
Received 17 March 2023, accepted 3 April 2023, date of publication 7 April 2023, date of current version 12 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3265469

Fault Diagnosis Method for Power Transformers
Based on Improved Golden Jackal Optimization
Algorithm and Random Configuration Network
WANJIE LU1,2, CHUN SHI 1, HUA FU1, AND YAOSONG XU1
1School of Electrical Control, Liaoning Technical University, Huludao, Liaoning 125000, China
2School of Mechanical Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China

Corresponding author: Chun Shi (schun97@163.com)

This work was supported in part by the Basic Scientific Research Project of Universities in Liaoning Province under Grant LJKZ0352, and
in part by the National Natural Science Foundation of China under Grant 51974151 and Grant 51204160.

ABSTRACT The problem of the low accuracy of Dissolved Gas Analysis (DGA) in diagnosing transformer
faults is addressed by proposing an Improved Golden Jackal Optimization (IGJO) based Stochastic Config-
uration Network (SCN) method. The method of transformer fault diagnosis based on IGJO optimized SCN
is proposed. Firstly, Kernel Principal Component Analysis (KPCA) is used to reduce the dimensionality
of the gas data and extract the effective feature quantities. Secondly, the L2 parametric penalty term is
introduced into the SCN to improve the generalisation ability of SCN in practical applications. The elite
backward learning and golden sine algorithms are incorporated into the golden jackal algorithm, and the
IGJO performance is tested using 13 typical test functions, demonstrating that the IGJO has greater stability
and merit-seeking capability. The penalty term coefficient C of the SCN is optimised using the IGJO to
develop a transformer fault diagnosis model with an Improved Golden Jackal algorithm optimised Random
Configuration Network (IGJO-SCN). Finally, the feature quantities extracted by KPCA are used as the input
set of the model and the different transformer fault diagnosis models are simulated and validated. The results
show that the IGJO-SCN has higher transformer fault diagnosis accuracy compared to other models.

INDEX TERMS Transformer, fault diagnosis, dissolved gas analysis, improved golden jackal optimization
algorithm.

I. INTRODUCTION
As an important electrical equipment in the power system,
power transformers bear the heavy responsibility of voltage
boost or voltage reduction [1]. Once a transformer failure
occurs, it will seriously threaten the normal operation of the
power system, so it is of great significance to improve the
accuracy of transformer fault diagnosis for the stability and
reliability of power system operation [2], [3].

Currently, dissolved gas analysis in oil has become a viable
method for transformer fault diagnosis in the power indus-
try [4]. Based on the principles of Dissolved Gas Analysis
(DGA), many scholars have proposed a series of methods
for fault diagnosis of transformers, such as the codeless
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ratio method [5], IEC triple ratio method [6], Duval triangle
method [7], etc. Although these ratio discriminatory methods
are simple, they often suffer from missing codes and lead to
The accuracy of fault diagnosis is not high. Combined with
mathematical models and theories, some scholars have also
proposed transformer fault diagnosis methods based on grey
correlation theory [8], fuzzy theory [9], rough set theory [10],
Bayesian theory [11], and other aspects, but these methods
generally have the disadvantage of low correct classification
rate.

In recent years, with the development of artificial
intelligence, a series of intelligent diagnosis methods using
dissolved gas concentration values in oil as characteristic
quantities have been generated. The literature [12] uses arti-
ficial neural networks for fault diagnosis, but the method has
a long training time and is prone to fall into local optimal
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solutions in the process of finding the best solution; the
expert system used in the literature [13] has poor autonomous
learning capability and is not suitable for diagnosing overly
complex systems. The literature [14] uses Support Vector
Machine (SVM) for fault diagnosis, which can well solve the
common problems such as small samples and non-linear clas-
sification, but the selection of its two parameters, i.e. penalty
factor and kernel function parameters, has a great impact
on the classification accuracy of SVM. A transformer fault
diagnosis model based on Improved Grey Wolf Optimization
(IGWO) and Probabilistic Neural Network (PNN) was pro-
posed in the literature [15]. The accuracy of transformer fault
diagnosis was significantly improved. However, the authors
did not study the initialisation of Grey Wolf Optimization
(GWO) and the improved update strategy alone does not
consistently improve the GWO optimisation performance.
The literature [16] proposes a DGA-based Semisupervised
Autoencoder with an Auxiliary Task (SAAT) for power trans-
former fault diagnosis. The results show that the SAAT-based
fault diagnosis method has good diagnostic performance.
The proposed health feature space helps to monitor the
health status of the transformer intuitively. The above method
only reflects the health condition of the transformer and
cannot identify specific fault types, therefore the proposed
method cannot be applied for accurate fault identification.
An intelligent monitoring and classification algorithm based
on Frequency Response Analysis (FRA) is proposed in the
literature [17] for detecting transformer winding faults. The
model is able to accurately identify various winding states in
transformers. However, they did not investigate the disadvan-
tages of Artificial Neural Network (ANN), whose parameters
are difficult to determine, or the inability to optimise the
diagnostic accuracy of the proposed model using ANN alone.

Synthesizing the above research methods in the literature
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], there
are difficulties in solving multi-classification problems with
SVM, while ANN requires a large amount of sample data,
the model validity is not strong, and the stability and robust-
ness of fuzzy theory is poor. Compared with other neural
network architectures, SCN not only has good generalization
characteristics of stochastic learning, but also the number of
nodes in its implicit layer is generated gradually based on the
supervision mechanism, which is a good solution to the prob-
lem that the number of nodes in the implicit layer of RVFL
model is difficult to determine, and also has more extensive
applications in the field of fault diagnosis. Therefore, the
random configuration network is chosen as the basic model
in this paper.

The value of the penalty term coefficient C of the SCN is
also very elaborate and the parameters can be optimized using
an optimization algorithm. Common optimisation algorithms
include the particle swarm algorithm [18], the artificial bee
colony algorithm [19] and the grey wolf algorithm [20].
The Golden Jackal Optimisation (GJO) algorithm, first pro-
posed in 2022, is able to search the objective space bet-
ter and has a higher success rate in solving optimisation

problems [21]. Compared with traditional optimization algo-
rithms, the Golden Jackal optimization algorithm has sig-
nificant advantages in terms of global search capability and
search accuracy, but similar to traditional methods, the draw-
back that the GJO is highly susceptible to local optimal
solutions due to the reduction of population diversity in the
late iteration still exists. Due to the high dimensionality, non-
linearity and complexity of the original transformer fault data,
higher diagnostic accuracy cannot be achieved with a single
machine learning approach, so it is necessary to reduce the
dimensionality of the fault data.

Three shortcomings of SCN-based transformer fault diag-
nosis are summarised: 1) the SCN may be overfitted when
the number of training samples is small and the value of the
penalty coefficients is very delicate; 2) the noise of trans-
former fault data reduces the stability of the model; 3) the
study of the optimization algorithm is not targeted and cannot
significantly improve the optimization performance. There-
fore, this paper proposes a transformer fault diagnosis method
based on KPCA and IGJO-SCN methods. It is worth noting
that the innovations and contributions of this paper are mainly
divided into the following four improvementmethods. Firstly,
KPCA is used to extract the features of the DGA data to
reduce the influence of noise on the diagnosis results. In addi-
tion, the GJO can be improved by the following two methods
to obtain the IGJO. elite backward learning is proposed to
improve the initial diversity of golden jackal populations.
And a golden sine strategy is proposed to improve the conver-
gence speed and accuracy of the GJO. The IGJO can then be
obtained from the two improved methods mentioned above,
and benchmark functions are used to test the optimization
performance of the IGJO and other algorithms. The results
show that the GJO has the best optimization performance.
Finally, the introduction of L2 parametric penalty terms in
SCNs is proposed to address the shortcomings of stochastic
configuration networks. The elite backward learning, golden
sine strategy is incorporated into the traditional golden jackal
algorithm, and the performance of the improved golden jackal
optimization algorithm is tested using a typical test function,
demonstrating that the IGJO has better search capability and
optimization finding accuracy. Afterward, the IGJO is used
to dynamically optimize the parameters of the random con-
figuration network, and the dimensionality-reduced feature
quantities are fed into fault diagnosis models such as IGJO-
SCN, GJO-SCN, WOA-SCN, MPA-SCN, and SCSO-SCN.
The results show that the proposed method has the highest
diagnostic accuracy, the shortest diagnostic time, the best
effectiveness, and the strongest significance. These results
can prove that the proposed method has the best diagnostic
performance.

II. FAULT FEATURE EXTRACTION
In traditional intelligent diagnosis methods, the characteristic
gases generally used include H2, CH4, C2H4, C2H6, C2H2,
and the total hydrocarbon TH, which is the sum of the four
gases CH4, C2H4, C2H6, and C2H2. The impact of data
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pre-processing on the correct fault diagnosis rate is ignored
when these six gases are used as input parameters. Therefore,
in this paper, these 6 gases are paired in pairs to generate a
DGA ratio that may be used for transformer fault diagnosis.
Since 2 volume fraction ratios of the same gas, e.g. H2/CH4
and CH4/H2, provide the same discriminability to the clas-
sifier, only 15 gas ratio combinations are listed, as shown in
Table 1.

TABLE 1. Ratio of dissolved gases in oil.

KPCA is a non-linear feature extraction method that effec-
tively eliminates redundancy and spatial correlation between
data and extracts non-linear feature primitives containing the
main data information. It makes up for the shortcomings of
traditional PCA algorithms in processing non-linear data, and
is commonly used in the detection of anomalies in industrial
control systems.

When processing the non-linear DGA data, considering
the high dimensional characteristics of the data, KPCA is
used to reduce the dimensionality of the DGA data. KPCA
uses kernel functions to achieve dimensionality reduction of
non-linear data in a high-dimensional space, avoiding the
problem of linear indistinguishability of the feature vectors.
Therefore, in this paper, KPCA is used for feature extraction
of 15 feature ratios, and the results are shown in Figure 1.
As can be seen from Figure 1, the first six principal com-

ponents correspond to eigenvalues greater than one, and the
cumulative contribution rate has exceeded 95%, which can
obtain the majority of the required feature information, so the
dimensionality of the feature variable after dimensionality
reduction is 6.

To illustrate the superiority of KPCA, it was compared
with the traditional DGA-based transformer fault diagnosis
methods (Rogers four-ratio and IEC three-ratio methods).
The features of each DGA method were input into SCN for
fault diagnosis, and the results of the comparison of model
feature input and correct diagnosis rate are shown in Table 2.
The data before and after the dimensionality reduction of

KPCAwere used for fault diagnosis by SCN, and the running
time and correct diagnosis rate were compared before and
after the dimensionality reduction, as shown in Table 3.

FIGURE 1. Correlation coefficient matrix eigenvalues and cumulative
contribution rates.

TABLE 2. Comparison of fault diagnostic accuracy of different DGA
methods.

TABLE 3. KPCA extraction before and after.

III. GOLDEN JACKAL ALGORITHM
The Golden Jackal optimization (GJO) algorithm is a meta-
heuristic algorithm proposed in 2022 based on the process
of prey predation by pairs of golden jackals, which has the
characteristics of fast optimisation and good convergence.
The GJO algorithm is designed and optimised by model-
ing the specific hunting strategy of the paired golden jackal,
and the algorithm is optimised as follows.

Stage 1: Exploration stage (prey search stage). The golden
jackal searches and waits for its prey according to its nature
and instincts, with the male leading and the female follow-
ing the male. The couple follow their prey and update their
position according to equation (1).{

Y1 (t) = YM (t) − E· |YM (t) − rl· Pr ey (t)|

Y2 (t) = YFM (t) − E· |YFM (t) − rl· Pr ey (t)|
(1)

In equation (1): Pr ey (t) is the location of the prey; YM (t)
and YFM (t) are the current male and female jackal positions
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TABLE 4. pseudo code of GJO.

respectively; Y1 (t) and Y2 (t) are the positions of male and
female jackals respectively after changing with the prey; E is
the energy change of the prey when avoiding the grasp of the
golden jackal, E is determined by equation (2)

E = E1 ∗ E0
E0 = 2 ∗ rand − 1
E1 = c1 ∗ (1 − (t/T ))

(2)

In equation (2): E0 is the initial energy of the prey; t is the
current number of iterations; T is the maximum number of
iterations; c1 is a constant with a constant value of 1.5; E1
gradually decreases from 1.5 to 0 during the iterations, indi-
cating that the energy of the prey gradually decreases during
the capture process. rl· Pr ey (t) is a function that simulates the
trajectory of the prey where rl is determined by equation (3)

rl = 0.05∗LF(y) (3)

In equation (3), LF(y) is the levy flight distribution
function.

Finally, the prey position is updated by equation (4)

Y (t + 1) = (Y1 (t) + Y2 (t)) /2 (4)

Stage 2: The hunting stage (encirclement and capture of
prey). When the prey is discovered by the golden jackal and
starts to hide from the golden jackal, the energy gradually
decreases during the hiding process and the male and female
jackals start to surround the prey and capture it. This process
is mathematically modelled as{

Y1 (t) = YM (t) − E· |rl·YM (t) − Pr ey (t)|

Y2 (t) = YFM (t) − E· |rl·YFM (t) − Pr ey (t)|
(5)

All variables have the samemeaning as in equation (1), and
finally the prey position is updated by equation (4).

The condition for the golden jackal to switch from the
exploration phase to the hunting phase is determined by E.
When |E| > 1, the golden jackal performs the exploration
phase in different areas, and when |E| < 1, the golden jackal
surrounds and attacks the prey to capture it. The pseudo code
of GJO is follows Table 4.

IV. IMPROVED GOLDEN JACKAL ALGORITHM
A. ELITE REVERSE LEARNING STRATEGIES
The main idea of Opposition-Based Learning (OBL) [22]
is to simultaneously compute and determine the candidate
solution and the corresponding inverse solution, and select
the best candidate solution from them by its fitness value.
The OBL strategy can improve the population diversity more
effectively and prevent the algorithm from converging too
early.
Definition 1 (Inverse Solution): A feasible solution in a

population is X = (x1, x2, · · · , xD), xj ∈
[
aj, bj

]
, 1 ≤

j ≤ D, then its inverse solution is X = (x1, x2, · · · , xD),
x j = r(aj + bj) − xj, and r is a random number obeying a
uniform distribution of [0,1].

OBL can better extend the search range of the population
and improve the performance of the algorithm. However,
OBL has a certain degree of randomness in generating its
opposite solution. Each randomly generated candidate has a
50% probability of being far away from the optimal solution
of the problem compared to its opposite individual.

The main idea of Elite Opposition-Based Learning
(EOBL) [23], which aims to improve the solution quality
of reverse learning, is to generate more promising solutions
by evaluating the opposite solutions of elite solutions. The
opposite solution is more likely to be located where the
global optimum is located. This mechanism has been suc-
cessfully applied to improvements of the Whale algorithm
(WOA) [24], the Grey Wolf algorithm (GWO) [25] and the
Harris Hawk algorithm (HHO) [26], among others.
Definition 2 (Elite Inverse Solution): The extreme value

point of an ordinary individual in the population is
defined as the corresponding elite individual, XE

i =(
XE
i,1,X

E
i,2, · · · ,XE

i,D

)
(i = 1, 2, · · · ,N ) in the population,

then its elite inverse solution X
E
i =

(
X
E
i,1,X

E
i,2, · · · ,X

E
i,D

)
is defined as shown in equation (6):

X
E
i,j = δ × (lbj + ubj) − EE

i,j (6)

where, δ is a random number of [0,1]; XE
i,j ∈

[
lbj, ubj

]
; lbj =

min{Xi,j}, ubj = max{Xi,j}, are the lower and upper bounds of
the dynamic boundary, respectively. IfX

E
i,j exceeds the bound,

then the mathematical model is corrected using the stochastic
method as shown in equation (7):

X
E
i,j = rand(lbj + ubj) (7)

B. GOLDEN SINE PREDATION MECHANISM
The golden sine algorithm (gloden-SA) [27] is a meta-
heuristic algorithm proposed by Tanyildizi in 2017. Based
on the relationship between the sine function and the unit
circle, gloden-SA can traverse all points on the sine function,
i.e. traverse the entire unit circle. The scanning of the whole
unit circle is similar to the search of the search space in
an optimisation problem. At the same time, the introduction
of the golden partition coefficient in its position updating
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process makes each iteration both narrow the search area and
traverse the excellent solution region, which improves the
local mining ability and solution accuracy while speeding up
the convergence of the algorithm.

The core process of the gloden-SA algorithm is the way in
which its positions are updated. First, n individual positions
are randomly generated, each corresponding to an initial
solution, and the position is updated for each individual by
means of equation (8).

x t+1
i = x ti · |sin (r1)| − r2 · sin (r1) ·

∣∣c1Pti − c2x ti
∣∣ (8)

where: x ti =

[
x ti,1, x

t
i,2, · · · , x ti,d

]
, , ((i = 1, 2, · · · , n) ,

(t = 1, 2, · · · , tmax)), x ti,d denote the position of the ith indi-
vidual in the dth dimension at the tth iteration; Pti is the global
optimal position at the tth iteration; r1, r2 are random numbers
belonging to [0, 2π ] and [0, π ] respectively, r1 determines
the distance of movement of individual i at the next iteration,
and r2 determines the direction of movement of individual
i at the next iteration [18]; c1, c2 are introduced as golden
partition coefficients into the position update formula, c1 =

a (1 − g)+bg, c2 = ag+b (1 − g), the initial values of a and
b are -π , π respectively, and the golden partition numbers
g = (

√
5 − 1)/2, c1, c2 narrow the search space and guide

the individual at the current position to the global optimal
position during the iteration.

C. IGJO ALGORITHM
In response to the shortcomings of the basic golden jackal
optimisation algorithm, the paper proposes an elite reverse
learning mechanismwith golden sine for Golden Jackal Opti-
misation (IGJO). The basic GJO algorithm uses a random ini-
tialisation method to initialise the population without a priori
knowledge, which is prone to the problem of poor diversity
of the golden jackal population. The quality of the initial
population has a large impact on the algorithm’s optimisation
search performance, and a good initial population is ben-
eficial to global optimisation search. Therefore, the thesis
introduces an elite backward learning mechanism to improve
the golden jackal algorithm, using a population selection
method to rank the current golden jackal population and its
inverse population by their fitness values, and select the best
golden jackal individuals as the new generation individuals,
so as to improve the population quality of the GJO algorithm.
Firstly, the GJO algorithm incorporates the EBOL strategy to
increase the diversity of the initialized population, increase
the search space and lay the foundation for global optimiza-
tion; secondly, at each iteration, the EBOL strategy can gen-
erate the inverse solution far away from the local extremum,
guiding the GJO algorithm to jump out of the local extremum
and enhancing the ability of the algorithm to search globally.
In addition, the EBOL strategy uses a dynamic boundary
tracking search mode to locate individuals in a progressively
smaller search region, improving the convergence accuracy
and speed of the GJO algorithm.

FIGURE 2. IGJO flow chart.

The position of the prey is the guiding mark of the move-
ment of the golden jackal individuals. In the golden jackal
algorithm incorporating the golden sine algorithm, the golden
jackal moves in a golden sine manner to arrest the prey, and
in the process of each iteration, the ordinary individual will
exchange information with the best individual, fully absorb-
ing the information of the position gap with the best individ-
ual to improve the algorithm’s performance and accuracy of
the search for the best. In addition, the search area is gradually
reduced according to the golden partition coefficient, and the
update distance and direction of the golden jackal individuals
are adjusted according to r1 and r2 to guide the individuals to
quickly approach the optimal value in the high-quality solu-
tion area, which optimizes the traditional GJO algorithm’s
searchmethod and improves the algorithm’s search speed and
exploitation capability. Figure 2 is the flowchart of IGJO.

D. TIME COMPLEXITY ANALYSIS OF IGJO
The time complexity of the original golden jackal algorithm is
O(N×D× T). In the IGJO algorithm, the time complexity of
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the elite reverse learning strategy is O(N × D), the time com-
plexity of calculating the fitness value is O(N × D), and the
time complexity of calculating the individual position update
is O(N × D). The time complexity of the IGJO algorithm is
the same as that of the basic GJO algorithm, indicating that
the 2 improved strategies do not increase the computational
burden of the golden jackal algorithm.

V. SIMULATION EXPERIMENTS AND ANALYSIS OF
RESULTS
A. INITIAL PARAMETER SETTING
In this paper, Whale Optimization Algorithm (WOA) [28],
the Sand Cat Swarm Optimization (SCSO) [29], Marine
Predators Algorithm (MPA) [30], Sine Cosine Algorithm
(SCA) [31], Salp Swarm Algorithm (SSA) [32] and Golden
Jackal Optimization Algorithm (GJO) were selected for com-
parison with the elite reverse learning and golden sine golden
jackal algorithm IGJO. The initial population size was set to
30 and the maximum number of iterations was set to 500. the
parameters of the above algorithms are shown in Table 5.

TABLE 5. Parameter settings.

B. TEST FUNCTIONS
In this paper, 13 commonly used benchmarking functions are
selected to test the performance of each algorithm, and the
relevant properties of the functions are shown in Table 6.

C. ANALYSIS OF EXPERIMENTAL RESULTS
Each of the above algorithms was run 30 times on each
benchmark test function to obtain the average value, and the
experimental results are shown in Table 7.

As can be seen from Table 7, for the 12 test functions,
IGJO outperforms WOA, SCSO, MPA, SCA, SSA and GJO
in terms of the optimal value, mean and standard deviation.
For the test functions F1 to F4, IGJO can calculate the optimal
value of 0. The optimal value and average value are hundreds
of orders of magnitude higher than the other five algorithms,
and the standard deviation is 0, so the robustness is better.
For the test functions F6 and F7, IGJO outperforms the other
six algorithms. For functions F8 to F13, the accuracy and
robustness of the IGJO optimization are optimal. The above
shows that the two methods, elite backward learning and
golden sine, are effective in optimizing the GJO.

Figures 3 and 4 show the convergence curves of the
test functions used, which more clearly demonstrate the
effect of the IGJO on the search for an optimum. From
Figures 3 and 4, it can be seen that the convergence accuracy
and convergence speed of the improved IGJO are better than
those ofWOA, SCSO,MPA, SCA, SSA, and GJO, indicating
that the IGJO with the introduction of two strategies outper-
forms the single-strategy improved Golden Jackal algorithm
and has the excellent merit-seeking capability.

A box plot is a statistical chart that uses five statistics in the
data: minimum, upper quartile, median, lower quartile, and
maximum to describe the data. The top and bottom segments
of a box plot represent the maximum and minimum values of
the data respectively. The top and bottom segments of the box
plot represent the third quartile and first quartile respectively.
The thick line in the middle of the box plot represents the
median of the data. It provides a visual indication of the
outliers, the dispersion of the distribution, and the symmetry
of the data. The stability of the algorithms was statistically
analyzed using the box plots, where the WOA, SCSO, MPA,
GJO, and IGJO algorithms were selected for comparative
testing and the results of 30 independent experiments were
recorded. Figure 5 shows the statistical results of the algo-
rithms on F1, F5, F7, and F10. On all the functions tested,
the deviation between the minimum and maximum values
obtained by the proposed IGJO algorithm is relatively small,
while the deviation between the minimum and maximum
values obtained by the WOA algorithm on F1 is larger and
the deviation between the minimum and maximum values
obtained by the MPA algorithm on F7 and F10 is larger. This
indicates that the proposed IGJO is stable and can keep the
deviations within a reasonable range with high performance.

D. STATISTICAL TESTS AND MAE RANKING
In the comparison of the computational power of the above
seven algorithms, it is not sufficient to use only the three
indicators of the best value, the worst value, the mean and
the standard deviation to evaluate them, so theWilcoxon rank
sum test was used in this paper to test the results, as shown
in Table 8. When p < 0.05, it means that there is a difference
between the two algorithms in terms of the effect of finding
the best value, and vice versa.

As can be seen from Table 8, for all functions except
F9, F10 and F11, the p-values between IGJO and the other
algorithms are much less than 0.05, indicating that IGJO has
better performance in finding the optimum. The presence of
NaN in Table 7 indicates that the corresponding algorithms
have found the global optimum.

Mean Absolute Error (MAE) [33] represents the average
of the absolute values of the differences between the results
and the actual values. The mathematical definition of MAE
is shown in equation (14):

MAE =

∑n
i=1 | mi − ki |

n
(9)
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TABLE 6. Test functions.

where mi is the average of the optimal solutions computed
for each algorithm on each test function, ki is the theoretical
optimal value of each test function, and n is the number of
test functions. The smaller the value of MAE, the higher the
computational performance of the algorithm. The results of
the ranking of the algorithms according to the MAE values
are shown in Table 9.

From Table 8, we can see that the MAE value of IGJO is
the smallest, which means that IGJO has better performance
in finding the best.

VI. REGULARISED RANDOM CONFIGURATION NETWORK
The stochastic configuration network (SCN) is a powerful
class of stochastic learningmodels with a stronger generaliza-
tion performance than traditional stochastic learning models,

as its hidden layer structure can be generated adaptively
based on training effects [34]. The basic idea is to start
with a smaller network and then gradually add new hidden
nodes with random parameters until an acceptable tolerance
is reached.

For a dataset D = {(xi, yi)}, i = 1, · · · , I , xi ∈ R1×d ,
yi ∈ R1×m; where xi denotes the dataset feature attribute data
and yi denotes the data label attribute.

fL−1 (x) =

L−1∑
l=1

βlσl(wT
l x+ bl) (10)

where: βl = [βl,1, βl,2, · · · , βl,n]- output weight; L- number
of layers of the neural network, a positive integer; σl (·)- acti-
vation function of the lth hidden neuron; wl ∈ [−v, v]m×d -
the weight of the lth hidden neuron; bl ∈ [−v, v]m×d - bias of
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TABLE 7. Statistical results of the optimized standard functions.
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FIGURE 3. Simulation experiment results.
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FIGURE 4. Simulation experiment results.
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FIGURE 5. Box plot statistics results.

the lth hidden l neuron; eL−1 = f −fL−1 =
[
eL−1,1 , · · · eL−1,m

]
-

Residuals of the L-1st hidden layer node; f -Actual label type.
If the specified error tolerance is not reached, the model

will generate new hidden layer nodes under the constraints
and satisfy the trend of decreasing deviation as the number of
nodes increases, eventually achieving limL→∞ ∥ f − f L ∥=

0. where: f L =
∑L

i=1 βLσ L .
The basic structure of the SCN is shown in Figure 6.
At this point, the model outputs the following weights

based on the updated model:

[β∗

1, β
∗

2, β
∗

3, · · · β
∗
L] = argmin

β

∥ f −

L∑
l=1

β tσ l ∥ (11)

where: β∗
l =

[
β∗

l,1, β
∗

l,2, · · · , β∗
l,m
]
. When the number of

training samples is small, in order to avoid the phenomenon
of overfitting in the SCN, the author introduces the L2 para-
metric penalty term in the objective function of the model;
at the same time, the empirical risk and structural risk are
minimized, so as to improve the generalization performance
of the network. At this point, the objective function of the

FIGURE 6. Basic structure of a random configuration network.

SCN is improved as follows:

[β∗

1, β
∗

2, β
∗

3, · · · β
∗
L] = argmin

β

(∥∥∥∥∥f −

L∑
l=1

β lσ l

∥∥∥∥∥+ C ∥β∥

)
(12)
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TABLE 8. Wilcoxon rank sum test results.

TABLE 9. Sort results.

where: C - the penalty term weighting factor of the model.
The output weights are defined according to the least

squares method as:

β∗
= (GGT

+ λI)−1GT (13)

where: G = σ
(
wT

· x+ b
)
- implied layer output.

Where: β∗
=
[
β∗

1, β
∗

2, β
∗

3, · · · β
∗
L
]T.

VII. TRANSFORMER FAULT DIAGNOSIS
EXAMPLE ANALYSIS
The data in this paper was obtained from a grid in the north-
east of the State Grid and the IECTC10 database. The data set
contains six different operating states of transformers: high
energy discharge, low energy discharge, partial discharge,
high-temperature overheating, medium and low-temperature
overheating, and normal, each operating state contains five
fault gas characteristics such as H2, C2H2, C2H4, C2H6
and CH4, of which 720 data sets were randomly selected
and scaled by 3: 1 ratio for training and testing. The six

TABLE 10. Fault sample data composition.

TABLE 11. Fault data.

operating condition types were numbered 1-6: low energy
discharge (D1), high energy discharge (D2), partial discharge
(PD), medium to low-temperature overheating (T1), high-
temperature overheating (T2), and normal condition (NC).
The composition of the training and test sample data is shown
in Table 10, and some data are given in Table 11.
To avoid redundancy and overlap of fault feature infor-

mation in the original samples, as well as to improve the
efficiency and accuracy of the algorithm, and because a single
fault feature cannot fully reflect the intrinsic connection with
different state types, the five single fault feature data were
extended, while the transformer fault features were dimen-
sionally reduced using KPCA to obtain a new fault feature set
consisting of six principal components. The new fault feature
set was input into the model for training and testing respec-
tively, and the diagnostic accuracy of the different models
was analyzed. The simulation experiment platform for this
paper is a computer with Windows 10 operating system, 16G
of memory, and Matlab 2020b as the running environment.

VOLUME 11, 2023 35347



W. Lu et al.: Fault Diagnosis Method for Power Transformers

TABLE 12. Comparison of the average accuracy of differentdiagnostic
models.

A. COMPARISON OF DIAGNOSTIC PERFORMANCE OF
DIFFERENT MODELS WITH SCN
To verify the effectiveness and superiority of SCN, five
common machine learning models, including Probabilistic
Neural Network (PNN), Random Forest (RF), Support Vector
Machine (SVM), Extreme Learning Machine (ELM), and
eXtreme Gradient Boosting (XGBoost), were used as com-
parisons in this paper. The feature datasets obtained from
KPCA dimensionality reduction were input into different
models for training and classification, and the average accu-
racy was obtained by running the different models 10 times
respectively, and the results are shown in Table 12.
As can be seen from Table 12 and Figure 7, the correct

diagnosis rate using the SCN model was significantly higher
than that of other models in the low-energy discharge, partial
discharge, high-temperature overheating, and normal opera-
tion states; the correct diagnosis rate usingXGBoost and SCN
was the same in the high-energy discharge and medium-to-
low-temperature overheating states. The combined diagnostic
rate using the SCN model was the highest at 90%, while the
accuracy rates using the PNN, RF, SVM, ELM and XGBoost
models were 77.78%, 80.56%, 84.44%, 82.78%, and 86.11%
respectively, all of which were lower than the SCN model.
This indicates that the diagnostic performance of the SCN
model is significantly better than other similar models.

B. COMPARISON OF ALGORITHM OPTIMISATION
As the penalty term coefficients of the SCN have a significant
impact on the training learning effect, the IGJO was used
to find the optimization of the two hyperparameters of the
LSSVM and to compare the optimization results with those
of theWOA, SCSO,MPA, and GJO-SCN. The iterative curve
with KPCA reduced data as the model input and diagnostic
accuracy as the fitness value is shown in Figure 8.
As can be seen from Figure 8, the WOA algorithm is

not effective in optimizing the parameters, resulting in the
lowest fitness. The standardGJO algorithm reaches the global
optimum after 32 iterations due to its weak global search
capability and weak local exploitation capability. SCSO and

FIGURE 7. Comparison of the accuracy of different diagnostic models.

FIGURE 8. Adaptation change curve.

MPA reach the global optimum in 31 and 36 iterations respec-
tively and have low fitness. The IGJO with the EOBL and
golden sine strategies converge in only 25 iterations and has
the highest fitness value. This shows that it is feasible to use
the IGJO to optimize the SCN-related hyperparameters to
build a transformer fault diagnosis model.

C. COMPARISON OF THE DIAGNOSTIC PERFORMANCE OF
DIFFERENT HEURISTIC ALGORITHMS FOR
OPTIMISING SCN
To verify the superiority of the IGJO superior SCN diagnostic
model, the WOA-SCN, SCSO-SCN, MPA-SCN, GJO-SCN,
and IGJO-SCN models were compared and analyzed. The
average accuracies of the different diagnostic methods are
shown in Table 13.
As can be seen from Figure 9 and Table 13, the IGJO-SCN

has the highest fault accuracy rate, where the diagnostic
accuracy rates for low energy discharge, high-temperature
overheating, and normal operating conditions are 100%, and
the diagnostic accuracy rates for high energy discharge,
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FIGURE 9. Diagnosis results.
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TABLE 13. Average accuracy of different diagnostic methods for different
faults/%.

partial discharge, and medium and low-temperature over-
heating are 92.59%, 96.88%, and 84.62% respectively, and
the correct diagnostic rates for all six fault types are
above 84%, for a total The fault diagnosis accuracy rate
reached 96.11%. In addition, the fault diagnosis accuracy of
GJO-SCN, SCSO-SCN, MPA-SCN, and WOA-SCN was
91.11%, 86.67%, 83.33%, and 76.67% respectively, and the
fault diagnosis accuracy of IGJO-SCN was improved by 5%,
9.44%, 12.78%, and 19.44% respectively compared with the
above four methods. The results indicate that the SCN fault
diagnosis model optimized by IGJO has higher reliability
after KPCA dimensionality reduction.

VIII. CONCLUSION
1) This paper introduces the L2 parametric penalty term
in the random configuration network, which improves the
generalization ability of SCN in practical applications.

2) Using KPCA to reduce the dimensionality of 15 fea-
tures, the resulting six features can express valid information
about transformer faults and avoid redundant information,
while facilitating the learning and training of SCN models.
The running time is improved by nearly 20s and the correct
rate is improved by nearly 15% compared to that before
dimensionality reduction. The complexity and running time
of the model are reduced and the accuracy of the model is
improved.

3) The IGJO algorithm overcomes the drawback that the
GJO algorithm is prone to fall into local optimality, and has
better stability and superiority-seeking ability compared with
the WOA, SCSO, MPA, SCA and SSA algorithms.

4) The simulation results show that the parameter
optimization of SCN using the IGJO algorithm can effec-
tively improve the fault diagnosis accuracy of the trans-
former by 96.11%. the fault diagnosis accuracy of GJO-SCN,
SCSO-SCN,MPA-SCN, andWOA-SCN is 91.11%, 86.67%,
83.33%, and 76.67% respectively. The fault diagnosis accu-
racy of IGJO-SCN improved by 5%, 9.44%, 12.78%, and
19.44% respectively compared to the above four methods.
The IGJO-SCN model proposed in this paper verifies that its

diagnostic performance is excellent, but there is still room
for improvement in the selection of data features. Due to the
small influence of gases such as CO and CO2, only five of
the characteristic gases are selected as the original data in this
paper, and the influence of these gases needs to be considered
when more detailed fault diagnosis classification is carried
out later, and more combinations of ratios can also be used to
enrich the characteristic In addition, since different combina-
tion models have different diagnostic rates for different fault
types, it is possible to try to compare the fault diagnostic rates
of multiple models and select the optimal model to diagnose
the corresponding faults.
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