
the posterior, and hence contributes to improving the forecast
accuracy.

IV. SPATIO-TEMPORAL DISTRIBUTION IMPUTATION
Missing information and imperfectness in data recording are
important issues in air quality prediction. This section is

devoted to the imputation techniques we developed in this
work for air-pollutant forecasts.

A. CORRELATION OF SPATIO-TEMPORAL PROFILES OF
AIR POLLUTANTS
Correlations of measurements at regional air-quality stations
are widely used to select appropriate features of air pollutants
or meteorologies for imputing, training and forecast in
association with the spatial relation analysis [37]. For levels
of a pollutant collected at 19 air-quality stations over the
Greater Metropolitan Region (GMR) of Sydney in 2021 [23],
the variation of correlations with respect to locations is
quite excessive and obviously represents a concern for
data imputation. Temporal short-term correlations also vary
episodically due to complex dispersion, meteorological
impacts, emissions conditions and chemical reactions of the
pollutants, resulting in intermediate correlations of an air
pollutant at a target station with other stations. For example,
at Liverpool station in early 2021, distinguished changes
in the correlation for ozone occurred at Cook & Phillip,
Randwick and Earlwood with respect to Liverpool, in a
window of 48-hour observations during the 1st week of
January 2021 as shown in Fig. 3. Similarly for particle
concentrations, the correlation changes were observed owing
to the impact of local meteorologies (e.g., wind, rainfall, air
humidity and others) [3]. The above rationale has motivated
us to develop a technique to remove or scale down the
influence of low-correlated stations during the imputation for
incoming model inputs. In this paper, to enhance the forecast
performance, we propose a correlation-based adjustment
algorithm for imputing the missing information between
stations in the cluster or region of interest under the context
of real-world operation for our DL model.
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B. SPATIALLY-ADJUSTED MULTIVARIATE IMPUTATION BY
CHAINED EQUATIONS
In environmental monitoring, the observations measured
are occasionally absent due to volatile impacts of outdoor
conditions, system failures or communication problems [26].
Information loss may cause model corruptions with any
incomplete length of inputs. Besides, the forecast becomes
unreliable by using only statistical properties of historical
data to infer the absent information due to the concept drift
problem [9]. As a remedy, to deal with the drift of incoming
data by referring to nearby stations through correlations
between stations, we develop here a novel online imputation
technique, called spatially-adjusted multivariate imputation
by chained equations (SAMICE). The proposed technique,
modified from the multiple imputation method by chained
equations (MICE) [38], also treats a feature with missing
values as a dependent variable and other remaining variables
as predictors in a multiple regression model. Here, not all
features in the dataset but only the most correlated variables
are involved in the regressive-based imputation from the
predictive distributions of the fitted model.

Let us consider the whole OBS dataset Y ∈ Rm×n

(m samples and n stations). We denote Yi the set of target
observations at the ith station, Yj, j ̸= i the set of observations
collected from the neighbor stations, and Y−i the set of
missing measurements at the ith station (Y−i ⊂ Yi). The
missing values y−i are the responses of the ith regression
model for imputing missing values in Yi by using information
from yj ∈ Yj. This regression model is often defined as,

y−i = yj · α−i + β−i, (18)

where α−i and β−i are respectively the regression coefficients
and intercepts.

The idea behind our SAMICE algorithm is to utilize
only the most correlated variables to improve the regressive-
based imputation. Here, a faster convergence with higher
reliability is expected to result by reducing uncertainties from
predictions after multiple cycles of imputation. For that, the
correlation between the target station i and neighbor station j
is first obtained from the Pearson’s correlation coefficient:

rij =

∑
i,j(yi − ȳi)(yj − ȳj)√∑

i(yi − ȳi)2
∑

j(yj − ȳj)2
, (19)

where ȳi and ȳj are the sample mean respectively at stations i
and j. We select a threshold rthr for intermediate coefficients
of correlation during the forecast. Those values with a lower
correlation than the threshold are to be removed, otherwise,
they are accounted for the set Yj−remain for valid values
yj−remain remaining. If all coefficients are below the threshold,
the mean of the target feature (ȳi) calculated from the
available observations will be filled in for the missing values.

The correlation-based SAMICE regression model is now
formulated to impute missing values at station i as follows,

y−i =

{
yj−remain · α−i + β−i (if rij ≥ rthr )
ȳi (if rij < rthr ,∀j),

(20)

and its pseudo-code is presented in Algorithm 2.

Algorithm 2 SAMICE
Input:
1: Sequences of incoming data yi ∈ Yi from target station
ith.

2: Sequences of incoming data yj ∈ Yj from neighbor
station jth.

Output: Imputed data for Y−i ⊂ Yi in target station ith

3: Set the spatial correlation threshold rthr (0 < rthr < 1).
4: for j in (n− 1) stations do
5: Compute Pearson’s correlation coefficients rij as per

(19).
6: if rij ≥ rthr then
7: Yj−remain← Yj
8: end if
9: end for
10: if Yj−remain = ∅ then
11: y−i← ȳi
12: end if
13: Obtain imputed values to form the set Y−i of imputed

values.

V. RESULTS AND DISCUSSION
In this work, we considered the air-pollutant forecast in
two main periods: summer (January 2021) and winter (late
May and early June 2021) to evaluate the performance and
reliability of our LSTM-BNN model in comparison with
the current CCAM-CTM for respectively two key pollutants,
the ozone and PM2.5. These evaluation periods are selected
from the fact that photochemistry plays a major role of the
high level of ozone concentrations over the sunny and hot
months during summer while during winter the smoke from
fire heaters significantly contributes to PM2.5 concentrations
in Australia. A comprehensive ablation study was conducted
on various choices of the proposed KDEST and SAMICE
algorithms to reveal their advantages. The results obtained are
also compared with a hybrid CNN-LSTM model to show the
LSTM-BNN superior performance.

A. EVALUATION METRICS
For performance evaluation on the forecast of the time-series
data for the concerned air pollutants, collected at a number of
monitoring stations in NSW, widely-adopted metrics are used
here:

- The mean absolute error (MAE):

MAE =
1
n

n∑
i=1

|yi − ŷi|, (21)
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FIGURE 4. Comparison of recursive forecast profiles with LSTM-BNN: KDEST-50 (red), GAUSSIAN-300 (green), CCAM-CTM (dashed black),
CNN-LSTM (orange) and ground truth OBS (blue dot) from 02nd January 2021 to 11th January 2021 in Liverpool.

- The root mean square error (RMSE):

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2, (22)

- The Pearson’s correlation (r):

r =

∑
(xi − x̂i)(yi − ŷi)√∑

(xi − x̂i)2
∑

(yi − ŷi)2
, (23)

and - The coefficient of determination (R2):

R2 = 1−

∑
(yi − ŷi)2∑
(yi − ȳ)2

, (24)

where yi and ŷi here are respectively the measured obser-
vations and forecast values of variable y at the ith instant,
(similarly to variable x), and n is the number of inspected
samples. The lower values of RMSE and MAE or higher
values of r and R2 indicate better performances.

B. LSTM-BNN PERFORMANCE
In the following, we illustrate the high performance of
the proposed LSTM-BNN model in forecasting the two
air pollutants of interest (PM2.5 and ozone) in NSW via
comparison and ablation analyses using the above metrics.

1) RECURSIVE FORECAST
Here, the LSTM-BNN data are sampled with 50 and
300 values per distribution respectively for KDEST inference

TABLE 2. Ozone prediction with different recursive models in May
2021 in Liverpool.

(KDEST-50) and Gaussian-based inference (GAUSSIAN-
300) to benchmark with the measurements of observations
(OBS) as the ground truth, and the predicted values of
CCAM-CTM as a physical model currently used for air
quality estimation in NSW state. We also compared the
results with those obtained from a hybrid deep learning
model, the CNN-LSTM constructed by 1D-CNN layers
concatenated with LSTM layers [16]. From the predicted
profiles for PM2.5 and ozone shown respectively in Figs. 4(a)
and (b), it can be seen that profiles from the proposed LSTM-
BNNmodel share similar patterns with the ground truth OBS
for both airborne pollutants over the studied period from 2nd

January 2021 to 11th January 2021.
While ozone prediction with CCAM-CTM often has large

errors, the LSTM-BNN approach can provide its forecast
rather accurately, even at higher concentrations of the
pollutant, contributed by its diurnal characteristics. Forecast
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TABLE 3. Direct forecast performance for PM2.5 [µg/m3] with different combinations of input lengths and output horizons in June 2021 in Liverpool.

values of the CNN-LSTMmodel in general present a good fit
to OBS as LSTM-BNN but display underpredictions at some
peaks of concentrations such as the forecasts in the midday
of the 5th of January 2021. For fine particle level, the LSTM-
BNN model can accurately forecast with small deviations
from the observations except for someminor underestimation
at some extreme peaks, as shown in Fig. 4(a). The CNN-
LSTM model performs well but only at low concentrations
of PM2.5, while there are large gaps with respect to the high
level of the air pollutant due to uncertainties involved. The
band covering±5% of the predicted distributions is shown in
the figures (shaded in pink) to represent a level of robustness
of the prediction. For the LSTM-BNN model in comparison
with other techniques, this coverage in percentage is the
highest, as depicted in Fig. 4 (b), with more than 90 % for
ozone, the airborne pollutant that varies diurnally in a large
range.

Notably, with the proposedKDEST, the number of samples
can be reduced from 300 down to 50 without performance
loss. This can result in some improvement in computational
efficiency and enable possibilities for prediction with missing
data. To further illustrate the advantage of the proposed
KDEST algorithm, we conducted an ablation study with
smaller numbers of sampled data in addition to KDEST-50,
i.e., 5 (KDEST-5), 10 (KDEST-10), 20 (KDEST-20) and 30
(KDEST-30).

An extensive comparison was conducted for predictions
with the CCAM-CTM model, two deterministic DL net-
works including an LSTM model and the hybrid CNN-
LSTM model, the proposed LSTM-BNN with KDEST
at various numbers of sampled data, and a Gaussian-
inference LSTM-BNN (GAUSSIAN-300) model without
KDEST. Table 2 summarizes the comparison based on the
metricsMAE,RMSE, Pearson’s coefficient r , R2 and time of
simulation typically for prediction of ozone in May 2021.

It can be seen from the ablation study that the proposed
LSTM-BNN with KDEST sampled at 30 data points
(KDEST-30) is about the best for forecasting ozone with
10.73% improvement inMAE, 31.9% improvement in RMSE
as compared to CCAM-CTM, and 54.3% reduction in the
processing time in comparison to the LSTM-BNN with
Gaussian inference at 300 samples. Moreover, predictions

FIGURE 5. Forecast performance (left) and scatter plot (right) of
direct-forecast models for PM2.5 and ozone at 72-h horizon in Liverpool
comparing to real observations (OBS) and predicted values of CCAM-CTM
model.

using the proposed model with KDEST-30 have a higher
coefficient of determination (R2) by over 14% compared
to those from LSTM and CNN-LSTM. Similar results can
be obtained for PM2.5 in different seasons of the year.
The findings of this ablation study and comparison analysis
demonstrate the effectiveness of our Bayesian inference
integrated with the LSTM deep learning network in dealing
with uncertainties.

2) DIRECT FORECAST
Numerical models like CCAM-CTM often require a large
number of values from air emissions inventory and mete-
orologies as their inputs. Also, unavailable inputs from
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FIGURE 6. Predicted air-pollutant profiles from incoming data with random missing values at a ratio of 0.2, imputed by MICE and
SAMICE for the targeted station at Liverpool.

TABLE 4. Performance comparison between MICE and SAMICE of PM2.5 and ozone with the threshold of Pearson’s coefficient at 0.9 for the targeted
station at Liverpool.

these models may cause an accuracy problem in prediction.
As such, we consider here the use of the proposed LSTM-
BNN model to forecast multiple values with only historical
data of OBS and CCAM-CTM. For this, we conducted an
extensive ablation study for direct predictions with short-term
forecast horizons of 6, 12, 24, 36, 48, 60 and 72 hours ahead.
The profiles (left) and scatter plots (right) for PM2.5 and
ozone concentrations in June 2021 are depicted respectively
in Fig. 5(a) and (b). It can be seen therein that our proposed
model (red line) is much better in terms of forecast accuracy
in comparison with the ground truth observations (blue dot)
for both airborne pollutants. The predicted values of CCAM-
CTM (dashed black line) are in poor correlation for PM2.5
and display underprediction for ozone as compared OBS.
Indeed, the scatter plots for the LSTM-BNN forecast also
show outperformance over the existing CCAM-CTM model
wherein the coefficient of correlation with real observations

is greater than 0.9 for ozone even for a large output horizon
of 72 hours (3-day ahead forecast).

A comprehensive experiment was also conducted on
different combinations of input lengths and output horizons.
Table 3 summarizes typically the performance evaluation
for the direct forecast of fine particles in the wintertime.
It shows that the forecast accuracy is acceptable with MAE
ranging between 0.339 and 2.116µg/m3, andRMSE between
0.364 and 2.415 µg/m3. Moreover, the proposed model with
the direct forecast is quite reliable and stable with an input
length of 36-48 hours, as can be seen from the table. These
results can be also obtained for ozone and in the summertime.

C. SUBURBAN SCALE AIR POLLUTION FORECAST
With the availability of data recorded at air-quality stations
only, the missing information or observation at a location
required for LSTM-BNN can be imputed by using the
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FIGURE 7. Spatial distributions of real observations versus 72h-forecast of PM2.5 [µg/m3] and ozone [ppb] on 04th June 2021 (Note: the red marks are
locations of air-quality stations, x-axis and y-axis are latitude and longitude).
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proposed SAMICE algorithm, based on correlations with
nearby monitoring stations. In this work, 15 stations located
in [−150◦4, −151◦4]-longitude and [−34◦33, −33◦55]-
latitude are selected with the number of missing values less
than 30% of the total recorded observations over the three-
year period (2018-2021). As in [2], the model outputs are
interpolated according to the gridding values over the whole
region via kriging to obtain the distribution map along with
the stations.

1) SPATIAL DATA IMPUTATION WITH SAMICE
As mentioned previously, our LSTM-BNN framework with
SAMICE imputation can provide forecasts of air pollutants
in terms of spatial distributions at an interested location. This
merit can be verified by comparing profiles of forecast values
with imputation by the conventional MICE and proposed
SAMICE algorithm.

Benchmarked to the ground-truth observations, the accu-
racy enhancement of SAMICE over MICE can be seen in
Figs. 6(a) and (b) for the predicted profiles of PM2.5 and
ozone concentrations on the 4th of June 2021. It is clearly seen
that the forecast profile with SAMICE (red line) has better
fit to the real OBS (blue dots) where the gaps at peaks of
pollutants are smaller than forecast profile applying MICE
(green line) for imputing the inputs of model. It indicates that
the uncertainty of input values is reduced by omitting low-
correlated stations with our proposed SAMICE.

Table 4 summarizes the outperformance of SAMICE for
prediction of the three air pollutants in consideration with
randomly dropping data at ratios varying from 0.1 to 0.5 and
the threshold 0.9 for Pearson’s coefficient r . As can be seen,
the accuracy improvement can be achieved from 20% up
to 93% in terms of MAE and RMSE. This improvement
is attributed to our model’s capacity of reducing the gaps
betweenmeasurements and predictions, especially at extreme
values, by correlation-based adjustment of the estimated
disperses of the air pollutants at a location. This spatial feature
can be implemented easily for state-run air quality stations or
low-cost wireless sensor networks for monitoring systems.

2) SUBURBAN AIR-POLLUTANT DISTRIBUTIONS
Applying the proposed framework for the Sydney GMR
gridding, spatial distributions of the air pollutant forecast can
be obtained at any suburb or location of interest shown in the
map of Fig.7(a). Figures 7(b) - (e) present the comparisons
between the distributions of real observations (left) and
72-hour forecast (right) respectively for PM2.5 and ozone on
the 04th of June 2021.
The spatial distribution maps present quite accurately the

forecast dispersion of three air pollutants as per evaluation
given in Table 4 for Liverpool station. For example,
particles tend to move South East while ozone displays a
high concentration on the west during winter 2021. More
importantly, this allows for possibly predicting potential risk
of air pollution, particularly in any suburb or local area along
with the meteorology forecast and, given the availability of

low-cost wireless sensor networks, which is promising for
microclimate analysis.

VI. CONCLUSION
This paper has presented a long short-term memory Bayesian
neural network (LSTM-BNN) as a new deep learning model
to improve accuracy and reliability of the air pollution
forecast, particularly for two main air pollutants PM2.5
and ozone, in the state of New South Wales, Australia.
The proposed network utilizes both single-step recursive
forecast and multistep ahead direct forecast approaches
for fusing observations and data from the currently-used
CCAM-CTM. The resulting model provides the predictive
distributions as posteriors at each time step instead of
point-wise estimations as in deterministic models. Here, the
Monte-Carlo dropouts approximate Bayesian inferences to
quantify uncertainties in real-world data and designed model.
For achieving higher forecast accuracy over the Gaussian-
based inference while mitigating the computational latency,
we developed the kernel density estimation algorithm with
subdivision tuning (KDEST) to substantially reduce the
number of distribution samples required. We also developed
a new algorithm for spatially-adjusted imputation by chained
equations (SAMICE) for considering spatial distributions of
air pollutants based on the correlation tomonitoring data from
air-quality stations or low-cost wireless sensor networks.
Extensive experiments with real-world data collected from
state-run stations and predicted values by CCAM-CTM have
demonstrated the effectiveness of our model in terms of
accuracy and reliability of the forecast as compared to
observations. Moreover, the proposed model has provided
promising results in forecasting air pollution at a local
scale for suburbs. This contributes to not only the enhance-
ment of prediction performance but also the possibility of
management of urban air quality in moving towards smart
livelihoods.Work is in progress for integrating the framework
into a dashboard for the state authority. Furthermore, the
proposed SAMICE algorithm may incur a bias in data
imputation at a target station using the mean of observations
at the neighbor stations. Besides, developing a stand-alone
model operating on a private-sector application independent
of the CCAM-CTM predictions remains a challenge for
the recursive forecast method proposed in this paper. These
limitations will be rooms for our future developments.
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