
Received 15 March 2023, accepted 5 April 2023, date of publication 10 April 2023, date of current version 20 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3265717

Adaptive Trickle Timer for Efficient 6TiSCH
Network Formation Using Q-Learning
DZAKY ZAKIYAL FAWWAZ , (Student Member, IEEE),
AND SANG-HWA CHUNG , (Member, IEEE)
Department of Information Convergence Engineering, Pusan National University, Busan 46241, South Korea

Corresponding author: Sang-Hwa Chung (shchung@pusan.ac.kr)

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research
Center support program (IITP-2023-2016-0-00318) supervised by the IITP (Institute for Information & communications Technology
Planning & Evaluation). This work was supported by Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT) (No. 2020-0-01450, Artificial Intelligence Convergence Research Center
[Pusan National University]).

ABSTRACT The 6TiSCH (IPv6 over IEEE802.15.4e time-slotted channel hopping mode) wireless sensor
network architecture utilizes control packets to construct network formation. These control packets are
essential for establishing communication links between nodes and configuring network settings. The trickle
timer algorithm is utilized to broadcast the DIO control packet. DIO carries information about the available
parent nodes, which is then used to form the routing tree. Sensors transmit control packets in one cell on
each TSCH slotframe, called the minimal cell. This leads to the problem that RPL trickle timer algorithm
encounters congestion in DIO control packet transmission with other control messages, particularly in dense
networks. Moreover, high traffic transmission also leads to high queue usage, which then drops the DIO
control packet. Failed DIO transmission can increase network formation time and energy consumption.
To address this issue, we propose Q-Trickle, an adaptive trickle timer algorithm based on Q-learning that
determines the optimal policy for transmitting or suppressing DIO based on minimal cell and transmission
queue conditions. Q-Trickle adaptively selects a redundancy constant value and transmission interval that
promotes fair transmission distribution and considers network condition. Additionally, a control scheme over
minimal cell transmission is formulated to lower transmission congestion and faster synchronization. The
proposed methods were assessed using simulation and actual testing on the FIT IoT-LAB testbed. The results
indicated that Q-Trickle performed better than the benchmark methods. Q-Trickle decreases joining time,
energy consumption, and number of failed DIO compared with the original algorithm by −13%, −11%, and
−43%, respectively.

INDEX TERMS 6TiSCH, MSF, RPL, trickle timer, wireless sensor network, Q-learning.

I. INTRODUCTION
Many latency-sensitive applications have emerged because
of the rapid growth of wireless sensor networks (WSNs).
A WSN is a network consisting of dedicated sensors that are
distributed across a specific area tomonitor and gather data on
the physical conditions of the environment. The collected data
is then transmitted to a central location for further processing
and analysis [1]. 6TiSCH is a collection of protocols and
an architecture designed to incorporate the IEEE 802.15.4

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Afendee Mohamed .

time-slotted channel hopping (TSCH) protocol into the Inter-
net of Things (IoT). This includes adaptations to various lay-
ers of the architecture, such as IPv6 over low-power wireless
personal area networks (6LoWPAN), the Routing Protocol
for Low-power and Lossy Networks (RPL), and the 6top
Minimal Scheduling Function (MSF) scheduling.

In the 6TiSCH network, the sink node serves as the join
coordinator (JRC) and initiates network formation by broad-
casting network information through an enhanced beacon
(EB). To join the network, a new node scans random channels
for the EB and sends a join request (JRQ) packet to either
the JRC or a preferred parent. The node then waits for a

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 37931

https://orcid.org/0000-0003-4005-417X
https://orcid.org/0000-0003-1329-1188
https://orcid.org/0000-0001-5985-3970


D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

join response (JRS) packet. Then, the node waits for the
destination-oriented directed acyclic graph (DODAG) infor-
mation object (DIO) packet provided by RPL for routing
layer control. Upon receiving the DIO, the node calculates
its rank and joins RPL. Also, the node can request DIO
by sending a DODAG information solicitation (DIS) packet.
Finally, the node can send its own EB frame to let other nodes
join the network. 6TiSCH network formation by exchanging
control packets is depicted in Figure 1. 6TiSCH minimal
configuration provides a single shared cell, called a minimal
cell, to transmit control packets like EB, DIO, and DIS. This
condition makes those control packets collide over reception
since multiple transmitters utilize it together. When the nodes
are not optimally set control packets transmission rate will
also suffer from congestion over the minimal cell.

To establish an upward and downward route and maintain
a stable routing topology, RPL utilizes trickle timer algo-
rithm to periodically broadcast DIO packet. It is used to con-
trol transmissions that maintain energy efficiency. However,
the standard trickle timer carries some challenges. A high
DIO transmission frequency setting may collide with other
DIO and control packets while consuming more energy.
Otherwise, a low transmission frequency may result in a
longer network formation and inhibit network performance
improvement like finding the optimal route. A high-traffic
transmission network also leads to high queue usage that may
drop the DIO control packet. Since the trickle timer param-
eters were static and defined before the network deployed,
this condition limited the nodes to adapt to dynamic network
conditions and some nodes may transmit more than others.

Reinforcement learning (RL) algorithms are being increas-
ingly employed in various IoT networking applications,
including MAC scheduling, congestion control, and routing
protocol [2], [3], [4]. Reinforcement learning is a learning
strategy in which an agent interacts with the environment to
learn what actions to take and how to map situations, as well
as give feedback to maximize a long-term objective.

Therefore, this study proposes Q-Trickle, an adap-
tive tickle-timer algorithm based on RL algorithm called
Q-learning (QL), which considers network conditions,
including shared-cell congestion, network traffic, density, and
stability. Shared-cell congestion occurs when the cell requires
more data than it can handle; in this case, more than one
control packet. Network traffic and density are depicted by
the number of queue utilization and neighbors of a node.
Network stability represents how often a node had trickle
timer’s reset events, such as inconsistent DIO and DODAG
loop, that make a trickle state and parameter returns to the
initial value. Q-Trickle offers intelligent decision-making for
DIO transmission or suppression through TSCHminimal cell
and transmission queue observation. Moreover, the trans-
mission frequency is adjusted via dynamic redundancy con-
stant and transmission interval parameter rather than a fixed
parameter, leading to a network condition-aware transmission
distribution. A control scheme overminimal cell transmission
was also formulated to lower transmission congestion and

accelerate synchronization. The key findings of this research
are outlined below.

• An adaptive Q-learning-based RPL trickle is proposed
to improve DIO success transmission based on minimal
cell and queue conditions.

• Dynamic redundancy constant and transmission interval
are employed considering network conditions to main-
tain balanced allocation of DIO transmission.

• A transmission control scheme over minimal cell is for-
mulated to reduce congestion of DIO transmission and
faster node synchronization on early formation phase.

• The proposed schemes are evaluated over simulation and
real testbed on FIT IoT-LAB using OpenWSN OS.

The subsequent sections of this paper are organized as
follows: Section II provides an overview of the 6TiSCH archi-
tecture, RPL trickle timer, reinforcement learning, and related
work. The proposed methods and algorithms are presented
in Section III, while Section IV reports on the results of
extensive experiments used to evaluate the effectiveness of
the proposed approach. Finally, the paper concludes by dis-
cussing the main findings and suggestions for future research.

FIGURE 1. Control packet exchanges on 6TiSCH network formation.

II. BACKGROUND AND RELATED WORK
A. 6TiSCH ARCHITECTURE
The 6TiSCH working group standardizes protocols that
enable IPv6 to be used in low-power industrial networks.
6TiSCH utilizes the TSCH mode of the IEEE802.15.4-2015
standard [5]. TSCH MAC layer mode uses two fundamen-
tal aspects, namely time division multiple access (TDMA)
based medium access layer and channel hopping. The TDMA
mechanism enables congestion-free access to the shared
medium, ensuring efficient channel access. Time is divided
into equal-length time slots, and a slotframe comprises a
group of time slots that are repeated over time, with each

37932 VOLUME 11, 2023



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

time slot long enough for a pair of nodes to exchange a
packet and optional acknowledgment. 6TiSCH can be used in
low-power IoT applications, such as smart industries, build-
ings, infrastructure, and home applications. 6TiSCH adapts
6LoWPAN [6] to bridge IPv6 over the network by using
header compression, packet fragmentation, and reassembly
processes to convert IPv6 packets into IEEE 802.15.4 frames.
6TiSCH uses RPL as a network-layer routing protocol, which
is discussed in detail in Section II-B. In 6TiSCH, dynamic
scheduling is enabled by adding or removing link-layer
resources (TSCH schedule cells) based on the communica-
tion needs of the applications. This is accomplished through
a minimal scheduling function (MSF) that triggers 6top pro-
tocol (6P) negotiations to add or delete cells. 6P enables
neighboring nodes to negotiate which cells to add or remove
from their schedule.

MSF controls a node’s actions when joining the network
and manages communication schedules in a distributed man-
ner [7]. It extend the minimum scheduling setup and adds
child-parent links based on traffic load [8]. MSF uses a single
shared cell, referred to as the minimal cell, to send control
packets, typically at slot offset 0 and channel offset 0 [9].
An example of a slotframe schedule over a simple 6TiSCH
network shows in Figure 2, which illustrates the minimal
shared cell with unicast Tx and Rx schedule. Dedicated cells
are the remaining cells in a slotframe starting with time
slot one. They are used for data transmission using a com-
munication schedule set by an SF. Dedicated cells consist
of both autonomous and negotiated cells. Autonomous cells
offer connections to neighbors without requiring control of
signalling. Then, 6P protocol handled the negotiated cells,
which adds or removes them from the schedule depending
on a traffic-based reactive policy.

As all linked nodes compete for the same physical channel
to broadcast their control packets on minimal cells, con-
gestion between the control packets transmitted by nodes is
inevitable [10]. Hence, a higher network density and control
packet transmission frequency can increase congestion in the
minimal cell. The frequent transmission of control packets
can trigger congestion in shared cells. In contrast, infrequent
transmission can result in longer network formation, inhibit
network QoS improvement (e.g., finding optimal routing),
and other network problem resolutions. Thus, it is necessary
to control a node’s control packet transmission to avoid net-
work congestion.

The challenges of transmitting DIO control packets are
illustrated in Figure 3. Since EB and DIOmust be sent during
the shared cell period when all nodes are active, broadcast
packets are continuously received from neighbors. Because
broadcast packets are not acknowledged, transmission back-
off is not used, making it difficult to detect control packet
collisions. Furthermore, since EB has priority over other
packets such as DIO, a node may transmit its new EB frame
even when other control packets are still in its transmission
queue. Therefore, the control packets may undergo reception
collision and transmission congestion. DIO control packet

collision will result in wasted resources and energy. It also
inhibits performance improvement, like faster network for-
mation and finding the optimal route. DIO transmission con-
gestion with other control packets also decreases the node
performance. It will fill the queue and wait for the subsequent
shared cell transmission, which holds the following packet
transmission and may drop upcoming packets to enter the
queue. Adjoining DIO A and B and DIO and EB demonstrate
those points in the figure. Transmission queue utilization also
has a vital role in the success of DIO transmission. The figure
illustrates that the 6P request command already fulfills the
queue, so the scheduled DIO dropped.

FIGURE 2. Illustration of a slotframe schedule in 6TiSCH network.

FIGURE 3. DIO control packet transmission challenges.

B. RPL TRICKLE TIMER
RPL is a routing protocol designed for low-power and lossy
networks (LLNs) and utilizes an objective function (OF) to
construct a route toward a root node or border router [11].
The protocol generates a DODAG to determine the optimal
path between nodes. The downward route is constructed using
DIO, while the upward route is built using DAO. To join the
network, a new node sends DIS, and the rank in the DODAG
represents a node’s level calculated using the OF.

To maintain a stable routing topology, the nodes broad-
cast DIO messages regularly. The transmission of DIO is
controlled by a trickle timer to efficiently preserve the
energy [12]. It has numerous predefined variables such
as redundancy constant k , minimum interval size Imin,

VOLUME 11, 2023 37933



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

FIGURE 4. RPL trickle timer.

maximum interval size Imax determined using Equation 1,
current interval I , consistency counter c, and transmission
time within interval t . The trickle timer scheme is illustrated
in Figure 4. The steps of the trickle timer are as follows:
1) Initially, select I equal to Imin.
2) Beginning at each interval, c = 0 is initialized, and t is

randomly selected based on Equation 2.
3) If a node receives a consistent transmission, it incre-

ments counter c.
4) If a node receives an inconsistent transmission or any

other reset events, it resets the trickle timer to step 1 to
reset trickle state.

5) At time t , if c < k allows its own DIO transmission.
Otherwise, the DIO is suppressed.

6) At the end of the interval, I double. If new I is greater
than Imax , set new I to Imax and execute step 2 to do
next trickle iteration.

A trickle timer has limitations [13], such as a fixed param-
eter that cannot adapt to network conditions. Then, the dis-
tribution is unfair because some nodes may transfer more
than others and increase shared-cell congestion over a dense
network. A busy data transmission also increases the chance
that DIO control packets to be dropped in the packet queue.
The trickle interval can affect network convergence. If it is
too long, it can result in hardening network convergence. If it
is too small, it may not collect sufficient consistent trans-
missions and always decide to send DIO more frequently,
which is unnecessary. The trickle timer algorithm defines the
frequency of DIO transmission. When frequent transmission
occurs, DIO packets congest the shared cells, resulting in a
higher node joining time. However, infrequent transmissions
can release more freely shared cells. This results in non-
optimal usage and a higher joining time of the nodes, as the
optimal rate control packet helps network convergence. This
indicates that an optimal frequency is required to maintain
the network performance. This may be addressed through
a dynamic trickle timer setting to control the transmission
frequency and reduce the control packet congestion in the
minimal cell based on the network condition.

Im = 2m × Imin

Imax = 2mmax × Imin (1)

t = [tmin, tmax] =

[
Im
2

, Im

]
(2)

C. REINFORCEMENT LEARNING AND Q-LEARNING
RL [14] is a technique that aims to learn how to opti-
mize the interaction between actions and states to achieve

maximum rewards. It automates decision-making and learn-
ing based on goals. This approach involves interactions
between agents and their environments, where an agent
is responsible for decision-making and learning. The four
essential components of RL are the policy, reward, value
function, and environment model. The policy is a set of state-
action pairs that determine the agent’s behavior. It can be
a simple function or a lookup table for certain situations.
A reward reflects a learner’s positive and negative experi-
ences. This is the most important reason for any state to
change its policy. The value function of a particular state is
the sum of the rewards that a learner can eventually accu-
mulate. We are not looking for rewards, but rather for the
value function. The environmental model is optional for RL.
It mimics the behavior of the environment or predicts how
the environment will operate, which generally enables sug-
gestions regarding how the environment will behave.

The QL algorithm [15] is a popular RL method, where
an agent has a set of actions a ∈ A and states s ∈ S. The
agent receives a reward r(s, a) when it performs an action
in a state. The agent then transitions to the next state based
on the obtained reward and saves the reward as a Q-value
for a specific state-action pair Q(s, a). The agent uses this
information to select future actions in a given state. QL is an
off-policy algorithm where the agent learns from experience
that it doesn’t necessarily choose the actions that it learns
from. Instead, it can learn from any actions taken in the
environment, even if they were chosen by a different policy.
The action selection are based on the exploration probability
ε that set the ratio of exploration and exploitation. The greedy
optimal action and ε-greedy policy controls are presented in
Equations 3 and 4, respectively.

QL employs a model-free RL approach called the temporal
difference (TD). This allowed the agent to learn from each
action that it has performed. Instead of updating the agent’s
knowledge after each episode, the TD updates the agent’s
experience after each step (action), reaching the goal or the
end state. The Q-value update is expressed in Equation 6,
which is calculated from the old Q-value and learned Q-value
with a learning rate α between 0 and 1. The learning rate α

determines how quickly a new value overrides the previous
value. When α = 0, the agent ignores existing information
and does not learn new values. However, when α = 1,
the agent is required to analyze only the most recent input
and ignore prior knowledge. Equation 5 shows the learning
estimate or the TD error. It is calculated from the newQ-value
given the new states, their possible actions (optimal target
value), and the current Q-value (predicted value), with a
certain discounted reward factor of β between 0 and 1. The
value of β influences the importance of future rewards to an
agent compared to current rewards. The agent evaluated the
present reward more vigorously when β = 0. The agent is
then prompted to prioritize long-term benefits over short-term
rewards when β = 1.

aopt = argmaxaQ(s, a) (3)

37934 VOLUME 11, 2023



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

at =

{
aopt 1 − ε (exploitation)
a ε (exploration)

(4)

1Q(s, a) = r(s, a) + β × maxa Q(snext , a) (5)

Q(s, a)′ = (1 − α) × Q(s, a) + α × 1Q(s, a) (6)

D. RELATED WORK
Kalita et al. [26] adopted a strategy to fully utilize the
available channels at time slot zero for each slotframe by
assigning multiple shared cells instead of a single shared
cell. Additionally, in a subsequent study [27], they proposed
a method that dynamically adjusted the priority of control
packets to ensure sufficient routing information was transmit-
ted throughout the network. This approach also enabled nodes
with urgent packets to transmit immediately. Meanwhile,
Vallati et al. [28] increased the number of shared cells in
each slotframe based on the number of control packets gener-
ated in the network. However, the introduction of additional
shared cells in separate time slots of a slotframe affected
the default data transmission schedule. In [29] and [30],
MSF was modified to suit a particular case problem, such
as heavy traffic loads on industry and efficient routing for
mobile nodes. Autonomous scheduling such as Alice [31] and
Orchestra, [32], uses a MAC address-based hash function.
Separated slotframes are used for EB in TSCH, control pack-
ets in RPL, and independent data frames. Consequently, the
shared cells were eliminated. Their issue is that when traffic
rates are high or the network size increases, performance
declines drastically because of static allocation. However,
MSF does not experience significant changes, owing to its
flexibility in adapting to traffic situations. The slotframe
length has a significant impact on autonomous performance.
With autonomous scheduling, the number of packets buffered
in the local queue is typically close to the maximum value.
It exhibits a large end-to-end delay compared to MSF, where
the queue is always under control [33].

Several techniques have been proposed for improving
the efficiency of trickle timers. By enhancing the suppres-
sion mechanism, I-trickle [16] eliminated the load-balancing
issue. At the end of the current interval, the redundancy was
reset to zero, which reduced the amount of energy used.
E-trickle [17] solves the load-balancing problem by establish-
ing listen-only intervals based on the number of neighbors.
It uses less energy and has a faster convergence time. It has a
significant traffic control overhead track the number of neigh-
bors. FL-trickle [18] offers a modified trickle timer technique
in which the minimum interval Imin is set to a greater value
to reduce the overhead. To reduce the transmission latency
of the DIO, it fixes the transmission time t at I/2, rather
than choosing it at random. A larger double interval reduces
traffic control packets and saves energy. EAAT [19] presents
an adaptive trickle timer technique that conserves energy by
regulating DIO transmission based on residual and future
energy. It modifies the redundancy constant k according to
the energy status of a node. Trickle-D [20] increases global

fairness by modifying the redundancy constant based on
Jain’s fairness index, ensuring that all nodes have the same
number of transmissions. FI-Trickle [21] improves trickle
timer by eliminating the listen-only period and selecting
DIO transmission time t based on the suppression history.
LA-Trickle [22] uses a learning automaton to determine the
number of times the trickle timer is repeated with the mini-
mum interval to resolve inconsistency. Drizzle [23] ensures
fairness in DIO transmission by assigning nodes to different
transmission probabilities based on their transmission history.
RIATA [24] employsQL to determineDIO transmission, with
inconsistent reception of DIO packets as a reward. It assigns
nodes that have received an inconsistent control packet in the
past with a higher probability of transmitting control packets
at intervals, and it selects an adaptive redundancy constant
value to prevent unnecessary control packet transmissions.
Still, RIATA algorithm did not consider congestion of control
packets in minimal cell and queue usage. RIATA’s QL also
does not adaptive to early network formation since it has fixed
configuration such as fixed epsilon. ACPB [25] modifies
the trickle timer and proposes a slotframe window (SW)-
based adaptive scheme that restricts nodes from transmitting
their control packets frequently and further reduces conges-
tion. When it receives a DIS, it resets and continues to the
last trickle state. However, ACPB does not explore RL to
optimize the network formation, and the proposed control
packet scheme cannot adapt in early network formation since
it has a harsh limitation of control packet transmission in
every interval, which is a maximum of 2. ACPB did not
consider queue usage and has not tested in the network with
data traffic filling the transmission queue, which may con-
gest DIO transmission. None of these works, except ACPB,
study the congestion in a shared cell correlated with DIO
transmission.

With the open issues in optimizing the trickle timer
and minimizing cell congestion, Q-Trickle is proposed by
employing QL to support the decision-making of DIO trans-
mission in a trickle timer consideringminimal cell congestion
and queue utilization. Q-Trickle also provides an adaptive
minimal cell transmission control that reinforce efficient
network formation and minimize transmission congestion.
Finally, a comparison between previous studies and our pro-
posed method is presented in Table 1.

III. PROPOSED Q-TRICKLE ALGORITHM
The proposed Q-Trickle algorithm, which is an adaptive RPL
trickle timer using QL. The method has several improved
features compared with the baseline trickle timer algorithm.
First, intelligent DIO transmission and suppression decisions
using QL that consider minimal cell and queue conditions to
promote DIO success transmission. Second, dynamic redun-
dancy constant and transmission interval that considers the
local network density and stability to reinforce a balanced
distribution and maintain transmission priority among nodes.
Third, a transmission control scheme over minimal cell to
lower the chance of congestion on DIO transmission interval

VOLUME 11, 2023 37935



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

TABLE 1. Comparison with related works.

TABLE 2. List of notations.

and to promote faster synchronization on early formation
phase. The related notations are listed in Table 2 and the
proposed schemes outlined in Algorithm 1.

A. INTELLIGENT DIO TRANSMISSION USING Q-LEARNING
The proposed algorithm employs QL to improve the per-
formance of the trickle timer algorithm. Each node acts as
an agent. The state s comprises minimal cell and queue
usage levels presented in Equation 13. The usage ratio was
converted into three categorized levels through Equation 12,
namely low, medium, and high. Minimal cell usage or busy
ratio is calculated with Equation 9. The queue utilization ratio
is calculated with Equation 10. The actions a are between
DIO suppression or transmission formulated in Equation 14.
The reward is determined using Equation 15. The reward
would be positive when the DIO failed transmission (Equa-
tion 11) was not increased and negative otherwise. We set
a higher positive reward value when the node selects DIO
transmission action than DIO suppression, preventing QL
from always selecting suppression. Then, QL uses a random
number between 0 and 1 to determine the exploration rate.
During the exploration phase, if the number of received
consistent DIO packet c is less than redundancy constant
k , the DIO is broadcast and suppressed otherwise. In the
exploitation phase, the Q-learning algorithm determines the
best action for a given state-action pair by choosing the one
with the highest Q-value, which represents the accumulated
reward over past iterations.

Nmc = I/SL × SD (7)

MTI = 6I
0Tx + Rx + TxAck (8)

pbusy = (MTIend − MTIstart )/Nmc (9)
pqu = Total Packets/Queue Size (10)

DIOfail = 6DIOdrop + DIOcongest (11)

37936 VOLUME 11, 2023



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

Level(p) =


Low(0) p = [0,

1
3
]

Medium(1) p = (
1
3
,
2
3
)

High(2) p = [
2
3
, 1]

(12)

S = {Level(pprevbusy),Level(p
prev
qu )}

Snext = {Level(pbusy),Level(pqu)} (13)

A =

{
0 Suppress DIO
1 Transmit DIO

(14)

r(s, a) =


2 a = 1 & DIOfail = DIOprev

fail

1 a = 0 & DIOfail = DIOprev
fail

−1 DIOfail > DIOprev
fail

(15)

B. DYNAMIC REDUNDANCY CONSTANT AND
TRANSMISSION INTERVAL
The performance of a trickle timer also relies on the appro-
priate selection of the transmission interval t and redundancy
constant k . The improper selection of these values may result
in an imbalanced transmission load that can drain the energy
of nodes in a low-power network. The proposed Q-Trickle
algorithm adjusts its redundancy constant k and transmission
interval t dynamically, which are set differently at every
beginning of the trickle iteration. Q-Trickle set redundancy
constant k by considering network density which depicts the
number of neighbors, and network stability is related to node
stability from receiving any trickle timer’s reset event.

Reset events create a trickle state m and the parameter
returns to its initial value. This allows the frequent trans-
mission to handle unstable or inconsistent conditions. Sev-
eral reset events were established. First, at preferred parent
changes when a node finds a better parent and constructs a
new rank. Second, global and local repairs require a node
to rejoin DODAG. Third, a DIS message is received from a
node that wants to join DODAG. Fourth, inconsistent DIO,
such as infinite rank or different DODAG versions, were
obtained. Last, a looping packet is detected when a node
receives an upward packet from its parent node. Thus, reset
events are counted and formulated into network reset and
stable probabilities, which are expressed in Equations 16.
The redundancy constant is expressed using Equation 19. The
minimum kmin is set to 1, and the maximum for kmax is 10 as
specified by RPL standard. The k value will increase when
preset tends to 1, which represents an unstable network and
otherwise. It allows for the quick resolution of unstable or
inconsistent conditions around the node. The k value will also
increase when having a denser environment.

The transmission interval t is expressed using Equation
18. The proposed algorithm assigns higher DIO transmission
probabilities to nodes with less DIO transmission and net-
work stability as determined by the frequency of the trickle
reset. These were calculated using Equations 17 and 16. The
trickle timer selects a random time within the transmission
interval lower bound tmin and upper bound tmax to execute

the DIO transmission or suppression. We modified it to vary
the transmission probability based on the network conditions.
tmin will be set sooner when the node has less DIO transmis-
sion ratio and longer when the node already transmits more
DIO. tmax will be set sooner when the node has an unstable
condition and longer when the node is in a stable condition.

preset = Nrs/Nit
pstable = 1 − preset (16)

ptransmit = DIOtr/Nit (17)

t =

[
Im
2

× ptransmit ,
Im
2

× (1 + pstable)
]

(18)

k = 1 + ⌈min(Nnbr , kmax − 1) × preset⌉ (19)

C. TRANSMISSION CONTROL SCHEME
The transmission control scheme consists of two methods.
First, we formulate an adaptive EB rate peb based on the
number of neighbors following Equation 20. peb will double
at the beginning of the formation phase to allow not-synced
neighbor nodes to sync faster. Later, peb will drop to its
original value when passing the early phase and having more
joined neighbors. Further, peb will decrease gradually when
the node reaches a certain number of neighbors, called pivot
neighbors N pivot

nbr . Since peb is decreasing, it will lower the
congestion to DIO transmission. Second, we limit the trans-
mission of other control packets on the minimal cell based
on pbusy when passing through the DIO transmission interval.
The transmission limit is demonstrated in Lines 40-45 of
Algorithm 1. This function is called on every packet trans-
mission over the minimal cell. It will lower the chance of DIO
encountering congestion with other control packets and set
priority to transmit DIO, giving queue space and reinforcing
faster network formation.

p′
eb =


peb +

1 − peb
2Nnbr

Nnbr < N pivot
nbr

peb

1 + Nnbr − N pivot
nbr

N pivot
nbr ≤ Nnbr

(20)

IV. PERFORMANCE EVALUATION
We conducted experiments using 6TiSCH simulator [34]
developed by the 6TiSCH working group on top of Python
language. 6TiSCH simulator uses a piston hack loss model
to construct the node link quality [35]. We deployed the
proposed Q-Trickle on the trickle timer module. Then, min-
imal cell and queue observation and transmission scheme
on the TSCH module. The parameters are listed in Table 3.
Q-Trickle was compared to related benchmark algorithms,
namely RIATA [24] and ACPB [25]. RIATA was selected
because of a similar approach in proposing RL for the trickle
timer, whereas ACPB considers 6TiSCH minimal cell condi-
tion to improve the trickle timer.

Several evaluation metrics were used in this study. First,
the average joining time of nodes to RPL DODAG which
expressed in minutes. Second, energy consumption is based

VOLUME 11, 2023 37937



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

Algorithm 1 Q-Trickle Algorithm
Input Imin, mmax , kmax , α, β, ε

1: function StartInterval(I )
2: Nit + +, c = 0
3: DIOprev

fail = DIOfail , p
prev
busy = pbusy, p

prev
qu = pqu

4: Calculate preset and pstable using Eq. 16
5: Calculate t and k using Eq. (18, 19)
6: for i < I do ▷ Looping over times
7: Receiving()
8: if t == i then ReachTimer()
9: if I == i then EndInterval()

10: i+ +

11:

12: function Reset
13: Nrs + +

14: StartInterval(Imin)
15:

16: function Receiving
17: if Consistent DIO then c+ +

18: else if Inconsistent DIO or Reset events then Reset()
19: else if DIS then ReceivingDIS()
20:

21: function ReachTimer
22: if rand < ε then ▷ Exploration
23: if c < k then a = 1
24: else a = 0
25: else a = aopt ▷ Exploitation

26: if a == 1 then Transmit DIO, DIOtr + +

27: else Suppress DIO
28: Calculate ptransmit using Eq. 17
29:

30: function EndInterval
31: Calculate pbusy, pqu, DIOfail using Eq. (9, 10, 11)
32: Calculate Q(s, a) and r(s, a) using Eq. (6, 15)
33: I = min(Imax , I × 2)
34: StartInterval(I )
35:

36: function ReceivingDIS(packet)
37: Transmit DIO
38: if packet == Multicast DIS then Reset()
39:

40: functionMCTxControl(packet)
41: ▷ Triggered on each packet transmit in minimal cell
42: if tmin <= i <= tmax and rand < pbusy and packet ̸=

DIO then
43: Suppress packet
44: Send if any DIO in queue
45: else Transmit packet
46:

47: Nit = DIOtr = Q(S,A) = 0 ▷ Initialization
48: Calculate Imax based on mmax using Eq. 1
49: StartInterval(Imin) ▷ Start Trickle Timer

TABLE 3. Experiment parameters.

FIGURE 5. FIT IoT-Lab testbed deployment in Strasbourg site.

on the 6TiSCH energy model [36], expressed in milliampere
per hour (mAh). The simulation sensor node has a battery
capacity of 2821.5 mAh. Last is the number of DIO failed
transmission represented asDIOfail . We set data transmission
as one packet per second with the size of 20 bytes based on
agriculture monitoring application [37].

There are several scenarios in our experiment. First,
we determine the QL variables of ε, α, and β rates for
Q-Trickle. Then, we observe Q-Trickle convergence through
trickle iterations and how Q-Trickle behaved over nodes
addition and omission. Last, the benchmarks and proposed
method were evaluated over different EB rate peb, minimum

37938 VOLUME 11, 2023



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

FIGURE 6. Evaluation on Q-learning parameter.

interval Imin, and the number of nodes. We test them over the
simulation and real testbed on Strasbourg, FIT IoT-LAB [38]
that implemented using OpenWSN OS [39]. The Strasbourg
testbed environment is shown in Figure 5. Tested data for both
simulation and testbed evaluation are represented as the mean
and standard deviation for each metric (N=3).

A. Q-LEARNING PARAMETER SELECTION
First, we observe the parameter of the Q-learning algorithm
for Q-Trickle to achieve a convergence result. We evaluated
learning rate α, discount rate β, and exploration rate ε by
varying the rate from 0.1 to 0.9.We did the evaluation sequen-
tially and set the other rate with a value of 0.5. The number
of nodes was 50, and the minimum interval was 5 s.

The initial parameter analyzed was the learning rate α.
This parameter determines the extent to which the algorithm
accepts the new value in relation to the old value. When the
learning rate is 0, no new information is learned, while a
learning rate of 1 results in the complete dismissal of the old
value. Figure 6 (a) shows the evaluation of learning rate α

and indicates that a value of 0.9 gives the highest reward.
This number considers enough portion on old value while
reinforcing to learn on new value. We use it in the following
experiment of discount rate β.
The discount rate parameter, denoted as β, controls how

much weight is given to future rewards. When β is set
to 0, only the immediate rewards are considered, while a
value of 1 means that future rewards are fully taken into
account. Figure 6 (b) shows the evaluation of discount rate β,
which result in a pretty similar result within 0.1 to 0.7.
We pick 0.5 since it gives the leading result. We use this
discount rate value in the following evaluation of exploration
rate ε.
Exploration rate ε determines the ratio between choosing

exploration and exploitation. Exploration will use the default
action from the trickle timer that compares the current counter
with the redundancy constant. Exploitation will use the opti-
mal action (transmit or suppress DIO) based on the Q-value.
Figure 6 (c) shows the evaluation of exploration rate ε that
indicate 0.7 give the best result. This number points out that
the agents require significant exploration to converge and
learn effectively. Finally, we selected α = 0.9, β = 0.5, and
ε = 0.7 to use in the next experiment scenario.

B. Q-LEARNING CONVERGENCE
We observe the change of related variables of Q-Trickle to
see their convergence over trickle iterations. We randomly
selected one node to be observed. Figure 7 (a) shows that
the number of neighbors Nnbr increases over iterations since
more nodes are joined RPL DODAG. Redundancy constant
k adapt based on Nnbr and preset . When k is high, the net-
work is on a high preset or the unstable condition caused
by reset events. Otherwise, k could be low when the net-
work maintains a stable condition. This condition allows the
agents to quickly resolve the inconsistency or reset events
by setting k adaptively. Transmission time I also indicates
it keeps resetting when reset events on the network occur.
Lately, it can constantly increase without any more reset,
which indicates the network starts having a stable condition.
preset shows an increment and plateau value that indicates the
network consistently has reset events like parent change, then
decreases when the network becomes stable. ptransmit was
high at first, reflecting the high chances of DIO transmission
in the early phase on the trickle timer. Then, it turns low
in the following iteration since Q-Trickle adapts to network
conditions and has more DIO suppression.

Figure 7 (b) shows that in the beginning, the reward fluc-
tuates since it undergoes congestion from many nodes trying
to join. This congestion in the early phase was observed by
high usage of transmission queue represented in pqu and high
minimal cell busy ratio in pbusy. DIOfail also gives the same
signal that it keeps increasing. However, right after that phase,
the node has a better condition represented byDIOfail plateau
value. peb was also decreasing as more nodes joined, and it
reduced to lower network congestion.

C. NODES ADDITION AND OMISSION
We experiment on nodes addition and omission by randomly
selecting 10% of the nodes in the network to simulate the
scenario, which is 5 from 50 nodes. To simulate addition,
we stop those nodes from booting, which prevents them from
joining the network. Then after half time of the simulation
runtime, we boot and allow them to join the network. Other-
wise, for the omission scenario, we boot all 50 nodes, then
shut down 5 target nodes after a half time of simulation
runtime. We select one of the neighboring nodes to observe
how the variable changes.

VOLUME 11, 2023 37939



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

FIGURE 7. Evaluation on Q-Trickle variable convergence.

FIGURE 8. Q-Trickle performance on nodes addition and omission.

Figure 8 (a) shows the result of the addition scenario.
Reward fluctuation at early and late iterations. It drops at
the beginning of learning iterations and has a stable positive
reward value henceforward, although having changing net-
work conditions. ppqu and pbusy undergo the same thing. They
spike at early and late iterations. Those phenomenons indicate
the dynamic network changes in the addition scenario. ppreset
have the same pattern as it increases after having the stable
condition. Figure 8 (b) shows the same changes over the omis-
sion scenario. The reward, preset , pqu, and pbusy, experience a
pretty similar pattern like in the addition scenario that they
fluctuate in early and near-late iterations. pbusy and Nnbr
show an increasing number because omission nodes can lead
to leaving orphan child nodes. Thus they send signals to rejoin
with other nodes. The observation indicates that our proposed
method can adapt to both scenarios.

D. BENCHMARK ALGORITHMS
We test our proposed method, Q-Trickle, with the original
trickle timer, RIATA, and ACPB. The test done under three
control variables, namely EB transmission rate peb, Trickle
timer minimum interval Imin, and network size or total nodes.
On each variable test, we set the others parameters with the
middle value.

1) EB RATE peb
As we can see in Figure 9 (a), DIOfail tends to have smaller
values over a lower EB rate. We observed that higher EB does
not always result in faster joining time. Otherwise, it may

congest the network and reduce performance on subsequent
formation steps. 0.5 rate means that EB will be transmitted
on every 2 slotframe intervals, taking too much load of
minimal cell usage. A low rate like 0.1 also gets a bad
result. Nodes have difficulty matching the EB packet channel
since they randomly select it. Thus it cannot fulfill faster
network synchronization and result in transferring more EB
and consuming more energy. Q-Trickle outperforms other
algorithms since it reinforces to decrease DIOfail using the
minimal cell transmission control scheme and intelligent
DIO transmission by considering cell and queue conditions.
Q-Trickle applied adaptive peb that was set higher initially
to allow faster synchronization and gradually decrease it to
lower congestion.

RIATA and ACPB have a worse result in several cases
than the original trickle timer. ACPB has a control packet
transmission scheme that considers cell conditions. However,
it sets the harsh setting for minimal cell transmission, which
only sends two control packets within the slotframe window.
ACBP does not consider data traffic conditions, which may
fulfill the queue and withhold other packets, including the
control packet. RIATA suffers from training the QL algo-
rithm to achieve better performance even than the original
trickle timer. They used QL to handle inconsistencies or reset
events but did not handle minimal cell conditions where DIO
could be congested with EB and other packets. The original
method got a lower result than Q-Trickle because it did not
consider those network conditions or employ any adaptive
parameters.

37940 VOLUME 11, 2023



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

FIGURE 9. Evaluation on Benchmark Algorithms.

2) MINIMUM INTERVAL Imin
Figure 9 (b) shows the result on the different minimum inter-
vals of the trickle timer. It can harden network formation
convergence if Imin is too long. Suppose Imin is too small.
In that case, it may not collect sufficient consistent trans-
missions and always decide to send DIO more frequently,
which is unnecessary and consume more energy and lead to
higher packet collision. A lower minimal interval of 1 second
returned a more significant difference than the others, indi-
cated by diverse joining time and energy usage.WhileDIOfail
maintains a relatively similar result over a different mini-
mum interval. Overall, Q-Trickle gives a maximum result
than the benchmarks. Q-Trickle uses adaptive transmission
time t and redundancy constant k that reinforces to solve
inconsistency or reset events quickly. Q-learning-based DIO
transmission decisions support on higher successful transmis-
sion that results in efficient network formation. While the
others suffers from the reason we mentioned before.

3) NETWORK SIZE
Figure 9 (c) shows the result of network size evaluation. All of
themetrics are increased on a larger network size. In the small
network of 10, the result is not much different. Q-Trickle did
faster formation but consumed more energy since it doubled
the EB transmission rate in the early formation phase to
have faster synchronization. Q-Trickle is suitable for larger
network sizes like 50, 100, and more nodes. Q-Trickle gives
the best performance. Since Q-Trickle relies on learning from
dynamic network conditions, more nodes could preserve such
conditions. Q-Trickle can maintain lowerDIOfail , resulting in
less energy wasted from transmission failure. Q-Trickle also
has adaptive transmission time t and redundancy constant k
that quickly resolve reset events that may waste much energy
from that condition. RIATA and ACPB suffer from a higher
number of failed DIO. It is caused by higher congestion
happening in the network due to a large number of nodes.
They received worse results than the original trickle timer,
caused the reason we mentioned before. The improvement
percentage of Q-Trickle compared to the benchmark algo-
rithms is presented in Table 4.

TABLE 4. Q-Trickle improvement compared to benchmarks.

E. TESTBED EVALUATION
We tested our algorithm on real sensor nodes on a remote
testbed site at Strasbourg, FIT IoT-Lab. Our method was
compared with the original trickle timer over 2 different
network sizes, 10 and 30 nodes. The parameters were set
as the same as the result of the previous experiment in the
simulation. The result is shown in Figure 10. Increasing nodes
will increase DIOfail , joining time, and energy consumption.
Although DIOfail are relatively similar in small size network
of 10 nodes, Q-Trickle get slightly faster network formation
and more energy usage. It is caused by Q-Trickle adaptively
setting a high peb at the beginning of the formation phase
to have faster synchronization and gradually decrease it.
To optimize it, we need to consider suitable pivot neighbors
N pivot
nbr , so that it may not degrade energy resources in a

small network. Q-Trickle has a leading performance in the
network with 30 nodes compared to the original trickle timer.
The original method experienced a higher number of failed
DIO transmissions, slower synchronization time, and higher
energy usage. Q-Trickle can overcome those problems since
it maintains intelligent DIO transmission that reinforces a
high DIO success transmission, thus resulting in lower energy
usage and faster RPL formation. Dynamic transmission time
t and redundancy constant k also play roles in quickly resolv-
ing inconsistency or reset events. Adaptive peb for faster
formation in the early formation phase andminimal cell trans-
mission control scheme to prevent control packet congestion.

F. COMPUTATIONAL COMPLEXITY
The computational complexity of Q-Trickle is determined
by the number of states and actions, denoted as s and a,
respectively, and has a complexity of O(s)(a). The number

VOLUME 11, 2023 37941



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

FIGURE 10. Evaluation on FIT IoT-Lab Testbed.

TABLE 5. Comparison of memory usage.

of state-action pairs is not dependent on network size as the
QL policy is distributed and applied locally on each node.
Sensor nodes have limited resources in terms of random-
access memory (RAM) and read only memory (ROM).
Q-Trickle algorithm requires extra memory due to its QL
algorithm implementation. Table 5 shows that Q-Trickle uses
an additional 4260 bytes of ROM and 96 bytes of RAM com-
pared to the standard trickle-timer. This is because Q-Trickle
needs to maintain more variables and functions to create
the Q-value table, transmission control scheme, and adaptive
methods for peb, t , and k .

V. CONCLUSION
The challenge accompanied by a trickle timer over a 6TiSCH
network is DIO control packet transmission congestion over
minimal cell and transmission queue. It led to a longer
network formation time, higher energy consumption and
lower network performance, like finding the optimal route.
The trickle timer must also consider the network condi-
tions to avoid an imbalanced transmission distribution owing
to the static setting. Hence, Q-Trickle algorithm is pro-
posed, which observes minimal cells and queue utilization
to decide DIO transmission that avoids congestion using
QL. Furthermore, Q-Trickle formulates adaptive redundancy
constant, transmission interval and a transmission control
scheme over minimal cells that reinforce faster synchroniza-
tion and lower congestion. We evaluated Q-Trickle using
6TiSCH simulator and a real testbed from FIT IoT-Lab with
OpenWSN OS. The evaluation was performed with existing
trickle timer algorithms. The results showed that Q-Trickle
could reduce network joining time, energy consumption and
DIO failed transmission. Therefore, Q-Trickle can be used
as an optimized algorithm for efficient 6TiSCH network
formation.

Although this research showed the optimized result in
using Q-Trickle, there is a limitation that our QL algorithm

was employed locally distributed on each sensor node.
There will be imbalanced learning on sensors that experience
more dynamic conditions to train better QL policy. In future
work, we will explore multi-agent reinforcement learning for
our subject, enabling the integration of learning outcomes
from multiple interacting RL agents. Subsequently, enhanc-
ing our adaptive EB rate approach is essential, so it may not
degrade energy resources in a small network. We will also
consider using other shared cells to improve control packet
transmission performance.

REFERENCES
[1] M. Frohberg, S. Weidling, and P. Langendoerfer, ‘‘Challenges in develop-

ing a wireless sensor network for an agricultural monitoring and decision
system,’’ in Proc. Int. Netw. Conf., 2020, pp. 224–240.

[2] D. P. Kumar, A. Tarachand, and C. S. R. Annavarapu, ‘‘Machine learning
algorithms for wireless sensor networks: A survey,’’ Inf. Fusion, vol. 49,
pp. 1–25, Sep. 2019.

[3] R. Ali, N. Shahin, Y. B. Zikria, B.-S. Kim, and S. W. Kim, ‘‘Deep
reinforcement learning paradigm for performance optimization of channel
observation–basedMACprotocols in denseWLANs,’’ IEEEAccess, vol. 7,
pp. 3500–3511, 2018.

[4] V. DiValerio, F. L. Presti, C. Petrioli, L. Picari, D. Spaccini, and S. Basagni,
‘‘CARMA: Channel-aware reinforcement learning-based multi-path adap-
tive routing for underwater wireless sensor networks,’’ IEEE J. Sel. Areas
Commun., vol. 37, no. 11, pp. 2634–2647, Nov. 2019.

[5] P. Thubert, An Architecture for IPv6 Over the Time-Slotted Channel Hop-
ping Mode of IEEE 802.15.4 (6TiSCH), document RFC 9030, May 2021.
[Online]. Available: https://www.rfc-editor.org/info/rfc9030

[6] C. Yibo, K.-M. Hou, H. Zhou, H.-L. Shi, X. Liu, X. Diao, H. Ding,
J.-J. Li, and C. de Vaulx, ‘‘6LoWPAN stacks: A survey,’’ in Proc. 7th Int.
Conf. Wireless Commun., Netw. Mobile Comput., Sep. 2011, pp. 1–4.

[7] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and D. R. Dujovne,
6TiSCH Minimal Scheduling Function (MSF), document RFC 9033,
May 2021. [Online]. Available: https://www.rfc-editor.org/info/rfc9033

[8] X. Vilajosana, K. Pister, and T. Watteyne, Minimal IPv6 Over the TSCH
Mode of IEEE 802.15.4e (6TiSCH) Configuration, document RFC 8180,
May 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8180

[9] X. Vilajosana, T. Watteyne, T. Chang, M. Vučinić, S. Duquennoy, and
P. Thubert, ‘‘IETF 6TiSCH: A tutorial,’’ IEEE Commun. Surveys Tuts.,
vol. 22, no. 1, pp. 595–615, 1st Quart., 2020.

[10] R. T. Hermeto, A. Gallais, and F. Theoleyre, ‘‘Scheduling for
IEEE802.15.4-TSCH and slow channel hopping MAC in low power
industrial wireless networks: A survey,’’ Comput. Commun., vol. 114,
pp. 84–105, Dec. 2017.

[11] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis,
R. Struik, R. Kelsey, and T. Winter, RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks, document RFC 6550, Mar. 2012. [Online].
Available: https://www.rfc-editor.org/info/rfc6550

[12] P. Levis, T. H. Clausen, O. Gnawali, J. Hui, and J. Ko, The Trickle
Algorithm, document RFC 6206, Mar. 2011. [Online]. Available:
https://www.rfc-editor.org/info/rfc6206

37942 VOLUME 11, 2023



D. Z. Fawwaz, S.-H. Chung: Adaptive Trickle Timer for Efficient 6TiSCH Network Formation

[13] T. M. M. Meyfroyt, ‘‘An analytic evaluation of the trickle algorithm:
Towards efficient, fair, fast and reliable data dissemination,’’ in Proc. IEEE
16th Int. Symp. A World Wireless, Mobile Multimedia Netw. (WoWMoM),
Jun. 2015, pp. 1–2.

[14] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement learn-
ing: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285, Jan. 1996.

[15] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[16] S. Goyal and T. Chand, ‘‘Improved trickle algorithm for routing protocol
for low power and lossy networks,’’ IEEE Sensors J., vol. 18, no. 5,
pp. 2178–2183, Mar. 2018.

[17] M. B. Yassein, S. Aljawarneh, and E. Masa’deh, ‘‘A new elastic trickle
timer algorithm for Internet of Things,’’ J. Netw. Comput. Appl., vol. 89,
pp. 38–47, Jul. 2017.

[18] H. Lamaazi and N. Benamar, ‘‘RPL enhancement based FL-trickle: A
novel flexible trickle algorithm for low power and lossy networks,’’ Wire-
less Pers. Commun., vol. 110, no. 3, pp. 1403–1428, Feb. 2020.

[19] A. Musaddiq, Y. B. Zikria, and S. W. Kim, ‘‘Energy-aware adaptive trickle
timer algorithm for RPL-based routing in the Internet of Things,’’ in Proc.
28th Int. Telecommun. Netw. Appl. Conf. (ITNAC), Nov. 2018, pp. 1–6.

[20] M. Vucinic, M. Krol, B. Jonglez, T. Coladon, and B. Tourancheau,
‘‘Trickle-D: High fairness and low transmission load with dynamic redun-
dancy,’’ IEEE Internet Things J., vol. 4, no. 5, pp. 1477–1488, Oct. 2017.

[21] S.-T. Liu and S.-D. Wang, ‘‘Improved trickle algorithm toward low power
and better route for the RPL routing protocol,’’ IEEE Access, vol. 10,
pp. 83322–83335, 2022.

[22] A. Aghaei, J. Akbari Torkestani, H. Kermajani, and A. Karimi,
‘‘LA-trickle: A novel algorithm to reduce the convergence time of
the wireless sensor networks,’’ Comput. Netw., vol. 196, Sep. 2021,
Art. no. 108241.

[23] B. Ghaleb, A. Y. Al-Dubai, E. Ekonomou, I. Romdhani, Y. Nasser, and
A. Boukerche, ‘‘A novel adaptive and efficient routing update scheme for
low-power lossy networks in IoT,’’ IEEE Internet Things J., vol. 5, no. 6,
pp. 5177–5189, Dec. 2018.

[24] Z. Nain, A. Musaddiq, Y. A. Qadri, A. Nauman, M. K. Afzal, and
S. W. Kim, ‘‘RIATA: A reinforcement learning-based intelligent routing
update scheme for future generation IoT networks,’’ IEEE Access, vol. 9,
pp. 81161–81172, 2021.

[25] A. Kalita and M. Khatua, ‘‘Adaptive control packet broadcasting scheme
for faster 6TiSCH network bootstrapping,’’ IEEE Internet Things J., vol. 8,
no. 24, pp. 17395–17402, Dec. 2021.

[26] A. Kalita and M. Khatua, ‘‘Autonomous allocation and scheduling of
minimal cell in 6TiSCH network,’’ IEEE Internet Things J., vol. 8, no. 15,
pp. 12242–12250, Aug. 2021.

[27] A. Kalita and M. Khatua, ‘‘Opportunistic transmission of control packets
for faster formation of 6TiSCH network,’’ ACM Trans. Internet Things,
vol. 2, no. 1, pp. 1–29, Jan. 2021.

[28] C. Vallati, S. Brienza, G. Anastasi, and S. K. Das, ‘‘Improving network
formation in 6TiSCH networks,’’ IEEE Trans. Mobile Comput., vol. 18,
no. 1, pp. 98–110, Jan. 2019.

[29] Y. Ha and S.-H. Chung, ‘‘Enhanced 6P transaction methods for industrial
6TiSCH wireless networks,’’ IEEE Access, vol. 8, pp. 174115–174131,
2020.

[30] M.-J. Kim and S.-H. Chung, ‘‘Efficient route management method for
mobile nodes in 6TiSCH network,’’ Sensors, vol. 21, no. 9, p. 3074,
Apr. 2021.

[31] S. Kim, H.-S. Kim, and C. Kim, ‘‘ALICE: Autonomous link-based cell
scheduling for TSCH,’’ in Proc. 18th Int. Conf. Inf. Process. Sensor Netw.,
2019, pp. 121–132.

[32] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, ‘‘Orchestra:
Robust mesh networks through autonomously scheduled TSCH,’’ in Proc.
13th ACM Conf. Embedded Netw. Sensor Syst., 2015, pp. 337–350.

[33] F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, ‘‘Analysis of dis-
tributed and autonomous scheduling functions for 6TiSCH networks,’’
IEEE Access, vol. 8, pp. 158243–158262, 2020.

[34] E. Municio, G. Daneels, M. Vučinić, S. Latré, J. Famaey, Y. Tanaka,
K. Brun, K. Muraoka, X. Vilajosana, and T. Watteyne, ‘‘Simulating
6TiSCH networks,’’ Trans. Emerg. Telecommun. Technol., vol. 30, no. 3,
p. e3494, Mar. 2019.

[35] H.-P. Le, M. John, and K. Pister, ‘‘Energy-aware routing in wireless
sensor networks with adaptive energy-slope control,’’ in Proc. EE290Q-2,
pp. 1–6, Spring 2009.

[36] X. Vilajosana, Q.Wang, F. Chraim, T.Watteyne, T. Chang, and K. S. Pister,
‘‘A realistic energy consumption model for tsch networks,’’ IEEE Sensors
J., vol. 14, no. 2, pp. 482–489, 2013.

[37] K. S. Burman, S. Schmidt, D. E. Houssaini, and O. Kanoun, ‘‘Design and
evaluation of a low energy Bluetooth sensor node for animal monitoring,’’
in Proc. 18th Int. Multi-Conf. Syst., Signals Devices (SSD), Mar. 2021,
pp. 971–978.

[38] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and T.Watteyne, ‘‘FIT
IoT-LAB: A large scale open experimental IoT testbed,’’ in Proc. IEEE 2nd
World Forum Internet Things (WF-IoT), Dec. 2015, pp. 459–464.

[39] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, ‘‘OpenWSN: A standards-based low-power wire-
less development environment,’’ Trans. Emerg. Telecommun. Technol.,
vol. 23, no. 5, pp. 480–493, 2012.

DZAKY ZAKIYAL FAWWAZ (Student Member,
IEEE) received the B.E. degree from the Depart-
ment of Computer Engineering, Institut Teknologi
Sepuluh Nopember, Surabaya, Indonesia, in 2018.
He is currently pursuing the integratedM.S.–Ph.D.
degree with the Department of Information Con-
vergence Engineering, Pusan National University,
Busan, South Korea. His research interests
include wireless sensor networks, software-
defined networking, edge computing, and artificial
intelligence.

SANG-HWA CHUNG (Member, IEEE) was born
in Busan, South Korea, in 1960. He received
the B.S. degree in electrical engineering from
Seoul National University, Seoul, South Korea,
in 1985, the M.S. degree in computer engineer-
ing from Iowa State University, Ames, IA, USA,
in 1988, and the Ph.D. degree in computer engi-
neering from the University of Southern Califor-
nia, Los Angeles, CA, USA, in 1993.

From 1993 to 1994, he was an Assistant Profes-
sor with the Department of Electrical and Computer Engineering, University
of Central Florida, Orlando, FL, USA. Currently, he is a Professor with
the Department of Information Convergence Engineering, Pusan National
University (PNU), Busan. Since 2016, he has been the Director of the Dong-
Nam Grand ICT Research Center. He has authored over 240 articles and
holds 70 patents. His research interests include embedded systems, wireless
networks, software-defined networking, and smart factories. He received the
Best Paper Award from theETRI Journal, in 2010, and the Engineering Paper
Award from PNU, in 2011. In 2017, he was selected as an Excellent Research
Professor of the Computer Engineering Faculty at PNU.

VOLUME 11, 2023 37943


