
Received 16 March 2023, accepted 1 April 2023, date of publication 7 April 2023, date of current version 24 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3265572

Non-Gaussian Traffic Modeling for Multicore
Architecture Using Wavelet Based
Rosenblatt Process
AMIT CHAURASIA 1, (Member, IEEE), VIJAY SHANKAR SHARMA 1, (Member, IEEE),
CHIRANJI LAL CHOWDHARY 2, SHAKILA BASHEER 3,
AND THIPPA REDDY GADEKALLU 2,4,5, (Senior Member, IEEE)
1Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, Rajasthan 302007, India
2Department of Software and Systems Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
3Department of Information Systems, College of Computer and Information Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia
4Department of Electrical and Computer Engineering, Lebanese American University, Byblos 1526, Lebanon
5Zhongda Group, Baibu, Haiyan, Jiaxing, Zhejiang 314312, China

Corresponding author: Chiranji Lal Chowdhary (chiranji.lal@vit.ac.in)

This research is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R195)
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

ABSTRACT Networks-on-Chip (NoCs) provides a packet-based communication model for the System-
on-Chip (SoC) architecture to achieve objectives of lower power, higher performance and optimized area.
To evaluate NoC performance and explore architectural design options, synthetic traffic models provide
better solution in terms of simulation flexibility and faster simulation. In this synthetic traffic, models are
generated for the simulation to optimize the computational resources requirements which will be placed
inside NoC’s architecture before the early design process. In this paper, Wavelet-based Rosenblatt synthetic
traffic [RST] is designed and examined which is a non-Gaussian process based on the 2nd -order Hermite
Process. The proposed traffic is applied to SPLASH-2 benchmarks and compared with Gaussian and
Non-Gaussian traffic on the parameters of latency, power and buffer-loss. We applied the synthetic traffic
on multicore architecture to capture parameters which would be helpful for network designers to choose
optimized network resources during the early design architecture. We demonstrate our traffic model: first,
how it can be used to describe and acquire non-gaussian burstier traffic on NoC; second, how it can be used
to produce synthetic traffic traces that can drive exploration of the early design space for NoCs. Our traffic
model helps the chip network designer to choose optimized queue storage inside the router in early design
process.

INDEX TERMS Networks-on-chip, Rosenblatt process, self-similar process, traffic modelling.

I. INTRODUCTION
The networks are becoming more and more complex and
in this era of ubiquitous computation where every gadget
is equipped with small processing units, with more com-
putation capabilities and the need for less space. As the
different high-definition images or sequences of images
make this computation architecture busier. The number of
cores is increasing in the computation devices, to stream-
line the processing capabilities for a huge volume of data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurizio Casoni .

This multicore architecture requires functional balancing to
achieve parallelism in the processing chips and communica-
tion between chips using networking. In the early design of
the on-chip architecture, the computational resources require-
ment becomes a bottleneck, so to make efficient architecture,
it requires synthetic traffic to capture the real behaviour. The
real-time traffics are not flexible enough to capture the real
nature and causes the simulation time to range from hours to
days.

The problem with bus-based communication is network
utilization, as it suffers from problems such as high latency,
deadlock, channel allocation, and flits dropping. As the size
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FIGURE 1. 4 × 4 Mesh Architecture with PE’s and routers connected by
network interface.

of buffers is limited in the architecture of micro routers,
it is hard for network designers to choose the best sizes for
the buffers inside the router. The concept of multiple IPs
(intellectual property) in FIGURE 1 placed inside the chip
system necessitates communication between each tile. The
router is placed as the interface with each tile, which helps in
the communication between different cores. As in the early
design, it is hard and complicated to predict the optimal sizes
of the storage queues with real-time traffic. Because of this,
the simulation on flits in the micro router architecture needs
flexibility and less simulation time traffic. Synthetic traffic is
required because it is flexible and saves a lot of simulation
hours.

The realistic traffics are often suffers from process map-
ping optimizations and the traffics are not resilient with the
higher failure rates due to the network routing algorithms.
The other limitations with the realistic traffic simulation are
the duration of simulation and the requirement of realistic
hardware. In [1] the realistic traffic models are simulated for
the mixed-torus architecture and the traffic is mainly loaded
in the centre of architecture and non uniformly loaded traffics
are not analyzed. In the [2] used both the realistic traffic and
synthetic traffic patterns to analyze the threat of hardware
trojans in the routing process and reduces the average network
latency by 38% in realistic traffic and 48% in synthetic traffic
patterns. It has also reduces the deflected average latency by
97% for synthetic traffic and 62% for realistic traffics.

A. MOTIVATION AND SCOPE
According to the arbitration result, the on-chip bus permits
only one communication transaction at a time; hence, the
average communication bandwidth of each processing ele-
ment is inversely proportional to the total number of IP cores

FIGURE 2. Self-similar fractals.

in a system. In modern MP-SoC (multiprocessor system-
on-chip) and CMP (chipmultiprocessor) designs, a bus-based
architecture is intrinsically not scalable for large systems due
to this characteristic. This scaling limitation may be lifted
by implementing numerous on-chip buses in a hierarchical
architecture or in a segregated way, however this calls for
application-specific grouping of processing units and con-
struction of alternative communication protocols.

The emerging MP-SoC and CMP architectures require
high throughput, low latency, and reliable global communi-
cation services, which are not met by the current dedicated
bus-based on-chip communication infrastructure due to the
increased density of processors and cores made possible by
advances in semiconductor fabrication technology. There are
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potential challenges with timing closure, performance, and
scalability when attempting to implement such concepts in a
bus architecture. To be more specific, the feature size of cur-
rent silicon devices is shrinking below 50 nm, which causes
global connectivity delays to limit the maximum possible
processing speed.

The self-similarity property, it has various applications
in the field of hydrology [3], turbulence [4], stock mar-
ket and finance [5], [6], [7], statistical inference [8], [9]
and internet [10]. A self-similar object which repeats either
exactly or approximately to itself in finer and finer details.
In Figs. 2a and 2b are representing the self-similar proper-
ties in finer detail as we enlarge the image. The notion of
self-similarity is used to design synthetic traffic for multime-
dia applications. In this literature, the internet aspect is used
to generate the synthetic traffic for multicore architecture
simulation. It has three aspects of study one is the spectrum,
the second is the finite integration and the third is the wavelet
representation.

In gaussian synthetic traffic [GST] [11] is generated for
the raw video using the Hurst parameter (H) [12] which
captures the feature of long-range dependency [13] of the
process i.e. how bursty the data would be, but the traffics
produced are Gaussian in nature, while the study shows
that non-Gaussian synthetic traffic [NGST] processes are
better models to capture real-time characteristics to capture
burstiness [14], [15]. In [16] traffics are generated for long-
and short-range dependent processes and model a multi-
fractal non-stationary process to estimate the average-case
and worst-case scenario for latency models. In [17] math-
ematical models are designed for the performance analysis
of DCoC (data centres on-chip) relying on the multi-fractal
dynamics. The basis for generating synthetic traffic is taken
from the concept of self-similarity. In FIGURE 2 [18] we can
see the various objects are broken into parts that are of the
same shape but the size is reduced, this will be the basis for
traffic generation using the self-similar properties.

B. OVERVIEW OF ROSENBLATT PROCESS
Leland et. al. demonstrated self-similarity of network traffic
in 1993 [19] by noting that a rapid increase in network stream
was not in sync with the evolution of a time unit. The Hurst
parameter, a measure of the degree to which network traffic
exhibits self-similarity. The Hurst parameter is unique in its
ability to define the degree of self-similarity and abruptness
in Network traffic.It is possible to assess whether or not the
usual, real-time data stream from the network is compatible
with the statistical self-similarity and the LRD properties of
network traffic by looking at the value of the Hurst parameter.
The calculation of the Hurst parameter, which is central to
the field of network traffic modelling [20], is based on a
number of factors, including the rate at which packets are
lost in transit and the likelihood of congestion. Therefore,
it is crucial for network management and control, as well as
for self-similar traffic modelling and control, to estimate the

Algorithm 1 Algorithm for Generating Fractional-
Rosenblatt Motion Process Using CIET (Circular Embedding
Technique)
1: Choose a parameter U ∈ (0.25, 0.5) defining FRMP.
2: Choose the multi-resolution orthogonal wavelet basis,

which has zero-moments N .
3: The length of time for the FRMP T = 2N . Selecting the

Scale 2−I

4: procedure Initial_FARIMA(N , I , fbm)
5: Choose the value of L such that −N ≥ L ≥ I
6: Choose the low and high-pass fractional filter δd and

θd , because r is limitless, these filters must be truncated
at r .

7: for j← 0 to r + 2(N+L) do
8: 3d

= CIET (fBm)
9: end for
10: for j← 0 to I − L do
11: 3(v)

= FFT (3d )
12: end for
13: for i← 0 to 2(N+L) do
14: Q̃(k,2)

v,0 =
∑

0≥i≥k

((
3(v)

)2
− E

(
3(v)

)2)
15: end for
16: Using the following equation, generate the sequence

using an estimate of FRMP.

Yk,2
(
L, I , t = v2

−I
)
= Pk2−2kI Q̃

(k,2)
v,0 (1)

where Pk =
0(k)0(1−k)

√
4(k−1)k

0(1−2k)
17: return Yk,2 in vector.
18: end procedure

Hurst parameter based on the monitoring data of traffic in a
particular time period.

In [21], observed long-range correlation in LAN traffic,
providing proof for the presence of power law connections in
network traffic. This opened up the subject of network traffic
and performance research to the idea of self-similarity, and
its related notion, long-range dependency (LRD). Before this
discovery, models like Poisson processes, which presume that
traffic displays no long-term association, were the backbone
of studies of network traffic and performance. Queueing
performance in networks with long-term correlations may
differ significantly from that in networks with traffic that is
expected to be totally uncorrelated or with relatively modest
correlations over short time periods.

In [3] stated the Rosenblatt process is a self-similar
non-Gaussian process. Rosenblatt process has the same
covariance as the fractional Brownian motion (fBm). The
Rosenblatt process is also used for the estimation of the
Hurst index by deriving the exact equations based on limiting
distributions. For the time-series process the Hurst index
(H) is used to measure the long-range dependency by com-
paring the autocorrelations for the time-series process and
measuring the rate at which it decreases between the lags.
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The inter-arrival packets time is considered a time-series
process. Earlier, the Hurst index is used in hydrology for the
construction of a dam on the Nile river to measure the rain
and drought conditions for a long period [22].

It has been discovered that fBm is the only continuous
Gaussian process that is capable of producing self-similar
increments while remaining stationary. The qualities listed
above for H > 0.5 i.e. which entails, the long-memory
property and in many instances the Holder-continuity are
shared by many more stochastic processes than only those
with a Gaussian character. The Gaussian assumption may
be unrealistic in certain scenarios, necessitating the adoption
of an alternative self-similar process with stable increments.
Hermite processes are a natural choice since they are an
example of a non-Gaussian stochastic process that shows up
as a limit in the so-called ‘‘Non-Central Limit Theorem.’’

In Section II discussed the related work in the field of
multicore architecture and traffic modelling using stochastic
processes. This section discussed the ways to the estimation
of Hurst index. In Section III algorithm is discussed for
generating the non-Gaussian-based Rosenblatt Synthetic traf-
fic. The algorithm used the Circular Embedding Technique
for the generation of synthetic traffic. In Section IV find-
ings are compared with the non-Gaussian-based traffic and
Gaussian-based traffic with the help of end-to-end latencies,
buffer-loss probability and energy dissipation using different
traffic patterns. Finally, in Section V the article is concluded
with outcomes of the findings of results and the future role of
Synthetic traffic in multicore architecture.

II. RELATED WORKS
A stationary process having Gaussian sequence (ϕj)j∈Y with
uni-variance and mean equal to zero with its correlation
function S(n) = E(ϕ0ϕj) = j

2H−2
k C(j), with H ∈ (0.5, 1) and

C is a changing function that approaches infinity extremely
slowly. Let k be the Hermite rank of the process, and L be the
function defined as

L(e) =
∑
a≥0

qaUi(e), qa =
1
a!

E(f (ϕ0Ua(ϕ0))), (2)

where Ua(e) is the Hermite degree polynomial with variable
details a and k = min{a|qa ̸= 0} ≥ 1.

The polynomial of Hermite is defined as Ua(e) =

(−1)ae
x2
2 da
dxa
e−

x2
2 . The Non-Central Limit Theorem states

that, 1
nU

∑[jt]
a=1 f (ϕa) in the context of finite-dimensional

distributions, converges as n→∞ to the process in eq. (3).
The Rosenblatt process is an example of a non-Gaussian
process that with fixed increments is self-similar. The Rosen-
blatt process’s covariance functions are comparable in the
sense that fBm is a self-similar process, but they differ in
their core Gaussian. The method of Rosenblatt is important
because it is an instance of Hermite Processes, which are
the normalization of the sum of long-range dependent ran-
dom variables. Simplest Hermite Processes is the fBm based

Rosenblatt process Zk (t) represented as

Y kU (t) = q(U , k)
∫
Rk

{ ∫ t

0

( k∏
a=1

(
s− ξa

)−( 12+ 1−U
k )

+

)
ds

}
× dB(ξ1)dB(ξ2) (3)

where E(Yk (1)2) = 1, makes q(U , k) a normalized con-
stant > 0, e+ = max (e, 0) for e ∈ R, whereas B (ϕ) it is a
standard Brownian motion,

∫
′

R2 is the order k double Wiener-
It’o multiple integrals. It is defined by k ∈ (0.25, 0.50)
called as fractional Rosenblatt motion (fRm) since it has a
set increment.

The variable k is used to describe the processes in the
eq. (3) and is referred to as the U . It’s calculated using a vari-
ety of methods described in [11] and [30]. The Yk is expressed
by the following equation in terms of the self-similarity index
or Hurst parameter.{

Yk (qk)
}
t∈R =

d {
q2kYk (t)

}
t∈R (4)

The example may very well be found in Chapter 7 of
[31], where q ≥ 0 and the ‘‘=d ’’ equality is based on a
finite-dimensional distribution. The process distribution fRm
tails are substantially heavier than those of the Gaussian
distribution. Although both have stable increments, fRm has
finite moments, which distinguishes it from fBm. In nature,
fBm is Gaussian, whereas fRm is non-Gaussian. Rosenblatt
describes the Rosenblatt process in [32], and more research
may be found in [33] and [34]. In eq. (3), the Rosenblatt pro-
cess is a double Wiener-Itó integral that may be generalised.
It is a basic Hermite process known as Fractional Brownian
Motion (fBm) if it is a single integral, and an order of 2nd Her-
mite process known as Fractional Rosenbaltt Motion (fRm) if
it is a double integral. In [35] introduced the effect of low
latencies and high throughput along with power consump-
tion and optimized cost of running the traffic on multicore
architectures. In the paper [36] author has represented the
queuing traffic model based on G/D/1 model which provides
the speed up of simulation 13 times. In [37] introduced the
open feed-forward queuing model for the speed up of the
simulation.

The performance of the Gaussian and Non-gaussian syn-
thetic traffic is shown in the [38] where it is shown that
the non-gaussian traffics are burstier than Gaussian traffic
and they are the better model for generating burstier data.
There are wavelet-based models also mentioned in the [39]
for the synthetic traffic generation and the limitation with
this model is that have the Gaussian distribution attribute
to the synthetic traffic. For the accurate requirement of the
non-gaussian model, the Hermite process is considered as the
base which is non-gaussian in nature and it is the simplest
non-gaussian Hermite process [40].

III. PROPOSED METHODOLOGY
The FARIMA (Fractionally Differenced Autoregressive Inte-
grated Moving Average) wavelet processes, employs the
Hurst index H for the starting phase of the process, for the
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TABLE 1. Comparison of different traffic and routing approaches.

FIGURE 3. Average latency end-to-end(ns) for (a) 4 × 4 (b) 8 × 8 Mesh Interconnection Network for Tornado, Neighbour, Complement & Uniform
traffic.

generation of the synthetic Rosenblatt process. The FARIMA
processes are time series models generalized from ARIMA
(Autoregressive Integrated Moving Average) models. The
FARIMA processes are useful in modelling long-memory
processes. In time series creation, the count of zero moments
in the orthogonal multi-resolution analysis is crucial. A
fRm approximation is used in the generation. The length

associated with truncated filters with N vanishing moments
is represented in Table 1 in the article [39].

For the generation of the fractional filter, the filters are
initialized as δ0 and θ0 which can be found from [41] page
no. 196. The fractional filters are computed using the δg (z) =
f (N+v)δ0 (z) as the order N increases f (N+v) the h(v−N ) filters
start to decay at a faster rate than usual δv (z) and θv (z).
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FIGURE 4. Network average latency(ns) for (a) 4 × 4 (b) 8 × 8 Mesh Interconnection Network for Tornado, Neighbour, Complement & Uniform
traffic.

FIGURE 5. Loss probability (averaged) for (a) 4 × 4 (b) 8 × 8 Mesh topology for Tornado, Neighbour, Complement & Uniform traffic.

The fRm is generated using the algorithm, which is
explained in 4 steps as follows:
• Step 1: collects the parameters utilized for the ini-
tial_FARIMA processes, including the U, 0-moments
of multi-resolution orthogonal wavelet basis, process
length (T ), and a scaling parameter (T ). Another param-
eter, L, was utilised, which ranges between−N and I. N
represents time length or multi-resolution wavelet basis
with N zero moments for Fractional-Rosenblatt Motion
Process (FRMP) such that T = 2N , and I is the scaling
factor represented as 2−I . The value of L is chosen from
the range [−N , I ].

• Step 2: The starting filters are low and high-pass filters
were selected. The range associated with these filters are
infinite and must be trimmed.

• Step 3: In the following phase, the Circular Embed-
ding Technique (CIET) is used recursively on the fBm
which is passed as an argument in the function Ini-
tial_FARIMA. The CIET algorithm is utilised for pro-
cess generation in [42] the usage of the CIET algorithm
makes process generation faster than the FAST approx-
imation approach. The Fast Fourier transform (FFT) is
applied to the process created in the preceding substep,
which is referred to as it 3(v). The use of FFT removes
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FIGURE 6. Average Link Utilization(%) boxplot for (a) 4 × 4 (b) 8 × 8 Mesh topology for Neighbour, Complement, Tornado & Uniform traffic.

the temporal information from the wavelet based data,
as it may contains many fluctuations.

• Step 4: The partial sum of 3(v) is created in the
final sub-step of Step 3, eventually creating the ini-
tial_FARIMA process called fRm. In final step, the fRm
approximation is used with eq. (1). In this step gamma
function (0) is used as a function for the calculation of
normalizing constant.

0(y) =
∫
∞

0
xy−1e−xdx (5)

The eq. (5) can be proved that gamma function is the
factorial of non-negative integers which can also be
represented as 0(n) = (n− 1)!. The number of possible
configurations of n is a concept made possible by the
gamma function.

IV. RESULTS
We utilised the OMNeT++ simulator [43] for the simulation
of synthetic traffic, and we built two interconnection network
architectures for a mesh network with sizes of 4 × 4 and
8× 8. The algorithm’s traffic is simulated to mimic traffic on
the 2 mesh interconnection networks. The parameters used
for the simulation in OMNeT++ are shown in TABLE 2.
The simulation duration is of 2µs and the message length is
of 4 packets and each packet has 8 flits where each flit is of
4 bytes. The XY routing algorithm is used for switching the
flits from one core to another.

For the source & destination pair, we employed four traffic
patterns: complement, neighbour, tornado, and uniform. The
source is represented by xi and the destination is represented
by yi in eqs. 6, 7, 8 and 9 respectively and n is total number of
cores. The complement traffic chooses the destination based
on the complement of the source address, which is calculated
by subtracting the source from n shown in eq. (9). In the

neighbour, the destination is chosen by adding 1 to the source
address represented in eq. (7). In the uniform traffic in eq. (6)
destination is choosen by function int_uniform, which selects
the value ranges from [1, n] with uniform distribution. In the
tornado traffic in eq. (8) the source is added with half of the
network size.

End-to-end and network latency are depicted in
FIGURES 3 and 4, where the range of latencies varies from
source to destination and hop-to-hop. The probability of
packet-loss is displayed in FIGURE 5 for 8×8 and 4×4mesh
network, the average packet-loss for 8 × 8 when compared
to 4 × 4 networks is higher as the higher order architectures
have more probability for packet loss. The reason for this is
the amount of traffic increases as the size of the architecture
increases. The RST is compared to seven traces from the
SPLASH-2 benchmark suite [44] using NGST and GST traf-
fics. When compared to NGST, the synthetic traffic created
for the Rosenblatt process achieved a higher latency of 6.64
%, but the latency is greater by 12.76 % than GST traffic.

yi = (xi + int_uniform(1, n)) mod n (6)

yi = (xi + 1) mod n (7)

yi = (xi +
n
2
) mod n (8)

yi = (n− xi) mod n (9)

The usage pattern of NoC channel bandwidth consumption
is shown in FIGURE 6 representing link-utilization of four
traffic patterns. For both designs, complement traffic has the
highest link usage compared to other traffic patterns, whereas
uniform traffic has the lowest. For the basic Hermite process
and the Fractional Rosenblatt process, the energy dissipation
by each tile in a 4× 4mesh network is depicted in FIGURE 7.
While the fractional rosenblatt process is a burstier process,
the simple hermite process has a lower power dissipation
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FIGURE 7. Power analysis for each tile of 4 × 4 Mesh network (a) Simple Hermite process (b) Fractional Rosenblatt process.

FIGURE 8. (a) Power (nW) and (b) Average end-to-end latency (ns) for SPLASH-2 Benchmark.

when compared to the fractional rosenblatt process. This is
owing to the fact that the simple hermite process is more
stable. All four traffic patterns in FIGURE 9 exhibit an aver-
age end-to-end latency for GST, NGST, and RST processes,
indicating that RST processes are burstier than GST and
NGST processes.The consistency of the GST, NST proce-
dures causes the flow of packets to be slower than that of the
RST because it results in an inaccurate perception of the ideal

communication resources requirement throughout the design
process.

The average network latencies for all four traffic patterns
are displayed in FIGURE 3, taking into account the three
procedures of NGST, GST, and RST. In all four situations,
the Rosenblatt process has a higher delay than Gaussian
and non-Gaussian processes. Average latency (Average end-
to-end latency (ns)) & packet-loss probability for GST,
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FIGURE 9. End-to-End Average Latency (ns) for 8 × 8 Mesh network topology for NGST, GST and RST process for traffic
(a) Complement (b) Tornado (c) Neighbour (d) Uniform.

TABLE 2. OMNeT++ Simulation Parameters.

NGST, & RST processes are shown in TABLES 3 and 4
simulated parameters for the complement, tornado, uniform,
and neighbour traffic.

TABLE 3. Average Packet-loss probability for 8 × 8.

The traffic created by the Rosenblatt process is 11.87 %
for uniform, 19.12 % for the complement, 18.85 % of the
tornado, and 88.38% for neighbour traffic bustier thanNGST,
as shown in TABLE 4. When compared to GST, complement
receives 22.33 %, tornado receives 22.14 %, uniform receives
18.20 %, and neighbour traffic burstier receives 88.37 %.
When compared to non-Gaussian, the produced Rosenblatt
process is 56.96 % for the tornado, 46.22 % for the com-
plement, 37.61 % for uniform, and 44.21 % for neighbour is
more susceptible to losing packets from the buffer, whereas
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TABLE 4. Average latency [ns] for 8 × 8.

in Gaussian is more susceptible to packet-loss, at 69.12 % for
complement. For the power calculation, we used ORION3.0
[45] simulator where we used a uniform traffic pattern with
an average power of 0.71 mW for the Rosenblatt process
and 0.79 mW for the basic Hermite process, a difference
of 11.29 %.

The Water Simulation with Spatial data structure, Hier-
archical Radiosity, Barnes-Hut, Ocean Simulation, FFT,
Blocked Sparse Cholesky Factorization and Radix Sort are
used to compare the latency and power in FIGURE 8. For
the SPLASH benchmark, the synthetic traffic corresponding
to the RST has higher latencies and more power consuming
than the synthetic traffic corresponding to the GST and the
NST.The power evaluation is done based on the models of
ORION3 [45]. It consists of libraries for the leakage and
dynamic power based on the frequency of simulation for the
45nm and 65nm processes. The comparison of GST traffic
with RST shows an improvement of 7.65% for normalized
power consumption. The GST traffic excels over the RST in
terms of power usage and the NGST process excels over the
RST process by 11.56%.

The results indicate that RST-based traffic is more
data-driven and more like represent real-time traffic which
includes gaming traffics, high-definition video traffics, and
other high-processing data streams whose packet arrival time
cannot be perfectly predicted by a Gaussian-based traffic
distribution.

Non-Gaussian processes are thus required for traffic mod-
elling to reflect the optimized prediction of the network
resources distributed within the multicore architecture. It will
help network designers choose the right router queues, virtual
channels, or arbitrators for their network. A buffer overflow,
process cycle loss, significant energy dissipation, and net-
work conflict might all occur from the wrong selection and
quantity of these network resources.

V. CONCLUSION
The task of the network designer to choose the optimal net-
work resources used in multicore communication is critical
in the age of multi-core computing. We have been working
towards the design of synthetic traffic, which is non-Gaussian
in nature. We have used the benchmark suite to compare
GST, NGST, and RST processes in terms of latency and
power. We have compared the RST traffic under different
traffic patterns for the mesh architecture. In all the cases the
RST process shows higher power dissipation and latencies,
shows the nature of higher order of burstiness in the traffic as

compared to NGST and GST traffic. We have compared the
results with network latency, power dissipation, and packet-
loss probability, and we found the Synthetic traffic, based on
Rosenblatt process, compared to the Gaussian and regular
non-Gaussian, is heavily burstier and more productive in
predicting optimal network-resource selection for the net-
work designers. The approach used to generate non-gaussian
synthetic traffic opens new dimensions in the research of
traffic modelling based on the time frame-based models.
These models will have an impact on the deep-learning based
algorithms for the generation of synthetic traffic using the
forecasting methods on univariate data. In the future pre-
dictive machine learning models are used to generate the
synthetic traffic and in estimating the exponential factor for
representing long-tailed dependent traffic in order to support
the bustier traffics.
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