
Received 13 March 2023, accepted 27 March 2023, date of publication 7 April 2023, date of current version 14 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3265583

Homomorphic Encryption on GPU
ALI ŞAH ÖZCAN , CAN AYDUMAN, ENES RECEP TÜRKOĞLU ,
AND ERKAY SAVAŞ , (Member, IEEE)
Faculty of Engineering and Natural Sciences, Sabancı University, 34956 Istanbul, Turkey

Corresponding authors: Ali Şah Özcan (alisah@sabanciuniv.edu), Can Ayduman (canayduman@sabanciuniv.edu),
Enes Recep Türkoğlu (eturkoglu@sabanciuniv.edu), and Erkay Savaş (erkays@sabanciuniv.edu)

This work was supported in part by the Scientific and Technological Research Council of Turkey under Grant 118E725.

ABSTRACT Homomorphic encryption (HE) is a cryptosystem that allows the secure processing of encrypted
data. One of the most popular HE schemes is the Brakerski-Fan-Vercauteren (BFV), which supports
somewhat (SWHE) and fully homomorphic encryption (FHE). Since overly involved arithmetic operations
of HE schemes are amenable to concurrent computation, GPU devices can be instrumental in facilitating
the practical use of HE in real world applications thanks to their superior parallel processing capacity.
This paper presents an optimized and highly parallelized GPU library to accelerate the BFV scheme. This
library includes state-of-the-art implementations of Number Theoretic Transform (NTT) and inverse NTT
that minimize the GPU kernel function calls. It makes efficient use of the GPU memory hierarchy and
computes 128 NTT operations for ring dimension of 214 only in 176.1 µs on RTX 3060Ti GPU. To the
best of our knowledge, this is the fastest implementation in the literature. The library also improves the
performance of the homomorphic operations of the BFV scheme. Although the library can be independently
used, it is also fully integrated with the Microsoft SEAL library, which is a well-known HE library that also
implements the BFV scheme. For one ciphertext multiplication, for the ring dimension 214 and the modulus
bit size of 438, our GPU implementation offers 63.4 times speedup over the SEAL library running on a high-
end CPU. The library compares favorably with other state-of-the-art GPU implementations of NTT and BFV
operations. Finally, we implement a privacy-preserving application that classifies encrypted genome data for
tumor types and achieves speedups of 42.98 and 5.7 over CPU implementations using single and 16 threads,
respectively. Our results indicate that GPU implementations can facilitate the deployment of homomorphic
cryptographic libraries in real-world privacy-preserving applications.

INDEX TERMS Lattice based cryptography, homomorphic encryption, number theoretic transform (NTT),
GPU, parallel processing, secure computation.

I. INTRODUCTION
Fully Homomorphic Encryption (FHE) enables computa-
tion over encrypted data, which had been considered as
the most sought-after cryptographic primitive for many
years. In [1], Gentry proposed the first functional FHE
scheme, which is described over ideal lattices and permits
the homomorphic evaluation of arbitrary circuits. Later,
more practicable schemes based on learning with errors
problem over rings (RLWE) [2] were proposed, where
plaintext and ciphertext messages are represented as poly-
nomials and ciphertext contains ‘‘noise,’’ which, increases

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

as homomorphic operations are applied. Thus, the scheme
has a noise budget sufficient only for a certain number
of homomorphic operations; and if noise reaches a certain
limit, the homomorphic property will not hold and the
ciphertext message does not decrypt due to excessive noise.
This scheme is, thus, aptly called somewhat homomorphic
encryption (SHE). To continue with the homomorphic
operations, a technique referred as bootstrapping was pro-
posed originally by Gentry [1], whereby the ciphertext
is homomorphically decrypted to obtain a ciphertext with
a replenished noise budget. This process can be applied
repeatedly to obtain a fully homomorphic scheme, but boot-
strapping is generally deemed to be a prohibitively expensive
operation.

84168
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9042-2650
https://orcid.org/0000-0002-7149-0508
https://orcid.org/0000-0002-4869-5556
https://orcid.org/0000-0003-1072-0792

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

The first implementation of an FHE scheme was realized
by Gentry and Halevi, as explained in [3]. Then, several FHE
realizations were introduced such as those in [4] and [5].
One of the most promising approaches is the Brakerski-
Fan-Vercauteren scheme [6], and there are several practical
implementations of this and other similar schemes such as
those provided by well-known software libraries SEAL [7],
PALISADE [8], and HELib [9].

However, due to their compute-intensive operations in
involved mathematical structures, current FHE implementa-
tions are far from being easily deployable in practice such as
in large-scale practical cloud applications. Besides algorith-
mic optimizations and theoretical advances, using hardware
accelerators is also the most viable option for bridging the
gap between FHE performance and the requirements of real-
world applications. GPU, FPGA and ASIC architectures can
be profitably utilized as accelerators [10], [11], [12], to push
the boundaries of FHE performance. A recently announced
software library [13] provides support for hardware accelera-
tion integration to software implementations of HE schemes
using a standard Hardware Abstraction Layer (HAL).

In this paper, we present algorithms and implementation
techniques to accelerate the BFV scheme of the SEAL
library via NVIDIA GPUs. Our implementation developed
in computing Unified Device Architecture (CUDA) program
model [14] accelerates all homomorphic operations in the
BFV scheme utilizing various parallelization strategies that
can be applied on GPU architectures. To the best of our
knowledge, ours is the first work, in which the entire SEAL
BFV scheme (including addition, multiplication, relineariza-
tion, and rotation operations) can be offloaded onto GPU.
We provide a GPU library for the BFV homomomorphic
encryption scheme, which can be used as a standalone
application or integrated with the SEAL library to accelerate
chosen homomorphic operations. The fully GPU-operated
version of the library is publicly available on Github.1 Our
implementations used in library achieves a very high level
of parallelization on GPU, targeting the compute-intensive
nature of FHE operations.

It is established that multiplication in polynomial rings
(which requires the multiplication of high-degree polynomi-
als and their division by high-degree cyclotomic polynomi-
als) is themost time and resource-critical operation in all FHE
and SHE implementations.

Fortunately, there is a good deal of room for algorithmic
research to accelerate the polynomial multiplication by
utilizing the inherent parallelism in the operation and the
hardware infrastructures (FPGA, ASIC, GPU) to exploit it in
different ways. GPU architectures support many concurrent
threads, which can be employed to perform the multiplication
of very high-degree polynomials. Therefore, the noise
budget can be made sufficiently large to homomorphically
evaluate relatively complex circuits without having to use the
bootstrapping method.

1https://github.com/Alisah-Ozcan/HE_GPU

Here, we present a full GPU implementation for homo-
morphic operations of the BFV scheme and show that it can
be used to accelerate real-world applications significantly.
Our work introduces a new set of NTT implementation
improvements for polynomial multiplication adapted to GPU
architecture and proves to be the fastest in comparison to
those reported in the literature to the best of our knowledge.
We can summarize our contribution in this paper as follows:
• Our implementation uses only two GPU kernels,
which minimizes the prohibitively slow global memory
accesses independent of polynomial degrees used in this
paper

• While the second GPU kernel is implemented using
the conventional method as in many other works in the
literature, we propose a novel algorithm for the imple-
mentation of the first GPU kernel (see Algorithm 6).

• In both kernels, global memory is accessed twice,
one in the beginning and the other at the end of
the kernel computations. In the first kernel, the input
array is kept in the registers during the computations
without any additional memory accesses (see Figure 9).
As the registers are the fastest storage type, performing
NTT computation via registers leads to significant
acceleration in all homomorphic operations.

Our fast GPU implementation of polynomial multipli-
cation can be used to accelerate existing implementations
of other SHE and FHE schemes such as CKKS and BGV
and other more involved homomorphic operations such as
bootstrapping and scheme switching [15] as it is themost time
consuming operation thereof. The latency of a single NTT
operation of our implementation is also superior to those of
other implementations in the literature; but, in particular, our
NTT implementation is optimized for concurrent execution
of many NTT operations, which is a typical use case scenario
of all homomorphic operations and applications.

The rest of the paper is organized as follows. In Section II,
we briefly explain the notation that we use and the
mathematical background of NTT, Barrett reduction, Residue
Number System (RNS), and homomorphic operations of the
SEAL BFV scheme. In Section III, we present the essential
working principle of the GPU architecture. In Section IV,
we explain our GPU implementation and the algorithms that
we used. In Section V, we discuss our implementation results
and compare the results with state-of-the-art.

II. BACKGROUND
This section presents the notation used throughout the paper
and explains the Barrett Reduction, Residue Number System,
Number Theoretic Transform, and FHE operations of the
SEAL BFV scheme.

A. NOTATION
The SHE scheme used in this work is BFV, one of the
most efficient and widely used cryptographic schemes in the
literature. The scheme is based on the ring learning with
errors (RLWE) problem, whose difficulty serves as the secu-

VOLUME 11, 2023 84169

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

rity assumption for some post-quantum cryptography and
homomorphic encryption algorithms. The RLWE problem,
or more precisely, learning with errors problem over rings,
is a more efficient and practicable version of the learning
with errors (LWE) problem, which is specialized to workwith
polynomial rings over finite fields, whose details are given
below

The BFV scheme makes use of the polynomial ring
Rq = Zq/8(x), where Zq represents the finite ring
{0, 1, . . . , q − 1}, in which the arithmetic is performed
modulo q. Here, n is the degree of the cyclotomic polynomial
8(x), and when its degree is selected as a power of two,
we obtain 8(x) = xn + 1. Then, the arithmetic in the ring
Rq is optimized as the polynomial division is performed with
xn + 1. Abusing the terminology we sometimes refer n as
the dimension of Rq and use the notation Rq,n to indicate its
dimension.

Symbols and operations used in the subsequent parts of
the paper are as follows: ⌈·⌉, ⌊·⌋, ⌈·⌋ represent round up,
round down and round to nearest integer, respectively. The
notation, [a]t , indicates that the integer a lies in [−t/2, t/2]
while |a|t reduces a to the interval [0, t − 1]. A polynomial
a(x) ∈ Rq can be treated as a vector of n integers in Zq,
which is composed of its coefficients. When the number
theoretic transformation (NTT), which is a form of discrete
Fourier transformation over rings Zm (section III), is applied
to the vector of a(x), a vector of the same dimension is
obtained, which is shown as ā(x) (or just ā). While the
symbols+,− and× (or just ·) represent addition, subtraction
and multiplication, respectively in either Zq or Rq the
symbol ⊙ represents modular pointwise multiplication for
vector representation of the elements of Rq in the NTT
domain. Namely, an element in a vector is multiplied by the
elements of another vector with the same index value, where
multiplications are in Zq (i.e., modulo q multiplication).
λ is the security parameter denoted in unary notation.
a ← S stands for the uniform sampling of a from the set
S. χerr , a truncated zero-mean discrete Gaussian distribution,
is used to sample the coefficients of error polynomials. The
distribution is parameterized by the error bound βerr and
standard deviation σ .
Now, we can give the most general and simplified

definition of the RLWE problem. Suppose a ← Rq and
the secret s and the error e are the elements of R, whose
coefficients are sampled from χerr . Also suppose we have
b = as + e. Then, the ‘‘search’’ RLWE problem can be
defined as follows: Given a and b, it is hard to find s. In an HE
scheme, s is the secret key whereas the (b, a) are the public
key.

B. BARRETT REDUCTION
In the RNS variant of homomorphic cryptographic schemes
such as [16], there is a multitude of modular multiplication
operations that dominate the execution times of all homomor-
phic operations.

The Barrett reduction [17] and the Montgomery reduc-
tion [18] algorithms are two popular algorithms that perform
the modular reduction operation efficiently. Since the Mont-
gomery reduction needs the extra step for the transformation
of integers to the Montgomery domain, the Barrett reduction
algorithm is selected here for its simplicity.

The Barret reduction is described in Algorithm 1. Here,
µ is the precomputed value, ⌊ 2

2k

q ⌋, where q is the modulus
and k is the bit length of the modulus. The Barrett reduction
algorithm includes multiplication, shift, and subtraction
operations instead of an expensive division operation, which
is needed in the computation of C mod q by conventional
modular multiplication algorithms.

Algorithm 1 Barrett Reduction

Input: C = a×b, where a, b < q; k = ⌈log2(q)⌉;µ = ⌊ 2
2k

q ⌋

Output: Cout (C mod q)
1: r ← C ≫ (k − 2)
2: r ← r · µ
3: r ← r ≫ (k + 2)
4: r ← q · r
5: Cout ← (C − r)
6: if Cout >= 2q then Cout ← Cout − 2q
7: else if Cout >= q then Cout ← Cout − q
8: else Cout ← Cout
9: end if

C. RESIDUE NUMBER SYSTEM (RNS)
An integer X < M , can be represented using residues xi,
where xi = X mod mi for i = 1, . . . , r , if M =

∏r
i=1mi.

Here, mis forms a set of pair-wise relatively prime integers
that are known as moduli or ‘‘base’’ and a common notation
is that [X]mi = X mod mi. Due to the Chinese Remainder
Theorem (CRT) we have

|X |M =
∣∣∣ ∑r

i=1

∣∣ xi ·M−1i

∣∣
mi
·Mi

∣∣∣
M
,

where Mi =
M
mi
. The RNS is preferred in cryptographic

applications as it allows concurrent arithmetic with a set
of small moduli in place of a big modulus; this is useful
especially when the small moduli fit the word length of the
underlying computing platform [19]. It is also showed [20],
that RNS proves to be useful in accelerating the R-LWE based
lattice-base somewhat homomorphic encryption schemes
[6], [21]. Furthermore, RNS-variants of such schemes are
proposed [16] and their implementations achieved good
speedups on platforms where the concurrency of RNS is
exploited [22].

D. NUMBER THEORETIC TRANSFORM (NTT)
The number theoretic transform (NTT) is a version of
Discrete Fourier Transform (DFT) over the ring Zq. Any
vector a = [a0, a1, . . . , an−1] which has n elements in the
polynomial domain can be transformed to another vector

84170 VOLUME 11, 2023

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

ā = [ā0, ā1, . . . , ān−1] which also has n elements in the
NTT domain. The forward and inverse NTTs are defined as
in Eqns 1 and 2:

āi =
n−1∑
j=0

ajωi×j mod q for i = 0, 1, . . . , n− 1, (1)

ai =
1
n

n−1∑
j=0

ājω−i×j mod q for i = 0, 1, . . . , n− 1. (2)

The NTT (Eqn 1) and INTT (Eqn 2) calculations require
the powers of a constant value ω ∈ Zq referred as the twiddle
factor. Two types of twiddle factors are used:
• ω ∈ Zq, which is the n-th root of unity inZq and satisfies
the conditions ωn ≡ 1 (mod q) and ωi ̸= 1 (mod q)
∀i < n, where q ≡ 1 (mod n).

• ψ , where ψ ∈ Zq is the 2n-th root of unity and it
satisfies the conditions ψ2n

≡ 1 (mod q) and ψ i
̸=

1 (mod q) ∀i < 2n, where q ≡ 1 (mod n). Note
that ω and ψ are related with ω = ψ2 mod q and
ψn mod q = −1.

As the formulas in Eqns 1 and 2 result in quadratic
complexity, for efficient computation of NTT and its inverse,
Algorithms 2 and 3 are utilized [23].

Algorithm 2Merge Forward NTT
Input: a(x) ∈ Zq[x]/(xn + 1) polynomial standard-order
Input: 9br [k] = 9br(k) (Powers of 9 stored in bit-reversed

order)
Input: n = 2l , q (q ≡ 1 mod 2n)
Output: ā ∈ Zn

q in bit-reversed order
1: t = n; m = 1
2: do
3: t = t/2
4: for i from 0 by 1 to m do
5: j1 = 2it
6: j2 = j1 + t − 1
7: for j from j1 by 1 to j2 + 1 do
8: U = aj
9: V = aj+t ·9br [m+ i] (mod q)
10: aj = U + V (mod q)
11: aj+t = U − V (mod q)
12: end for
13: end for
14: m = 2× m
15: while m < n
16: for i from 0 by 1 to n do
17: āi = ai (mod q)
18: end for

Both algorithms are based on the factorization of the
cyclotomic polynomial xn + 1 into n degree-1 polynomials
as follows:

xn + 1 ≡
n−1∏
i=0

(x − ψ2i+1) mod q (3)

Algorithm 3Merge Inverse NTT
Input: ā ∈ Zn

q in bit-reversed order
Input: 9rev[k] (power of 9−1 stored in bit-reverse order

(9rev[k] = 9−br(k) (mod q)))
Input: n = 2l , q (q ≡ 1 mod 2n)
Output: a(x) ∈ Zq[x]/(xn + 1) standard-order
1: t = 1; m = n
2: do
3: j1 = 0; h = m/2
4: for i from 0 by 1 to h do
5: j2 = j1 + t − 1
6: for j from j1 by 1 to j2 + 1 do
7: U = āj; V = āj+t
8: āj = U+V (mod q)
9: āj+t = (U − V) ·9rev[h+ i] (mod q)
10: end for
11: j1 = j1 + 2× t
12: end for
13: t = 2× t
14: m = m/2
15: while m < n
16: for i from 0 by 1 to n do
17: ai = (āi · n−1) (mod q)
18: end for

By reducing a given polynomial a(x) by these degree-1
polynomials, we obtain n integers, which are, in fact, the
coefficients of ā(x). This computation can be performed
recursively. We first use the following factorization

(xn + 1) ≡ (xn − ψn)

≡ (xn/2 − ψn/2)(xn/2 + ψn/2) mod q (4)

and reduce a(x) by polynomials (xn/2 − ψn/2) and
(xn/2 + ψn/2). Reducing a(x) by the first and second factors
can be realized by employing the equations xn/2 = ψn/2 and
xn/2 = −ψn/2, respectively. This accounts for the addition
and subtraction operations in Steps 11 and 12 of Algorithm 2.

Factorization is further utilized as follows:

(xn/2 − ψn/2) ≡ (xn/4 + ψn/4)(xn/4 + ψn/4) mod q

and

(xn/2 + ψn/2) ≡ (xn/2 − ψn/2+n)(xn/4 − ψn/4+n/2)

× (xn/4 + ψn/4+n/2) mod q

The factorization is repeated until degree-1 polynomials
are obtained.

As can be observed from Algorithm 2, different powers
of ψ are stored in the bit-reverse order in the table 9br ,
which simply means that the ith power of ψ is stored in the
(br(i) − 1)th element of 9br . For instance, for n = 8 the
first element of 9br holds ψ4 as the bit-reversed order of
4 = 100 is 001.

VOLUME 11, 2023 84171

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

The inverse NTT operation, whose steps are given in
Algorithm 3, is performed following the recursive factoriza-
tion of (xn+ 1) in the reverse order of that applied during the
NTT computation.

To illustrate the inverse NTT algorithm, its last iteration
is demonstrated, which yields the final result. The vector ā
before the last iteration is as follows:

a = (a0 + an/2ψn/2), . . . , (an/2−1 + an−1ψn/2)

+ (a0 − an/2ψn/2), . . . , (an/2−1 − an−1ψn/2) (5)

If the first half is added to the second half, the first
half of the resulting vector multiplied by 2 is obtained,
2(a0, . . . , an/2−1)

Furthermore, if the second half of ā is subtracted from its
first half,

2ψn/2(an/2, . . . , an−1). (6)

is obtained. Thus, the result in Eqn 6 needs to be multiplied
by ψ−n/2. This elaborates the core butterfly operation in
Step 12 of Algorithm 3.

As there are log2 n iterations in the outermost loop
of Algorithm 3 and the vector elements are effectively
multiplied by 2 in every iteration, the result needs to be
divided by n in Zq.
The schoolbook multiplication of polynomials c(x) =

a(x) × b(x), where a(x), b(x) ∈ Rq, can be performed using
the method given in Eqn 7.

c(x) =
n−1∑
i=0

n−1∑
j=0

ai × bj × x i+j mod q (7)

Due to the quadratic complexity of the schoolbookmethod,
the multiplication in Rq is slow and inefficient. Moreover,
the degree of the resulting polynomial is 2n − 2 as a result
of the multiplication, and thus division with φ(x) must be
applied in order to obtain the final result, which is in Rq; i.e.,
a polynomial with degree at most n− 1.

The NTT-based polynomial multiplication operation,
on the other hand, has logarithmic complexity. Recall that
the vector ā is made up of scalar integers reduced by degree-
1 polynomials that are factors of (xn + 1). This means that
if two such vectors ā and b̄, where ā = NTT (a(x) and
b̄ = NTT (b(x), are multiplied element-wise in Zq, the result
is c̄ in NTT, where c(x) = a(x)b(x). When the inverse NTT
is applied on c̄, c(x) is obtained.
Consequently, an NTT multiplication algorithm can be

defined for an efficient multiplication in Rq as described in
Eqns. 8 and 9.

c̄(x) = NTT n(a(x))⊙ NTT n(b(x)) (8)

c(x) = INTT n(c̄(x)) mod q (9)

Note that NTT operations are n-point and no extra
polynomial reduction step by (xn + 1) is needed as (xn + 1)
is factorized into degree-1 polynomials. This makes element-
wise multiplications in Eqn. 8 isomorphic to the multiplica-
tion in Rq.

E. SEAL BFV SCHEME
In this section, we first briefly explain four main operations
of the BFV homomorphic encryption scheme; namely
key generation, evaluation key generation, encryption, and
decryption. Then, we give a more detailed explanation of
three fundamental homomorphic operations that are common
in many homomorphic cryptographic applications: addition,
multiplication, and rotation over encrypted ciphertexts.

1) KEY GENERATION, ENCRYPTION AND DECRYPTION
For some integer t > 1, where t ≪ q, the ciphertext and
plaintext spaces are taken asRq,n andRt,n, respectively. Also,
we note that neither q nor t has to be a prime integer. The
key generation, evaluation key generation, encryption, and
decryption operations of the BFV scheme is shown below,
where 1 = ⌊q/t⌋ and χ , ℓ, and w represent a discrete
Gaussian distribution, the number of evaluation keys, and, the
decomposition base, respectively.
• Key Generation: a← Rq,n, s← R2,n and e← χ ,
sk = s, pk = (p0, p1) = ([−(as+ e)]q, a)

• Evaluation Key Generation: ai← Rn,q and ei← χ

for j = 0, . . . , r − 1; i = 0, . . . , r − 2
where f i = qr−1 mod qi
(evk ji [0], evk

j
i [1]) = ([−(ajsj + ej)+ f is2j]qi , aj)

• Encryption: m ∈ Rt,n, u← R2,n and e1, e2← χ ,
ct = (c[0], c[1]) = ([m ·1+ p0u+ e1]q, [p1u+ e2]q)

• Decryption: ct = (c[0], c[1]) ∈ Rq,n and Sk ∈ R2,n,
m = [⌊ tq [c[0]+ c[1]s]q⌉]t

Note that the evaluation keys, evk , are needed to remove the
‘‘nonlinear’’ parts c[2] of the ciphertext (c[0], c[1], c[2]) that
occur after homomorphicmultiplication operations; a process
often referred as relinearization. The number of evaluation
keys are 2r(r − 1) in total. Note also that in the RNS variant
of the BFV scheme, all operations have to be repeated for
each prime base qi.

2) ADDITION
In the BFV scheme, the most straightforward operations
are addition and subtraction. It just consists of modular
addition and subtraction of the coefficients of ciphertext
polynomials that are in Rq,n. As shown in Algorithm 4, two
pairs of ciphertext polynomials in the same bases are added
or subtracted coefficient-wise, where the moduli are qi for
i = 0, . . . r − 1. Here, cti stands for the ciphertext pair in the
modulus qi for i = 0, . . . r − 1; namely cti = [ct]qi for ease
of notation.

3) MULTIPLICATION
In this section, we explain the homomorphic multiplication
operation as illustrated in Figure 1. As pointed out earlier in
the RNS variant of the BFV scheme, a set of smaller moduli
qi is used instead of one large coefficient modulus q for the
ring arithmetic; a technique known as residue number system
(hence, the abbreviation RNS). Using RNS arithmetic allows
to perform operations in parallel and removes the need for
arbitrary-precision arithmetic.

84172 VOLUME 11, 2023

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

Algorithm 4 BFV Addition
Input: cti, c̄t i ∈ Rqi for 0 ≤ i < r − 1
Output: cti + c̄t i ∈ Rqi for 0 ≤ i < r − 1
1: for i from 0 by 1 to (r − 1) do
2: for k from 0 by 1 to 2 do
3: c̃t i[k] = [cti[k]+ c̄t i[k]]qi
4: end for
5: end for
6: return c̃t = c̃t0, . . . c̃tr−1

FIGURE 1. Homomorphic multiplication operation in the BFV scheme.

The homomorphic multiplication operation takes two
ciphertexts as inputs, each of which consists of two polynomi-
als in Rq,n and performs a tensor product that produces three
polynomials as output in each RNS base.

Due to complications of using RNS arithmetic in homo-
morphic multiplication (see [16] for more details), the SEAL
library uses the base extension technique and introduces
additional auxiliary base (B and msk) in addition to the RNS
thcalQ base {q0, q1, . . . , qr−1}. The auxiliary baseB consists
of {B0,B1, . . . ,Bρ−1}, which are pairwise co-prime while
msk is a prime integer. Generally, the auxiliary base B and
the prime msk are joined to form the base Bsk (= B ∪ msk).

Thus, the homomorphic multiplication operation in BFV
requires conversion between the Q base and the auxiliary
base Bsk . The conversion is implemented using a technique

known as ‘‘fast base conversion,’’ which can introduce extra
multiples of q in the computations that can lead to error in
the ciphertext. To remedy this, a reduction operation through
another modulus m̃ is required after the fast base conversion
operation is applied.

As shown in Figure 1, the BFV multiplication operation
starts by performing the fast base conversion operation
fastbconv_1, which convert the inputs in Q to the base
{Bsk ∪ m̃}. The fastbconv_1 operation is followed by
the reduction operation, for which the additional base m̃ is
used; this operation is known as small Montgomery reduction
modulo q, sm_mrq. It limits the impact of the error and
converts the inputs in the {Bsk ∪ m̃} base to the Bsk base.
After the sm_mrq operation, the NTT operation is applied
to all ciphertext components (both in Bsk and Q bases) and
ciphertext multiplication operation is performed coefficient-
wise to all vectors in all bases. Then, the inverse NTT
operation is performed to convert the result to the polynomial
domain. After the inverse NTT operation, ciphertexts are
multiplied with plaintext modulus t . Then, the floor operation
is used instead of the rounding operation; via a method is
called ‘‘fastfloor function,’’ and convert the ciphertext in
the base {q∪Bsk} bases to the base Bsk as it involves division
by q. Finally, the fastbconv_2 function is used to perform
conversion from the Bsk base back to the original RNS base
Q. The reader is referred to [16] for more detail.

4) RELINEARIZATION
The SEAL BFV uses the switchkey technique (Figure 2),
which consists of the mix of three different methods
for relinearization operation [24], [25], [26]. The most
current method of these techniques is the special modulus
method, which improves relinearization in terms of noise
performance. The switch-key method shown in Figure 2 is
the main building block of the relinearization and the rotation
operations.

As shown in Figure 2, after the homomorphic multipli-
cation, in addition to ct[0] and ct[1], the third ciphertext
component ct[2] is obtained. Recall that a ciphertext
component is written in r − 1 moduli excluding qr−1 after
encryption; cti for i = 0, . . . , r − 1. Firstly, all cti[2] are
transformed to the NTT domain using all moduli qi in the
RNS base to be multiplied with the evaluation keys that are
already in the NTT domain.

The number of NTT operations is, therefore, r(r−1). After
the NTT operations, the ciphertexts are multiplied with the
evaluation keys in the NTT domain, where the multiplication
is component-wise modulo multiplication. The modulus used
in the multiplication is written next to the box that represents
component-wise multiplication in Figure 2. Then, all results
from themultiplication using the samemodulus qi in the RNS
base are summed switchkey resulting vectors are transformed
back to the polynomial domain using inverse NTT operation.
Finally, as shown in Figure 2, necessary operations are
applied to accommodate ct[2] in ct[0] and ct[1]. In the figure

VOLUME 11, 2023 84173

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

FIGURE 2. Switch key operation in the BFV scheme. The symbols +, − and × represent addition, subtraction and multiplication, respectively in either Zq
or Rq while the symbol ⊙ represents modular pointwise multiplication for vector representation of the elements of Rq in the NTT domain.

the half modeHm[i] = [⌊qr−1/2⌋]qi . See Algorithm 9 for the
details.

5) ROTATION
The rotation operation also uses the switch-key operation as
in the case of relinearization. However, the operation is based
on Galois automorphism [27], and therefore, Galois keys are
used for the switch-key operation. For each power of 2, there
is a different set of Galois keys and if the rotation amount is
a power of 2, the switch-key operation is executed using the
corresponding Galois key. On the other hand, if the rotation
amount is not a power of two, the amount is written as the
combination of powers of two, and the switch-key operation
is applied multiple times with different Galois keys. for
instance, if the rotation amount is 10, it can be implemented
using two switch-key operations; the former uses the Galois
keys for 8, the latter for 2.

III. GPU ARCHITECTURE
A graphics processing unit (GPU) is a computing platform,
which consists of many cores that can operate on many tasks
concurrently, which makes it more suitable for parallel com-
putations. On the other hand, GPU cores are much simpler
than CPU cores and run at lower clock frequencies (cf. AMD
Ryzen7 3800X’s cores working at up to 4.2GHz andNVIDIA
RTX 3060Ti’s cores working only at 1.66 GHz). Thus, GPUs
become much more favorable for performing many simple
tasks simultaneously. We will show in Section IV that many

time-critical BFV operations can be arranged as independent
for loops, executed in GPU threads simultaneously.

One of the essential parts of GPUs is ‘‘streaming
multiprocessors’’ (SMs); a unit of computing cores running
the same GPU kernel. At the highest level of SMs, threads are
combined as a 3-dimensional structure called blocks. Also,
a grid is a group of blocks launched per GPU kernels. Using
kernel launch parameters, one can determine the dimension
of blocks and the number of threads per block as needed.

As shown in Figure 3, GPUs have different types of logical
memory spaces; namely, shared memory (SMEM), registers,
local memory (LMEM), constant memory (CMEM), texture
memory (TMEM), global memory (GMEM). They have
different sizes and different usages. For instance, GMEM
has a large capacity; however, it has high access latency,
especially in case of the low locality of access. As shown in
Table 1, registers and SMEM are the fastest types of memory,
and their read and write data speeds are similar to a typical
L1 cache of a CPU. CMEM is a read-only data memory
and since it is accessible from all threads, it performs well
whenmultiple threads access the same data. Table 1 compares
several aspects of GPU memory types [28].

IV. GPU IMPLEMENTATION
This section presents our implementation techniques, meth-
ods, and algorithms for four different homomorphic oper-
ations of the SEAL BFV scheme: addition, multiplication,
relinearization, and rotation. Moreover, we present the
implementation of our NTT and INTT algorithms on GPUs.

84174 VOLUME 11, 2023

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

FIGURE 3. CUDA memory model.

TABLE 1. Variables and access penalties on modern GPUs memory
architecture.

In all GPU implementations that are performed in this section,
we minimize the number of kernels to two. Here, our concern
is due to the fact that transferring data from one kernel to
another is only possible by using the global memory, and
accessing the global memory is prohibitively expensive as
explained in Section III. Note that the global memory is
accessed only at the beginning and at the end of the kernel.
Also, we designed the operations within the kernel in such
a way that all required data sharing or exchange among the
threads are facilitated only through shared memory, which
is much faster than the global memory. The optimal use of
global and shared memory decreased the total number of
clock cycles spent in memory accesses and boosted memory
throughput.

The implementation of the first kernel is involved as
threads in different blocks may need to share data that
requires inter-block synchronization (which calls for global
memory access). In our implementation, we use only two
blocks of threads and the number of threads in a block is
optimized for the ring dimension. While this technique does
not fully utilize the full concurrency in one loop of the
NTT algorithm, it eliminates inter-block synchronization as
the threads in the blocks always access the same memory
locations. In addition, each thread in the blocks uses an
access pattern to the global memory in such a way that,
after global memory access, it keeps all its input values in
its registers needed during the first kernel operations. Details
of the particular algorithms and techniques are given in the
subsequent sections.

Algorithm 5 Merge in Place Forward NTT on GPU (With
syncthreads)
Input: A[n] ,PsiTable[n], q
Output: A[n]
1: Idx = blockIdx.x × blockDim.x + threadIdx.x
2: for loop from 0 by 1 to log2(n) do
3: t = (n/2)≫ loop
4: m = 2≪ loop
5: address = int(idx/t) ∗ t + idx
6: U = A[address]
7: V = A[address+ t]
8: Psi = PsiTable[int(idx/t)+ m]
9: A[address] = (U + V)%q

10: V = (V × Psi)%q
11: A[address+ t] = (U − V)%q
12: __syncthreads()
13: end for

A. NTT
The Cooley-Tukey NTT and Gentleman-Sande INTT algo-
rithms described in the preliminary section is implemented
on the GPU. NTT and INTT perform as the opposite
of each other in terms of algorithm. Therefore, in this
section, explanations of NTT and INTT separately are not
needed. This section explains the challenges for fast and
efficient implementation of NTT and presents our solutions
to overcome them. Algorithm 5 shows the GPU pseudo-code
for the NTT algorithm, which is essentially the same as the
on given in Algorithm 2. One important adaptation to GPU
is the synchronization operation in Step 12, whose effect on
the correctness of the computations will be explained later in
this section.

The NTT operation consists of log2 n back-to-back loops,
each of which contains n/2 butterfly operations independent
of each other, which can be performed simultaneously using
n/2 threads on the GPU.

Each GPU can run a certain number of streaming
multiprocessors (SM), the number of which depends on
the GPU model and computational capability (version) of the
GPU. Each SM consists of 4 warps of 32 threads for all
GPU models, so the total number of physical threads equals
((#SM) × 4 × 32).

When a GPU code is executed, the tasks are performed
by warp groups. For example, if the code uses a number
of threads in the range of [96-128], a total of four warps
is needed in both cases. Also, even if the warps perform
the same task, they may not finish their share of tasks
simultaneously. Therefore, shared data usage among threads
can lead to synchronization problems.

For instance, as the ring dimension n or the number of
simultaneous (I)NTT operations increases, synchronization
problems can occur if proper synchronization operations are
not employed during the execution of Algorithm 5 (suppose
Step 12 of Algorithm 5 is not present). This can be explained

VOLUME 11, 2023 84175

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

FIGURE 4. Execution of Alg. 5 without synchronization in ideal circumstances where n = 32.

with a simple example. Suppose that we have a hypothetical
GPU with a total thread count of 16 and a maximum block
size of 4 threads. Let one warp of this GPU consist of
two threads and let Algorithm 5 without synchronization
be executed for n = 32 on this GPU. Figure 4 portrays
a visualization of the execution of Algorithm 5 without
synchronization on the hypothetical GPU.

The figure shows a total of log2 32 = 5 iterations.
16 threads are used, whose indexes are between 0 and 15
(T0, . . . ,T15). We use a different color for the oval rectangle
that encircles a block of four threads. Each thread Ti accesses
two different memory locations using the address and
address+t values in Algorithm 5, performs the butterfly
operation, writes two pieces of the results again in the same
two memory locations. When a thread finishes its own task,
it moves to the iteration of the algorithm and performs the
same operation, only with a different value of t this time.
Figure 4 represents the execution of the algorithm in the ideal
circumstances as the threads are assumed to finish their tasks
simultaneously.

However, Algorithm 5 does not always execute in ideal
circumstances. Suppose that the number of threads is only
12 for the scenario in Figure 4. Even when the number of
threads is less than the number of tasks, incidentally the
execution can still be correct. One such scenario is depicted
in Figure 5, where we only show the first two iterations.
As the scenario requires 16 threads, but the hypothetical
GPU has 12 threads, the number of threads is not sufficient,
and the code runs sequentially after a point. In the figure,
we use primed letters to distinguish the multiple assignments
of the same thread to different tasks. For instance, T0 and
T ′0 show that performs thread executes two different butterfly
operations in the same iteration sequentially. Incidentally
again, this does not necessarily lead to incorrect execution
as shown in Figure 5.

Nevertheless, since thread synchronization is not imple-
mented, an error in calculations can occur as visualized
in Figure 6. For instance, suppose four threads in the
dashed red line, namely T ′2,T

′

3,T
′

6,T
′

7, are assumed to be
scheduled simultaneously. And, since they operate on the
same memory locations in two consecutive iterations, there
is a data dependency between the first two and the last two
threads. This will definitely lead to a race condition, resulting
in incorrect results.

It is impossible to put a barrier between the warps to solve
the aforementioned synchronization problem. Therefore,
only block-level barriers can be used as shown in Step 12 of
Algorithm 5, which resolves all synchronization problems as
long as the ring dimension n is less than or equal to the block
size. Since a block in GPU has a maximum of 1024 threads
for all GPU models, the barrier __syncthreads() in
Step 12 of Algorithm 5 cannot resolve the synchronization
issue for higher values of n or when performing many NTT
operations in batches.2

The latter issue can be explained over another execution
scenario of Algorithm 5 on the hypothetical GPU, depicted
in Figure 7. The eight threads enclosed in the dashed red
line belong to two different blocks as the block size of the
hypothetical GPU is just four. Here, the thread block in the
2nd iteration run on data that has not yet been completed,
leading to incorrect results.

For n values much higher than the block size and the high
number of multiple NTT operations running simultaneously,
an obvious solution to resolve all synchronization issues is
simply using more than one kernel depending on the size of
n or the number of NTT computations. For example, for n =
32 on our hypotheticain l GPU, to resolve the synchronization

2Whenmultiple and independent NTT operations are executed, the threads
are scheduled as if those independent NTT calculations are combined into a
single big NTT operation.

84176 VOLUME 11, 2023

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

FIGURE 5. One good scenario for Alg. 5 without synchronization, where n = 32 and maximum block size = 4.

FIGURE 6. One problematic scenario for Alg. 5 without synchronization, where n = 32.

FIGURE 7. Another problematic scenario for Alg. 5, where n = 32.

FIGURE 8. An example of our NTT algorithm where, n = 32 and maximum block size = 4.

issue in Figure 7, we can use two consecutively executing
kernels for the first two iterations of the NTT computation.

After the first two iterations are completed, the threads in
one blockwill never need or use the data processed by another
block and no synchronization problem occurs. Therefore,

after the first two iterations, execution can continue within the
third kernel using shared memory and block synchronization.

However, when more than one kernel is used, the only way
to share data across kernels is to use global memory, which is
the slowest of all GPUmemory types (see Section III). As the

VOLUME 11, 2023 84177

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

value of n increases, this method becomes prohibitively
inefficient as the number of kernels required for NTTwill also
increase. This approach is used in [29], and as demonstrated
in the subsequent sections, our new approach in this paper
scales better as n increases.

The approaches described above have either synchroniza-
tion issues or inefficient memory usage, both of which are
efficiently addressed by our new NTT implementation. The
new implementation consists of always two kernels for all
values of n.
An example with n = 32 is visualized in the hypothetical

GPU in Figure 8, where the first two iterations are performed
in the first kernel. Operations of these iterations in the first
kernel are performed sequentially on purpose. In the example
in Figure 8, two blocks and eight threads (recall 2 blocks =
8 threads on the hypothetical GPU) are scheduled twice in
the first two iterations. Each thread in the two blocks writes
the addresses of interest in the global memory to its registers,
as illustrated in Figure 9. Then, each thread performs butterfly
operations using its register memory. When a thread finishes
its task in one iteration, it writes the data in its register
memory to the corresponding global memory. Although
the first kernel seems to be slower because it uses fewer
number of threads than the above mentioned examples, the
acceleration here comes not from the number of threads, but
from the more efficient usage of memory as we minimize the
global memory access. On the other hand, in the approach
employed in [29], the number of kernels along with global
memory access increases as n becomes larger. The pseudo-
code for the algorithm used to implement the operations in
the first kernel is given in Algorithm 6.
In the second kernel in Figure 8, the number of threads in

a block suffices to complete the remaining NTT operations.
Since data sharing among threads within the block is
required, each block has its shared memory consisting of
2 × blocksize. This poses no problem as the shared
memory is the fastest type of GPU memory (in fact, as fast
as the register memory). Here, each thread accesses its own
part of the memory using its respective indexes for each
iteration, performs a butterfly operation, and writes the result
to the shared memory of the block it is connected to until the
last iteration. After all threads finishes their executions, the
result, which is in the shared memory, are written to these
global memory, and the NTT operation is terminated. The
new NTT implementation is fast and free of synchronization
issues for all values of n and multiple concurrent NTT
computations.

B. SEAL GPU IMPLEMENTATION
This section explains our GPU implementations of homo-
morphic addition, multiplication, relinearization and rotation
operations of the BFV homomorphic encryption scheme.
Algorithms for all these homomorphic operation are given as
pseudo-codes as implemented in the Microsoft SEAL library.
All of these algorithms are implemented so that they use our

Algorithm 6 Kernel 1 in Figure 8
Input: A[n],PsiTable[n], q
Input: bc: no. of blocks (bc = 2)
Output: A[n]
1: idx = blockIdx.x × blockDim.x + threadIdx.x
2: m = 1
3: k = n/(2× blockDim.x × bc)
4: t = n
5: for i from 0 to n/(2× blockDim.x) do
6: reg[i] = A[idx + (i× (2× blockDim.x))]
7: end for
8: for i from 0 to log2 (n/(2× blockDim.x × bc))+ 1 do
9: for j from 0 to n/(2× blockDim.x × bc) do

10: location = ⌊ jk ⌋ × k + j
11: U = reg[location]
12: V = reg[location+ k]
13: address = ⌊ idxt ⌋ + m
14: V = (V × PsiTable[address]) mod q
15: reg[location] = (U + V) mod q
16: reg[location+ k] = (U − V) mod q
17: end for
18: m = m× 2
19: k = k/2
20: t = t/2
21: end for
22: for i from 0 by 1 to n/(blockDim.x × 2) do
23: A[idx + (i× (blockDim.x × 2))] = reg[i]
24: end for

GPU implementation of the NTT algorithm as described in
Section IV-A.

1) HOMOMORPHIC ADDITION/SUBTRACTION
As explained in Section II-E2, addition/subtraction opera-
tions of the BFV scheme are simple and inexpensive and their
implementation consists of only one kernel. In this kernel,
each ring element are represented as a vector over Zqi for each
modulus in the RNS base, and modulo addition/subtraction is
performed over the elements of the vectors.

2) HOMOMORPHIC MULTIPLICATION
In addition to kernel functions to implement NTT and
INTT operations, ten different CUDA kernel functions are
implemented for the multiplication operation (see Figure 1
for these operations). Each of the kernel functions use a
one-dimensional block and thread indexing. Before the GPU
computation, all necessary parameters are generated on CPU
of the host computer, then sent to GPU. In what follows,
we briefly mention all of them, but provide pseudo-codes for
some important ones in case they are more involved.

The first two CUDA kernel functions are employed to
implement base conversion operation from the RNS base Q
to Bsk . The pseudo-code of the base conversion operation is
given in Algorithm 7, as it is implemented in the Microsoft

84178 VOLUME 11, 2023

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

FIGURE 9. Register memory usage in our NTT algorithm for n = 32.

SEAL library. In particular, the first kernel implements the
for loop in lines 1-3 of Algorithm 7. As the result of the for
loop is needed in the subsequent operations in lines 4-12 of
Algorithm 7 a second kernel is used.

The third CUDA kernel function is implemented to
perform the small Montgomery reduction operation (i.e.,
sm_mrq Figure 1), which is employed to eliminate errors
due to the base conversion operation in the previous step.
After the NTT operations are applied to all vectors both in
the RNS and extension bases, the fourth and fifth CUDA
kernel functions are used to perform multiplication of the
ciphertexts; the former in the RNS base Q, multip_q and
the latter in the extension base Bsk , multip_BSK (see the
middle block in Figure 1). Then, the INTT operation follows
the multiplication operation to convert the ciphertexts back
to the polynomial domain. The sixth CUDA kernel function
is used to implement the multiplication of ciphertexts
with the plaintext modulus t , multip_t. The seventh
CUDA kernel function, named first_fast_floor,
implements the first step of the fast_floor function
(see Algorithm 8 for the pseudo-code): the results of
the multip_t kernel function in Q and Bsk bases are
converted to the Bsk base. The eighth CUDA kernel function,
named second_fast_floor, eliminates errors with the

Algorithm 7 Fast Convert Array
Input: rni ∈ Rqi,n

Input: Pi = [qiq]qi , base_c
j
i = [qqi]Bskj

Output: ctni ∈ RBsk,n
1: for i from 0 by 1 to r−2 do
2: multni = [rni × Pi]qi
3: end for
4: for i from 0 by 1 to Bsk_len− 1 do
5: sumni = 0
6: for j from 0 by 1 to r − 2 do
7: for k from 0 by 1 to n− 1 do
8: sumki = [sumki + (mulki × base_c

j
i)]Bskj

9: end for
10: end for
11: ctni = sumni
12: end for

Algorithm 8 Fast Floor
Input: rni ∈ Rqi,n, r

n
j ∈ RBskj,n, Pi = [qiq]qi

Input: base_cji = [qqi]Bskj
Output: cni ∈ Rqi,n

1: ctni ← fast_conv_array(rni ,Pi, base_c
j
i)

2: for i from 0 by 1 to Bsk_len− 1 do
3: for k from 0 by 1 to n− 1 do
4: ctki = [rkj − ct

k
i]Bski

5: cki = [ctki × [q]−1Bski)]Bski
6: end for
7: end for

flooring method instead of the rounding method. After the
fast_floor kernel function, the fast base conversion
function is performed in the ninth and tenth CUDA kernel
functions. The ninth kernel functions performs the conversion
from the extension base Bsk to the RNS base Q. Finally, the
tenth kernel function, second_fastbdconv_sk is used
to eliminate the rounding errors.

3) RELINEARIZATION
The BFV relinearization operation uses switchkey oper-
ation as explained in Figure 2, a pseudo-code of which is
given in Algorithm 9 as it is implemented in the Microsoft
SEAL library. The relinerization operation usually follows a
homomorphic multiplication of ciphertexts, which are given
in polynomial domain in BFV. The third component of the
ciphertext, c[2], which are to be multiplied with evaluations
keys are first converted to the NTT domain using our
NTT implementation (see line 5 of Algorithm 9). Then,
the multiplication with evaluation keys are performed in the
lines 2-9 of Algorithm 9, which are implemented in a single
kernel function.

Due to the fact that no polynomial multiplication is needed
after line 9, the results are converted back to the polynomial
domain (see lines 10-13 of Algorithm 9). The lines 14 and

VOLUME 11, 2023 84179

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

Algorithm 9 Switch Key
Input: ci[0], ci[1], ci[2] ∈ Rqi,n

Input: evk ji[k] ∈ Rqj,n, where k ∈ {0, 1}, 0 ≤ j < r , and
0 ≤ i < (r−1)

Output: ct i[0], ct i[1] ∈ Rqi,n
1: Āj,k = 1
2: for i from 0 by 1 to r−2 do
3: for j from 0 by 1 to r − 1 do
4: for k from 0 by 1 to 1 do
5: ai,j,k = [NTT n,qj (ci[2])⊙ evk

j
i[k]]qj

6: Āj,k = [Āj,k + ai,j,k]qj
7: end for
8: end for
9: end for

10: for j from 0 by 1 to r do
11: Aj,0 = INTT n,qj (Āj,0)
12: Aj,1 = INTT n,qj (Āj,1)
13: end for
14: half = ⌊ qr−12 ⌋

15: for i from 0 by 1 to r−1 do
16: halfmod = [half]qi
17: for k from 0 by 1 to 1 do
18: tmp = [[Ar−1,k + half]qr−1 − halfmod]qi
19: tmp = [tmp× q−1r]qi
20: ct i[k] = [ci[k]+ tmp]qi
21: end for
22: end for

16 are used to implement the arithmetic with the half modulus
as previously described in Figure 2. Lastly, the operation
between lines 14 to 22 in Algorithm 9 is implemented with a
single kernel.

4) ROTATION
The BFV rotation operation uses the so-called
apply_galois method, whose pseudo-code is given in
Algorithm 10 and the switchkey operation in Algorithm 9.
Before the rotation operation, galois_elt algorithm for a
given shift amount is executed in CPU using Algorithm 11
and the result galois_elt is sent to GPU. Then, a single
kernel is used to implement apply_galois algorithm.
Finally, another kernel function is used to implement
switchkey operation as explained in part IV-B3.

V. EXPERIMENTAL RESULTS
In this section, we present our GPU implementation results
and their comparison with state-of-the-art works in the
literature. Also, we present the implementation of gradient
boosting framework (XGBoost) [30] using our GPU library
to show its performance in practical real-world applications.

For a fair comparison with GPU and CPU implementations
of NTT and of the homomorphic operations of the BFV
scheme, we use a powerful CPU and two GPU devices,
whose configurations are listed in Table 2. For the CPU

Algorithm 10 Apply Galois

Input: galois_elt, cji[k] ∈ Rqi,n, where 0 ≤ i < (r − 1)
0 ≤ j < n k = 0, 1

Output: cji[k] ∈ Rqi
1: for i from 0 by 1 to r−2 do
2: for j from 0 by 1 to n− 1 do
3: index_raw = j× galois_elt
4: index = index_raw & (n− 1)
5: for k from 0 by 1 to 1 do
6: r_val = cji[k]
7: if (index_raw≫ log2(n)) & 1 then
8: non_zero = int(r_val ̸= 0)
9: r_val = (qi − r_val)&(−non_zero)
10: end if
11: cji[k] = r_val
12: end for
13: end for
14: end for

Algorithm 11 Galois Elt
Input: steps, n
Output: galois_elt
1: m32 = n× 2
2: if steps == 0 then
3: return m32− 1
4: else
5: pop_steps = abs(steps)
6: if steps < 0 then
7: steps = (n≫ 1)− pop_steps
8: else
9: steps = pop_steps

10: end if
11: gen = 3
12: galois_elt = 1
13: for i from 0 by 1 to steps do
14: galois_elt = galois_elt × gen
15: galois_elt = galois_elt & (m32− 1)
16: end for
17: return galois_elt
18: end if

implementation, we use the Microsoft SEAL library3 for
the BFV scheme, which is one of the fastest and highly
optimized software implementations of BFV developed in
C++ language. We use a combination of the build options
given by the SEAL developers,4 which yields the fastest
executable (More specifically, the build options set the
CMAKE_CXX_FLAGS_RELEASE variable to include the
‘‘-DNDEBUG -flto -O3’’ flags by default.). Finally, our
32-bit implementation uses no assembly optimization while
the 64-bit implementation utilizes assembly language to

3https://github.com/microsoft/SEAL
4https://github.com/microsoft/SEAL#basic-cmake-options

84180 VOLUME 11, 2023

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

TABLE 2. Hardware features of the Testbed environment.

optimize only some of the 64-bit arithmetic operations such
as 64-bit modular multiplication. This is solely needed for
fast carry detection as GPU cores are essentially of 32-bit
architecture. On the other hand, the same optimization is
not needed for CPU as it is already 64-bit architecture that
performs 64-bit arithmetic operations in hardware.

A. GPU IMPLEMENTATION OF NTT RESULTS AND
COMPARISON WITH RELATED WORKS
Since the BFV scheme used here employs RNS, NTT
must be concurrently calculated for each modulus in RNS.
Therefore, it is essential to simultaneously perform multiple
NTT operations in batches. Naturally, the throughput of an
NTT operation is as important as (if not more than) the
latency of a single NTT operation on GPU. In our GPU
implementation, we aim to optimize both throughput and
latency and we favor the former over the latter most of the
time. In the literature, there are few works that report results
for batch execution of NTT operations. Thus, in Figure 10
we include results from [29], which represents the state-
of-the-art in GPU implementation of NTT and is the only
work in the literature that reports batch computation results
comparable to ours to the best of our knowledge. The source
codes of the GPU implementation used in [29] are publicly
available on GitHub5 and to provide a fair comparison for
batch execution, we run them on our GPU device (i.e.,
RTX 3060Ti) in order to compare them with our results
obtained from the same GPU device in Figure 10. Note that
a more detailed version of Figure 10 is provided in Table 7
in Appendix A.

While most NTT GPU implementations in the literature
use special form moduli to accelerate NTT operation, our
implementation works with any NTT-friendly modulus and
it is still faster. Furthermore, our implementation, which
is optimized for performing NTT operations in batches,
outperforms those that report only the timings for a single
NTT operation in the literature. To compare our work with
those that report only single NTT and inverse NTT timings,
we include Table 3, which shows that, our implementation
also outperforms all works in the literature except for one case
when a single NTT (iNTT) operation is executed.

5

TABLE 3. Timings of GPU implementation of single NTT and single
inverse NTT operations and their comparison with the works in literature.

In [29], the inverse NTT operation is faster than ours for
ring sizes 214 and 215. For the ring size 214, the total time
of NTT and inverse NTT operations of our implementation
is less than that in [29] (compare 42.4 µs and 50 µs).
For 215, the implementation in [29], on the other hand,
outperforms ours. Nevertheless, as Table 7 shows that our
batch implementation outperforms the one in [29] for every
case. The performance of batch NTT is much more important
as NTT (and inverse NTT) operations are always executed in
batches in all homomorphic encryption applications.

We also note that the works [32], [33], and [34] use the
special modulus,Q = 264−232+1 known as goldilock prime,
to perform NTT operations faster. However, Q serves as the
carriermodulus for the actual moduli used in RNS arithmetic
in homomorphic encryption applications. Thus, the actual
moduli are much smaller due to the constraint q2i n < Q [35].
For example, for the ring size n = 214, each moduli in RNS
arithmetic can be at most 25-bit. As our work can employ
64-bit RNS moduli, our actual performance is much better
than the implementations in [32], [33], and [34]. For example,
to match our size the implementations in those works should
use at least twice as many RNS moduli.

The implementations in [32] and [33] take 83.3 µs
and 57.8 µs, respectively, for 32768 ring size. And the
implementation in [34] takes 66.8 µs for 16384 ring size.
Our GPU implementation takes either 19.4 µs (32-bit
implementation) or 35.9 µs (64-bit implementation) for the
the ring dimension of 32768. On the other hand, when the
ring dimension is 16384, our GPU implementation takes
either 13.8 µs (32-bit implementation) or 19.4 µs (64-bit
implementation) to perform single NTT operation. As the

VOLUME 11, 2023 84181

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

FIGURE 10. Timing bar graph of GPU implementation of NTT and inverse NTT operations on RTX 3060Ti and their
comparison with [29].

TABLE 4. Comparison results of SEAL BFV scheme operations and literature with our GPU implementations of BFV scheme operations.

works in [31], [32], [33], and [34] do not report timing
results for batch execution, these works are not included
in Table 7, which includes only comparison of batch NTT
execution.

Table 7 lists the GPU timings for NTT and inverse NTT
operations, which are organized into two main columns.
On the left are the GPU timings when the modular
multiplication (see Barret reduction in Algorithm 1) is done
using 32-bit modulus q, whereas, on the right, the same
timings are listed for a 64-bit q. Note that as the BFV scheme
works with integers, only integer arithmetic is employed for
these modular multiplications.

Note that as the 64-bit implementation uses twice the size
of the modulus than the 32-bit implementations, it can be
advantageous for homomorphic operations. For instance, for
an acceptable level of security, one must use a 218-bit size for
qwhen n = 213. When we set the sizes of moduli qi to 32-bit,
we use seven RNS moduli qi. On the other hand, if the size
of each qi is 64 bits, we use only five such moduli.
In the table, NTT_count represents the number of

independent NTT operations performed simultaneously.
We compare forward NTT and inverse NTT separately.

Our timing results show a significant acceleration
in comparison with those of the state-of-the-art GPU

84182 VOLUME 11, 2023

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

implementation in the literature [29]. For the 32 bit case, the
new forward NTT and inverse NTT are 1.36× and 1.71×,
faster than their counterparts in the work [29], respectively,
where n = 215 and NTT_count = 128. The sum of
NTT and INTT timings, which is 726.7µs, is 1.53× faster
than that of [29]. For the 64 bit case with n = 215 and
NTT_count = 128, the new forward NTT and inverse
NTT are 1.4× and 1.66× faster than their counterparts
in [29], respectively. These performance achievements
obtained for NTT and INTT operations help accelerate
the operations of the BFV scheme and any application
using homomorphic encryption as shown in the following
section.

B. GPU IMPLEMENTATIONS OF BFV HE OPERATIONS
RESULTS AND COMPARISON WITH
RELATED WORKS
There are not many prior works in the literature that
present GPU implementations of homomorphic operations
of the BFV scheme, and the existing ones do not give
performance results for all homomorphic operations let alone
the homomorphic application results. Therefore, the com-
parison of our work with other works in the literature
cannot be comprehensive. The work in [34] provides timing
results on GPU for homomorphic applications of an old
and completely different homomorphic encryption scheme,
LTV [36], which is not in use today. We compare the
results of our GPU implementation of the BFV-scheme
operations with the work [22], which represents the state-
of-the-art in the literature for GPU implementation of the
BFV scheme. The work [22] provides only the timing results
of homomorphic multiplication, which include those of the
following relinearization operation.

We first provide our timing results separately in Table 4,
which includes all major homomorphic arithmetic operations,
typically used in many homomorphic applications. Our
GPU implementation shows significant improvements over
the CPU implementation of the SEAL library running on
a powerful CPU. The Microsoft SEAL library, which is
open-source and written in C++ programming language,
provides highly optimized NTT implementation and there-
fore, represents state-of-the-art implementations of both the
NTT and the BFV algorithms. As shown in Table 4 the
proposed GPU library provides up to 63.4× faster BFV
multiplication operation, 48.57× faster BFV relinearization
operation, 39.97× faster BFV rotation operation, 18.94×
faster BFV addition operation, when n = 214 and q =
438 with respect to the SEAL library, which is running on
AMD Ryzen7 3800X. The total number of threads available
in our GPU devices accounts for the optimum results obtained
at n = 214. Since we parallelized all operations, RTX
3060Ti’s threads become fully utilized and, the system cannot
be parallelized more. Since the number threads on GTX
1080 is much fewer than RTX 3060 Ti, the best scenario for
GTX 1080 is obtained at n = 213.

TABLE 5. Power consumption of BFV multiplication on CPU and GPU.

Care must be taken when evaluating CPU and GPU
timing results as a fair comparison of GPU and CPU
implementations can be very difficult due to differences in
their architectures and applicable optimization techniques.
As pointed out in [37] acceleration figures can overestimate
the performance of a GPU device when compared to a
CPU. The Microsoft SEAL library is probably the fastest
CPU implementation of the BFV scheme in the open source
and we are unable to identify any further optimization
or parallelization technique that outperforms its NTT or
homomorphic operation implementation. On the other hand,
we find that CPU parallelization when deployed in the right
way can be extremely useful in acceleration at application
level as shown in Section V-D. Indeed, the speedup of GPU
implementation turns out to be more moderate when all com-
puting power of CPU is utilized for XGBoost classification
application in Section V-D; a result which is in line with
those in [37].

Then, we compare our results with the work in [22]
only for homomorphic multiplication including the following
relinearization operation as it is the only one reported. The
GPU used in [22] has 5120 cores and 16 GB of memory
operating at the clock frequency of 1.380 GHz, which is
comparable to RTX 3060Ti used in our measurements. The
execution times are also measured for the same ciphertext
modulus sizes and the ring dimensions used in the work [22]
for a fair comparison. As observable from Table 4, our
GPU implementation outperforms that in [22] for all cases.
For instance, our multiplication including relinearization
implementation results are 6.31× faster for n = 212, 5.95×
faster for ring size n = 213, 3.04× faster for ring size n = 214,
and 1.67× faster for ring size n = 215 than the work [22],
respectively.

VOLUME 11, 2023 84183

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

C. POWER CONSUMPTION OF BFV HOMOMORPHIC
MULTIPLICATION ON CPU AND GPU
This section reports on power consumption of homomorphic
multiplication onGPU andCPUdevices in Table 2 to evaluate
the power efficiency of GPU implementations. The software
tool HWMonitor, which is free and publicly available,6 is
used for the experimental setup in this section. HWMonitor
instantly shows the amount of power consumed by each
unit of a computer system individually. It also shows the
maximum andminimum power consumption achieved during
its operation. In this experiment, only the power consumption
of the CPU and GPU are considered (i.e., RAM or PCI-e
power consumption are excluded).

For comparison we used homomorphic multiplication of
the BFV scheme as the benchmark, which is the primary,
and also the most time and resource consuming, operation
in all homomorphic evaluations. We simply compared power
requirements of the Microsoft SEAL implementation of BFV
homomorphic multiplication running on CPU and that of our
GPU implementation of the same operation running on GPU.
In order to measure the power consumption on both devices
in a fair way, different numbers of operations are performed
using different ring sizes (whereby operations run sequen-
tially). In order to create a reliable experimental environment,
the power required by the CPU and GPU in the IDLE state is
found using the same software tool before the measurements.
As stated in Table 5, the IDLE power consumption of the CPU
and the GPU are 24 W and 17 W, respectively. All observed
power usage and latency measurements are enumerated in
Table 5 , which capture the maximum power values observed
on the HWMonitor display, when the test codes are run. The
tabulated power measurements include IDLE and execution
power consumption. For instance, amaximumof 64.16W (24
W + 40.16 W) is observed during the BFV multiplication,
which is run 500 times on the CPU for the ring size of 214,
while 48.6 W (17 W + 31.6 W) is observed on the GPU for
the same case.

As a result, we can conclude that the GPU implementation
seems to be a more power efficient alternative for single
BFV multiplication than an optimized CPU implementation.
On the other hand, care must be taken when interpreting the
figures reported in this work as the power measurement and
the accuracy of the measurement tools are always a research
subject as computer devices with all their subsystems are
overly involved.

D. IMPLEMENTATION RESULTS OF PRIVACY-PRESERVING
INFERENCE FOR GENOME DATA USING XGBoost TREES
Mağara et al. [30] introduce a privacy-preserving gradi-
ent boosting inference framework (XGBoost) algorithm
using homomorphic encryption for the classification of the
encrypted genome data of different tumor types. We imple-
mented their framework using our GPU library of the
BFV scheme. XGBoost is a learning algorithm, which uses

6https://hwmonitor.softonic.com

TABLE 6. Implementation of gradient boosting framework(XGBoost)
results.

ExtremeGradient Boosting ensembles. Themodel consists of
classification trees that are constructed by training data. Trees
of the ensemble evaluate the test data that are classified into
one of the leaves. Lastly, a final prediction score is formed by
summing up the numerical scores obtained from each tree.
To decrease the complexity of the model and the depth of
the corresponding circuit to be homomorphically evaluated,
shallow trees are selected.

As explained in [30], test data is encrypted, and the
XGBoost trees are homomorphically evaluated for a total
of 258 test data points. The total number of homomorphic
multiplications, rotations, subtractions, plain multiplications,
addition, and relinearization operations are 1290, 1806, 1806,
1290, 3354, and 2322, respectively.

We run the inference framework both on GPU and CPU,
and all known possible optimization and parallelization
techniques to us are employed for the CPU implementation.
As shown in Table 6, our GPU library accelerates the
classification operation at least 42.98 times with respect to
the results obtained from AMD Ryzen7 3800X CPU with a
single thread while the speedup is 5.7 when multi-threaded
version of the CPU implementation is used.

VI. CONCLUSION
In this paper, we presented a GPU library that features
highly parallelized and optimized implementations of NTT
and inverse NTT operations and homomorphic operations of
the BFV scheme. Although the library can be independently
used, it is also integrated with the Microsoft SEAL library
and its functions can be called from any application code
using SEAL. Therefore, the library is truly an accelerator for
homomorphic encryption applications.

By reducing the number of GPU kernel function calls
and optimizing the use of fast memory on GPU, the library
offers the best timing performance for NTT and inverse
NTT operations in the literature. For instance, concurrent
executions of 128 NTT and INTT operations for the ring
degree of 214 take 303.19 µs and 331.7 µs, respectively,
on RTX3060Ti GPU, which are 1.39 and 1.54 times
faster than those of the state-of-the-art GPU implementation
reported in the literature.

Then, all homomorphic operations of the BFV scheme
are also implemented on GPU and compared against the
SEAL library running on a CPU. When compared with CPU
implementation for the ring size of 214 and the modulus bit

84184 VOLUME 11, 2023

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

TABLE 7. Timings of GPU implementation of NTT and inverse NTT operations and their comparison with [29].

size of 438, the GPU library running on RTX3060Ti achieves
speedups of 18.94, 63.4, 48.57, and 39.97 for homomorphic
addition, homomorphic multiplication, relinearization, and
homomorphic rotation, respectively. We also compared our
homomorphic multiplication followed by a relinearization
operation with that of the state-of-the-art GPU implementa-
tion in the literature, and found that ours is up to 6.31 times
faster than the latter.

We also showed that the proposedGPU library is profitably
used in the homomorphic processing of real data such as the
classification of encrypted genome data for tumor types and
reported at least a speedup of 5 in comparison with a powerful
CPU running 16 threads.

The reported performance gains establish that GPU
implementations of homomorphic encryption prove to be
useful to help privacy-preserving data processing applications
become more practicable.

As future work, we envision integrating our GPU accel-
erator into other HE libraries and using it to accelerate
other more challenging operations such as bootstrapping and
scheme switching. We can achieve these goals by joining
recent open-source efforts in the development of HE software
libraries such as OpenFHE [13].

APPENDIX
See Table 7.

ACKNOWLEDGMENT
(Ali Şah Özcan, Can Ayduman, and Enes Recep Türkoğlu are
co-first authors.)

REFERENCES
[1] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.

41st Annu. ACM Symp. Theory Comput., New York, NY, USA, May 2009,
pp. 169–178, doi: 10.1145/1536414.1536440.

[2] V. Lyubashevsky, C. Peikert, and O. Regev, ‘‘On ideal lattices and learning
with errors over rings,’’ J. ACM, vol. 60, no. 6, pp. 1–35, Nov. 2013, doi:
10.1145/2535925.

[3] C. Gentry and S. Halevi, ‘‘Implementing gentry’s fully-homomorphic
encryption scheme,’’ in Advances in Cryptology—EUROCRYPT (Lecture
Notes in Computer Science), K. G. Paterson, Ed. Berlin, Germany:
Springer, 2011, pp. 129–148.

[4] Z. Brakerski and V. Vaikuntanathan, ‘‘Efficient fully homomorphic
encryption from (standard) LWE,’’ SIAM J. Comput., vol. 43, no. 2,
pp. 831–871, 2014, doi: 10.1137/120868669.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully
homomorphic encryption without bootstrapping,’’ ACM Trans. Comput.
Theory, vol. 6, no. 3, pp. 1–36, Jul. 2014, doi: 10.1145/2633600.

[6] J. Fan and F. Vercauteren, ‘‘Somewhat practical fully homomorphic
encryption,’’ IACR Cryptol. ePrint Arch., vol. 2012, p. 144, Mar. 2012.

[7] (Nov. 2020). Microsoft SEAL (Release 3.6). Redmond, WA, USA.
[Online]. Available: https://github.com/Microsoft/SEAL

[8] (2021). PALISADE Lattice Cryptography Library (Release 1.11.5.
[Online]. Available: https://palisade-crypto.org/

[9] S. Halevi and V. Shoup, ‘‘Algorithms in helib,’’ in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), J. A. Garay
and R. Gennaro, Eds. Berlin, Germany: Springer, 2014, pp. 554–571.

[10] W. Wang, Z. Chen, and X. Huang, ‘‘Accelerating leveled fully homo-
morphic encryption using GPU,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Jun. 2014, pp. 2800–2803.

[11] A. C. Mert, E. Öztürk, and E. Savas, ‘‘Design and implementation of
encryption/decryption architectures for BFV homomorphic encryption
scheme,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 2,
pp. 353–362, Feb. 2020.

[12] Y. Doroz, E. Ozturk, E. Savas, and B. Sunar, ‘‘Accelerating LTV
based homomorphic encryption in reconfigurable hardware,’’ in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst. Cham, Switzerland:
Springer, 2015, pp. 185–204.

VOLUME 11, 2023 84185

http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1145/2535925
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1145/2633600

A. Ş. Özcan et al.: Homomorphic Encryption on GPU

[13] A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, and Z. Liu, ‘‘OpenFHE:
Open-source fully homomorphic encryption library,’’ in Proc. 10th
Workshop Encrypted Comput. Appl. Homomorphic Cryptogr., 2022,
pp. 53–63. [Online]. Available: https://eprint.iacr.org/2022/915

[14] NVIDIACUDACProgrammingGuide, NVIDIACorporation, Santa Clara,
CA, USA, 2010.

[15] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, ‘‘CHIMERA:
Combining ring-LWE-based fully homomorphic encryption schemes,’’
J. Math. Cryptol., vol. 14, no. 1, pp. 316–338, 2020, doi: 10.1515/jmc-
2019-0026.

[16] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, ‘‘A full RNS variant of
FV like somewhat homomorphic encryption schemes,’’ in Selected Areas
in Cryptography—SAC (Lecture Notes in Computer Science), vol. 10532,
R. Avanzi and H. M. Heys, Eds. St. John’s, NL, Canada: Springer, 2017,
pp. 423–442, doi: 10.1007/978-3-319-69453-5_23.

[17] P. Barrett, ‘‘Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,’’ in Advances
in Cryptology—CRYPTO, (Lecture Notes in Computer Science), vol. 263.
Santa Barbara, CA, USA: Springer, 1986, pp. 311–323.

[18] P. L. Montgomery, ‘‘Modular multiplication without trial division,’’Math.
Comput., vol. 44, no. 170, pp. 519–521, Apr. 1985.

[19] S. Antao, J.-C. Bajard, and L. Sousa, ‘‘RNS-based elliptic curve point
multiplication for massive parallel architectures,’’ Comput. J., vol. 55,
no. 5, pp. 629–647, May 2012, doi: 10.1093/comjnl/bxr119.

[20] J. Bajard, J. Eynard, N. Merkiche, and T. Plantard, ‘‘RNS arithmetic
approach in lattice-based cryptography: Accelerating the ‘rounding-off’
core procedure,’’ in Proc. 22nd IEEE Symp. Comput. Arithmetic, Lyon,
France, 2015, pp. 113–120, doi: 10.1109/ARITH.2015.30.

[21] Z. Brakerski, ‘‘Fully homomorphic encryption without modulus switching
from classical gapsvp,’’ in Advances in Cryptology—CRYPTO (Lecture
Notes in Computer Science), vol. 7417, R. Safavi-Naini and R. Canetti,
Eds. Santa Barbara, CA, USA: Springer, 2012, pp. 868–886, doi:
10.1007/978-3-642-32009-5_50.

[22] A. Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and K. Rohloff,
‘‘Implementation and performance evaluation of RNS variants of the BFV
homomorphic encryption scheme,’’ IEEE Trans. Emerg. Topics Comput.,
vol. 9, no. 2, pp. 941–956, Apr. 2021.

[23] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine calculation
of complex Fourier series,’’ Math. Comput., vol. 19, no. 90, pp. 297–301,
1965.

[24] J.-C. Bajard and T. Plantard, ‘‘RNS bases and conversions,’’ in Proc. SPIE,
vol. 5559, pp. 60–69, Oct. 2004.

[25] S. Halevi, Y. Polyakov, and V. Shoup, ‘‘An improved RNS variant of the
BFV homomorphic encryption scheme,’’ in Proc. Cryptographers Track
RSA Conf. Cham, Switzerland: Springer, 2019, pp. 83–105.

[26] H. Chen,W. Dai, M. Kim, and Y. Song, ‘‘Efficient multi-key homomorphic
encryption with packed ciphertexts with application to oblivious neural
network inference,’’ inProc. ACMSIGSACConf. Comput. Commun. Secur.
New York, NY, USA: Association for Computing Machinery, Nov. 2019,
pp. 395–412, doi: 10.1145/3319535.3363207.

[27] K. Laine, ‘‘Simple encrypted arithmetic library 2.3.1,’’ Microsoft
Research, WA, USA, Tech. Rep., 2017.

[28] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, ‘‘Dissecting
the NVIDIA Volta GPU architecture via microbenchmarking,’’ 2018,
arXiv:1804.06826.

[29] O. Ozerk, C. Elgezen, A. Mert, E. Ozturk, and E. Savas, ‘‘Efficient
number theoretic transform implementation on GPU for homomorphic
encryption,’’ J. Supercomput., vol. 78, pp. 2840–2872, Jul. 2021, doi:
10.1007/978-3-319-45744-4-15.

[30] S. S. Magara, C. Yildirim, F. Yaman, B. Dilekoglu, F. Tutas, E. Öztürk,
K. Kaya, O. Tastan, and E. Savas, ‘‘ML with he: Privacy preserving
machine learning inferences for genome studies,’’ in Proc. ACM CCS
Privacy Preserving Mach. Learn. Workshop, 2021, pp. 1–5.

[31] S. Kim, W. Jung, J. Park, and J. H. Ahn, ‘‘Accelerating number theoretic
transformations for bootstrappable homomorphic encryption on GPUs,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2020,
pp. 264–275.

[32] Z. Zheng, ‘‘Encrypted cloud using GPUs,’’ M.S. thesis, 2020.
[33] J.-Z. Goey, W.-K. Lee, B.-M. Goi, and W.-S. Yap, ‘‘Accelerating

number theoretic transform in GPU platform for fully homomorphic
encryption,’’ J. Supercomput., vol. 77, no. 2, pp. 1455–1474, Feb. 2021,
doi: 10.1007/s11227-020-03156-7.

[34] W. Dai and B. Sunar, ‘‘cuHE: A homomorphic encryption accelerator
library,’’ in Proc. Int. Conf. Cryptography Inf. Secur. Balkans. Cham,
Switzerland: Springer, 2015, pp. 169–186.

[35] W. Dai, Y. Doroz, and B. Sunar, ‘‘Accelerating NTRU based homomor-
phic encryption using GPUs,’’ in Proc. IEEE High Perform. Extreme
Comput. Conf. (HPEC), Waltham, MA, USA, Sep. 2014, pp. 1–6, doi:
10.1109/hpec.2014.7041001.

[36] A. López-Alt, E. Tromer, and V. Vaikuntanathan, ‘‘Multikey fully
homomorphic encryption and applications,’’ SIAM J. Comput., vol. 46,
no. 6, pp. 1827–1892, Jan. 2017, doi: 10.1137/14100124x.

[37] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, ‘‘Debunking the 100X GPU vs. CPU myth: An
evaluation of throughput computing on CPU and GPU,’’ SIGARCH
Comput. Archit. News, vol. 38, no. 3, pp. 451–460, Jun. 2010, doi:
10.1145/1816038.1816021.

ALI ŞAH ÖZCAN received the B.S. degree in
electronics engineering program from Sabancı
University, Istanbul, Turkey, in 2020, where
he is currently pursuing the M.S. degree in
electronics engineering program. His research
interests include RFIC design, homomorphic
encryption, lattice-based cryptography, and cryp-
tographic hardware/software design.

CAN AYDUMAN received the B.S. degree in
electronics engineering program from Sabancı
University, Istanbul, Turkey, in 2020, where
he is currently pursuing the M.S. degree in
electronics engineering program. His research
interests include RFIC design, homomorphic
encryption, lattice-based cryptography, and cryp-
tographic hardware/software design.

ENES RECEP TÜRKOĞLU received the B.S.
degree in electronics engineering program from
Sabancı University, Istanbul, Turkey, in 2020,
where he is currently pursuing the M.S. degree
in electronics engineering program. His research
interests include RFIC design, homomorphic
encryption, lattice-based cryptography, and cryp-
tographic hardware/software designs.

ERKAY SAVAŞ (Member, IEEE) received the B.S.
and M.S. degrees in electrical engineering from
the Electronics and Communications Engineering
Department, Istanbul Technical University, in
1990 and 1994, respectively, and the Ph.D. degree
from the Department of Electrical and Computer
Engineering, Oregon State University, in 2000.
He has been a Faculty Member with Sabancı Uni-
versity, since 2002. His research interests include
applied cryptography, data and communication

security, security and privacy in data mining applications, embedded systems
security, and distributed systems.

84186 VOLUME 11, 2023

http://dx.doi.org/10.1515/jmc-2019-0026
http://dx.doi.org/10.1515/jmc-2019-0026
http://dx.doi.org/10.1007/978-3-319-69453-5_23
http://dx.doi.org/10.1093/comjnl/bxr119
http://dx.doi.org/10.1109/ARITH.2015.30
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1145/3319535.3363207
http://dx.doi.org/10.1007/978-3-319-45744-4-15
http://dx.doi.org/10.1007/s11227-020-03156-7
http://dx.doi.org/10.1109/hpec.2014.7041001
http://dx.doi.org/10.1137/14100124x
http://dx.doi.org/10.1145/1816038.1816021

