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ABSTRACT Pneumatic artificial muscles (PAMs) are light and soft, and are expected to be applied to gait
assistance robots with multiple actuators on the human body. The PAMs can be used as not only actuators,
but also sensors to detect the gait phase by using their deformable bodies whose internal pressure changes
in response to the wearer’s gait. However, conventional methods to detect the gait phase by PAMs have
targeted single point detection in a gait phase and used for only ON/OFF control of the PAM actuators.
In this study, we proposed an algorithm to estimate the postural state of the wearer, especially the state
of both hip joints, from the internal pressure information of the PAMs with a small amount of calculation
by using clustering method, and succeeded in controlling the PAMs’ pressure continuously based on this
algorithm. The effectiveness of the proposed control method was verified through gait-assistive experiments
using a treadmill. We measured the electromyogram of the adductor longus muscle under 3 subjects and a
one-sided significant difference test was performed. As a result, we confirmed significant differences at the
1% significance level for 2 subjects and at the 10% significance level for the remaining subject, allowing us
to evaluate the effectiveness of the proposed PAM control strategy.

INDEX TERMS Posture estimation algorithm, gait-assistive robot, pneumatic artificial muscle,
back-drivability, soft robot.

I. INTRODUCTION
A. BACKGROUND
In recent years, power-assistive devices have been developed
for various applications [1], [2], [3], ranging from the fields
of nursing care [4], [5], gait assistance [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], rehabilitation [16], [17], [18], [19],
[20] and other welfare applications, to industrial [21], [22],
[23] and military [24] applications. For example, Sankai [4]
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developed a robot suit HAL (Hybrid Assistive Limb) driven
by electric motors, which detects the wearer’s intention to
walk by bioelectric sensors directly attached to the user,
in addition to angle sensors and other sensors built into the
robot. Li et al. [8] designed a prototype of a lightweight, low-
power-consumption walking assistive wear with soft actua-
tors using plasticized polyvinyl chloride (PVC) gel and mesh
electrodes. Asbeck et al. [13], [14], [15] developed a soft exo-
suit which is light weight system driven by Bowden cables,
and BLEEX (Berkeley Lower Extremity Exoskeleton) [24]
was developed to improve carrying capacity and is driven
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by hydraulic actuators. Different mechanisms and control
methods are applied to each of these devices, and appropriate
sensors and actuators are utilized depending on the situa-
tion. One of the technical challenges in realizing assistive
devices is to synchronize the assist force with the wearer’s
movement. Traditionally, to detect the wearer’s motion state,
most devices use electrical sensors, such as bioelectrical
sensors [4], [5], joint angle sensors [4], [11], [19], inertial
measurement units (IMU) [13], [14], [15], force/torque sen-
sors [12], [16], and undersole pressure sensors [4], [8], [10],
[13], [14], [15], [24]. It was necessary to wear them on the
user’s body surface or to build them into the assistive device.
By fusing multimodal information obtained from different
types of sensors, the reliability of detecting the user’s exercise
state can be improved. However, it increases the time required
to start the device for the calibration process and reduces the
usability of the device. Therefore, from the viewpoint of ease
of installation, it is desirable to reduce the number of sensors
to be attached to the assistive device.

On the other hand, many power-assistive robots using
Pneumatic Artificial Muscle (PAM), have been developed
in recent years [25]. Kadota et al. [26] proposed a power-
assistive robotic arm that mimics the motion of bi-articular
muscles using PAM covered with an exoskeleton suit.
Tadano et al. [27] developed a grip force amplification
glove using PAMs and succeeded in realizing a bi-articular
mechanism suitable for finger flexion and extension, and
Sridar et al. [28] developed a soft inflatable exosuit to
assist knee extension during gait training in stroke rehabil-
itation. This device uses an IMU and shoe insole sensors.
Kanno et al. [6] proposed a pneumatically driven gait-
assistive device and its control method that utilizes the back-
drivability of PAM. In this control method, the gait phase of
the wearer is detected by using air pressure sensors isolated
from the device itself, without attaching electric sensors to
the wearer’s body.

Several methods have been developed for detecting the
state of the walker. For example, Lim et al. [29] determined
various dynamic models of the lower extremity exoskeleton
from ground reaction force (GRF) data obtained from insole
sensors. Ding et al. [30] proposed a method to detect and
identify gait phase from data obtained from a single iner-
tial measurement unit (IMU) by using an algorithm based
on long-term short-term memory (LSTM). Wang et al. [31]
proposed a gait state recognition system based on a support
vector machine using plantar pressure sensors and accelera-
tion sensors on the human legs. Lee et al. [32] proposed a deep
learning-based gait type classification method using smart
insoles equipped with various sensor arrays. Other studies
by Villarreal [33] and Quintero [34] proposed a gait phase
variable by using a declination angle defined by measured
thigh angle and thigh angular velocity during walking. How-
ever, both of the above methods require at least one or more
electrical sensors to be attached to the body surface.

In contrast, the study by Kanno et al. [6] used only PAM for
gait phase detection and did not require to attach any electrical
sensors to the wearer’s body. PAMhas a property called back-
drivability, which means that deformation of the PAM due to
walking is transmitted to the control input side through the
pneumatic circuit as internal pressure information. By uti-
lizing this property, it is possible to detect the stage of gait
from the internal pressure information of the artificial muscle.
In that study, a point on the pre-swing phase of the gait
cycle was detected at each cycle based on a threshold-based
judgment condition for the internal pressure value. Then,
after calculating the gait cycle based on the temporal distance
between these points, the PAMs were controlled to contract
or not based on the time period in the gait cycle. Further-
more, in a study by Miyazaki et al. [7], a threshold decision
condition was added to the above method, enabling the suit
to be controlled successfully even when the walking speed
changes. With the above mechanisms, these devices [6], [7]
did not require a single electrical sensor to be attached to the
body surface, allowing easy attachment and removal of the
gait-assistive robot. However, the following issues remain to
be solved.

• The internal pressure information detects only one point
in the pre-swing phase, and the other time periods are
interpolated by assuming an average gait. The conven-
tional method can assist the average gait effectively;
however, there is no guarantee that the gait state of the
wearer is typical. In the case of a gait far from average,
assist timing will become inappropriate, and the assist
force will prevent safe walking. The internal pressure
of the PAM changes throughout the gait cycle, and the
conventional detection algorithm does not make the best
use of the measured pressure information.

• The simple ON/OFF control was performed based on
the assumption of a typical human gait as defined by
Perry et al. [35]. Since human gait is a continuous move-
ment, more personalized assistance can be provided by
continuously controlling the artificial muscles in accor-
dance with the user’s movement state. Moreover, in the
ON/OFF control, the internal pressure shows periodic
sharp rises and falls, and the tension changes abruptly,
which may cause danger and difficulty in walking.

In addition, there are some previous studies [36], [37]
that used the concept of reservoir computing to estimate the
posture of the wearer from the internal pressure information
of the PAM. In those studies, multiple PAMs connected by a
pneumatic circuit were considered as physical reservoirs, and
the thigh angle was estimated by Ridge regression of multiple
nonlinear pressure signals measured along the circuit. How-
ever, the above method required the measurement of internal
pressure at multiple locations on the pneumatic circuit. For
practical use, it is desirable to be able to estimate the posture
state from the internal pressure information of a single PAM.
However, since this method is based on adding up internal
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FIGURE 1. Overall pneumatic system (yellow: PAM for estimation; red:
PAM for actuation).

pressure values from multiple locations, the estimation accu-
racy may deteriorate if the number of measurement points
is reduced. In addition to angle, if more complex waveform
signals such as angular velocity and angular acceleration are
to be estimated, it may be necessary to apply a different
estimation algorithm instead of the linear regression method.

B. CONTRIBUTIONS OF THIS STUDY
The contributions of this study are as follows. First, by assum-
ing the broad-sense periodicity of walking motion, we pro-
posed a new algorithm to estimate the posture state of the
wearer from the internal pressure information of a single
PAMwith a small amount of computation. Second, we carried
out continuous pressure-following control of the PAM based
on the estimated joint states of the lower limb and the assumed
mechanical model of the walker. Finally, we analyzed the
amount of muscle activity through gait-assistive experiments
on multiple subjects and confirmed the effectiveness of the
proposed control strategy.

These contributions suggest the feasibility of novel per-
sonalized assistance based on state estimation throughout the
entire gait cycle. Since there are no moments when the gait
state cannot observe, the proposed assist has an advantage in
terms of safety.

This paper is organized as follows. In Section II,
we describe the overall mechanism of the proposed method
and explain the posture estimation algorithm. In Section III,
we introduce a control method for a gait-assistive robot based
on the wearer’s link model. In Section IV, we discuss the
experiments conducted to confirm the effectiveness of the
proposed control strategy. In the end, We draw the conclu-
sions in Section V.

II. PROPOSED ESTIMATION METHOD
A. PNEUMATIC SYSTEM
The overall pneumatic system of the suit is shown in Fig. 1.
The control unit consists of a compressor, air tank, pressure
regulator, computer, servo valve, manual valve (2-port valve),
pressure sensor, A/D board, D/A board, etc. The pressure in
the PAM is transmitted through the air tube and measured
by the pressure sensors (SMC, PSE510 and PSE532) in the
control unit and sent to the computer by the A/D board.
The command voltage of the servo valve (Festo, MPYE5-
1/4-010-B) is calculated by the computer and sent from the

TABLE 1. The parameters of the robot and the PAM.

D/A board. The pressure of the PAM for actuation is con-
trolled by the controller. The gait-assistive robot also uses the
back-drivability of the PAM to estimate the wearer’s joint
condition. To realize that, the pressure information of the
PAM is used. Therefore, the PAM for estimation, which is
fixed to the lateral right thigh, is pressurized in advance and
the air flow is closed by a manual valve. The PAM in the
lateral thigh becomes a closed chamber that can be deformed,
and the pressure information resulting from the deformation
is used to estimate the wearer’s condition. The compressor,
which is one of the main noise sources, is separated from the
pneumatic system of the gait assistive robot using a long air
tube. In addition, noise from the servo valves is reduced by the
attached silencer; therefore, it can be used without problems
in places such as training facilities.

While most conventional suits are rigid linkage systems,
the attachment unit of the suit consists of the lightweight
parts, such as waist supporter, knee supporter, and nylon
belt. The entire attachment unit weighs approximately 1.2 kg.
The attachment unit has no built-in electrical sensors. The
supporter is made of soft fibers such as polyester, nylon,
polyurethane, and natural rubber. The lower back supporter is
secured to the pelvis by the tightness of the fibers and nylon
belt. Knee supporters are similarly secured to the knee joint.
These supporters are connected so that the PAM does not slip
on the body surface, effectively transferring the contraction
force of the PAM to the leg movements. The suit is applied
for a short period of time, less than 5 minutes. The suit has the
advantage of being easier and safer to use than conventional
rigid-type suits because it does not require the trainee to wear
an electrical sensor and the suit is soft and lightweight.

In this study, a total of three PAMs (Bridgestone), two for
assist and one for estimation, are attached to the body surface.
When fitting the PAMs for estimation and assist, we use
adjustable bands to adjust the devices for each subject to
ensure that tension is maintained. The only muscles targeted
for assist are the adductor longus (AL) muscles of both legs
located in the anterior part of thighs. When the PAMs of both
anterior thighs are contracted by appropriate pressure, the hip
flexion motion can be assisted. The parameters of the robot
and the PAM are shown in Table 1.

B. PROPOSED POSTURE ESTIMATION ALGORITHM
In this section, we specifically describe our proposed method
for estimating the postural state of the wearer. In short, this
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method is an algorithm for estimating the wearer’s joint state
from the internal pressure information of a single PAM with
a small amount of computation by utilizing the broad sense
periodicity of gait data and a clustering method. The idea of
the method is as follows.

When our gait-assistive robot is used, the user walks on a
treadmill; thus, the walking speed can be fixed, and the mea-
surement data obtained from such periodic motion are also
expected to be periodic. However, human gait is not strictly
repetitive because of variations in the stride length and tempo.
This characteristic of the data is called periodicity in the broad
sense in this paper. When sufficiently long training data can
be obtained, data similar to the ‘‘pressure data observed as
input during estimation’’ should be available as training data.
Therefore, the data closest to the measured internal pressure
information should be identified in the training data, and
the joint state at that point in time should be used as the
estimated value. This is similar to the ‘‘nearest neighbor’’
method in classification algorithms. However, comparing all
the data is computationally very time-consuming, and is not
a desirable estimation method in situations where real-time
performance is required, such as robot control. Therefore,
we have considered clustering the training data by gait phase
to greatly reduce the number of comparisons. The steps in the
learning process are as follows.

The internal pressure of the PAM for estimation and the
wearer’s joint state are measured simultaneously as training
data. The joint state mentioned above means the angle, angu-
lar velocity, and angular acceleration at both right and left hip
joints in this paper.

Next, we cluster theweighted coordinates
(
kpp[k], kṗṗ[k]

)
,

where p[k] is the PAM pressure at each time k and ṗ[k]
is its derivative. Clustering is performed using the k-means
method [38]. k-means is the simplest of the non-hierarchical
clustering methods, which is based on the center of gravity in
each cluster. When the number of clusters is N , the vector of
each data is xk , the vector of centers of gravity in each cluster
n is µn, and the set of data belonging to each cluster is Cn, the
algorithm minimizes the evaluation function J expressed by
the following formula. For a more detailed explanation, see
MacQueen et al. [38]

xk =

(
kpp[k]
kṗṗ[k]

)
(1)

kp = 1/ std(p), kṗ = α/ std(ṗ) (2)

J =

N∑
n=1

∑
xk∈Cn

(xk − µn)
2 (3)

α is a parameter that indicates the balance of importance of
the data and is determined through experiment. In this study,
we assumed α = 1.0. Next, we record the average pressure
value pn, its derivative ṗn, and the average joint state vector
S⃗n in each cluster n on the lookup table.
During estimation, the wearer’s joint state can be estimated

by searching for the closest data to the observed pressure
data on the lookup table and using the average joint state

FIGURE 2. Clustering example (The number of clusters is 10).

vector in that cluster as the estimated value. Fig. 2 shows
the clustering with 10 clusters. There is an order relationship
among the clusters, i.e., the cluster to which the data appear-
ing immediately after the data belonging to a cluster belongs
ismostly determined. Therefore, if the cluster which is closest
to the previous data is known, there is no need to search all
clusters, and comparing the two clusters should be sufficient.
Therefore, in our method, we add another twist.

The cluster with the highest number of transitions in each
cluster is recorded in advance from the time series data. Since
walking on a speed-fixed treadmill is a periodic movement,
the above procedure is expected to ideally connect all the
clusters in a circular manner.

As mentioned earlier, our method estimates the joint state
through two comparisons. When the previous data is closest
to cluster ĉi, the distance to (p, ṗ) is calculated only for
the average pressure information in cluster ĉi and that in its
transition point, cluster ĉi_next . During estimation, the cluster
that is closer of the two is selected as:

ĉi+1 = argmin
[{
kp (p− pc)

}2
+

{
kṗ (ṗ− ṗc)

}2] (4)

c ∈ Ccompared =
{
ĉi, ĉi_next

}
(5)

In practice, however, transitions between clusters may
continue to fail, resulting in larger estimation errors. If the
same cluster is continuously selected for a certain number
of consecutive times, the estimation error is considered to
spread, and an exception is made by temporarily switching
the search to all clusters.

The flowchart of the entire algorithm is shown in
Fig. 3. The various variables appearing in the flowchart are
explained as follows. n is the number of times estimation
remained in the same cluster consecutively. nth is upper
threshold for n. It was set to 50 in this study (Sample rate
is 500 Hz).Call is all clusters. data is measured PAM pressure
and its derivative data. Compare is function that compares
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FIGURE 3. Overall estimation algorithm.

clusters. Estimate is function to obtain the posture state of
the desired cluster from the lookup table.

Note that our method builds a model for each subject, but
the training time is short, only a few seconds to about aminute
per subject, under Ubuntu 18.04.6 Intel Core-i9 with eight
physical cores.

C. OFFLINE ESTIMATION EXPERIMENT
We first conducted an offline posture state estimation experi-
ment. One healthy adult walked on a treadmill wearing a suit,
angle sensors on both hip joints, and a PAM for estimation
on the side of the right thigh. The experiment is illustrated in
left side of Fig. 4. The PAM for estimation was pressurized in
advance by a hand valve at a constant pressure (approximately
100 kPa) and sealed to allow deformation. Walking was
performed at a speed of 5 km per hour. The tempo of gait was
not specified. The measured data consisted of angular data
of both hip joints measured by potentiometers and internal
pressure data of the PAM, to which an appropriate differential
filter was applied to obtain angular velocity, angular accelera-
tion, and pressure differential values. A low-pass filter (cutoff
frequency was 5.0 Hz) was applied for the joint angle and a
band-pass filter (passband width was 0.2 to 2.0 Hz) for the
PAM internal pressure. The experiment was conducted on a
treadmill capable of emergency stops, and the experimenter
remained near the treadmill at all times during the experiment
so that the subject could be immediately protected in the event
of an emergency. This experiment was conducted with the
approval of the Ethics Committee of the Graduate School
of Information Science and Technology of the University
of Tokyo (review number: UT-IST-RE-210702-1) and the
participants signed consent forms. The same applies to the
experiments described in Section IV.

The joint states to be estimated are the angles, angular
velocities, and angular accelerations of the right and left hip
joints in a total of six dimensions. The average of the squared
error in each dimension divided by the variance is used as
one of the estimation performance indicators. In other words,
when Xi is the posture information in each dimension, the
index obtained by

error =
1
6

∑
i

MSE (Xi)
Var (Xi)

(6)

FIGURE 4. The conditions of the experiments (left: offline; right: online).
θ is a measured joint angle.

FIGURE 5. Optimization of the number of clusters.

is called the average error in all dimensions. The optimization
of the number of clusters, which is a hyper parameter in
this estimation method, was performed under four cross-
validations based on the all-dimensional mean error index
defined above. The results are shown in Fig. 5.

While the number of clusters is small, increasing the
number of clusters improves the resolution and accuracy of
estimation. On the other hand, as the number of clusters
increases, the accuracy tends to deteriorate as the difference
between clusters disappears and transitions are more likely to
fail. When actually assisting, cross-validation should be per-
formed in each case, and the appropriate number of clusters
should be tuned.

Fig. 6 shows the estimation results for all six dimensions
with the number of clusters set to 60. In the figure, the blue
line shows the measured values and the orange line shows
the estimated values, and LH and RH refer to the left and
right hip joints, respectively. It can be seen that the multi-
dimensional information of multiple joints can be estimated
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FIGURE 6. Offline estimation result.

from only a single PAM internal pressure information. Since
the algorithm assigns clusters closest to the input data, it was
expected that the estimated values would be stepped, but if
the number of clusters is sufficiently large, it can be seen that
the estimation is continuous. In the angular acceleration, the
estimation error is instantaneously a little larger near the sharp
extremes, but this is thought to be due to the flattening of the
spike-like waveform to assign the average within a cluster.
The reasonwhy the estimation error is smaller for the right leg
than for the left is thought to be because the artificial muscle
for estimation is attached to the lateral part of the right thigh,
and the mechanical movement of the right leg is more directly
reflected in the internal pressure.

The average time required for joint state estimation was
5.24 × 10−6 s under Ubuntu 18.04.6 Intel Core-i9 with
8 physical cores, which is a small enough amount of com-
putation to control the robot at a sampling rate of 500 Hz and
we confirmed that real-time performance was achieved.

Since the clusters to be compared are limited by the imme-
diately preceding cluster, the estimationmethod is very robust
against instantaneous noise. Also, even if the estimation is
wrong, it is guaranteed not to output estimates with extremely
large errors, since the estimated values are the average posture
states of neighboring walking phases. Therefore, the risk of
dangerous assist control due to this is low, and it can be said
to be a safe estimation method that is friendly to the wearer.

In this study, the proposed method was used only for
estimating the state of both hip joints. In future research, it is

assumed that estimation of multiple joints related to walking,
such as the knee and ankle joints, will be performed, but
we believe that scaling will be easily possible by expanding
the number of dimensions of S⃗n described above. Moreover,
although the input dimension is two-dimensional, consisting
only of the internal pressure of a single PAMand its derivative
in this method, it is easy to extend this dimension, too.

D. ROBUSTNESS VERIFICATION
The gait may gradually become unsteady due to fatigue or
other factors caused by continuous use of the device. The
proposed method is an interpolation algorithm that searches
for the data closest to the current gait phase in the training
data, so there is a possibility that the estimation accuracy
will deteriorate if the gait is different from the gait at the
time the training data was acquired. Therefore, in this section,
we examine the robustness of the proposed posture estimation
method against changes in gait.

Since it is dangerous and complicated to conduct experi-
ments under conditions that create a sense of fatigue, in this
study, we intentionally acquired data that imitated the gait
that changed under one subject and verified the accuracy of
the posture state estimation offline.

In this study, walking on a treadmill with a fixed speed is
assumed, so the walking tempo and stride length are inversely
proportional to each other. Therefore, the following two main
cases are assumed to occur when the gait changes due to
fatigue.

• The case in which fatigue causes the stride length to
decrease and the gait tempo to increase.

• The case in which fatigue causes the gait tempo to
decrease and the stride length to increase.

The specific experimental procedure was as follows.

1 Angle sensors and the assistive robot were attached to
the walker.

2 Walking on a treadmill at a speed of 5 km/h without
fixing the tempo, the angle data of both hip joints and
the internal pressure data of the PAM for estimation
were acquired for 30 seconds (the data at this time will
be referred to as the data during Not fix).

3 From the data during Not fix, we calculated the average
tempo by dividing the walking time by the number of
cycles.

4 Fix the tempo to several values different from the tempo
calculated above, walk on a treadmill at a speed of
5 km/h, and acquire data for 10 seconds each time.

5 The first 20 seconds of the data during Not fix was used
as training data, and training was performed using the
method described above.

6 Verify the estimation accuracy based on the remaining
10 seconds of the data during Not fix and the multi-
tempo data obtained in item 4.

As for item 3 above, the data for 30 cycles were trimmed
appropriately, and the interval was 28.94 seconds, so the
average tempo was estimated to be 124.4 BPM. Therefore,
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FIGURE 7. Estimation errors at different tempos.

measurements in item 4 were taken at 110, 120, 130, and 140
BPM to simulate a disordered gait. Walking at a tempo lower
than 110 BPM and higher than 140 BPM was not measured
because it was very unstable, and there were safety concerns.
The walking tempo was fixed by having the walkers walk
while listening to the metronome through earphones, and this
method was also used in the experiments described in the
following chapters. The number of clusters was determined
to be 60 with appropriate cross-validation.

Fig. 7 is a bar chart for the error in each data set. In the
figure, LH and RH refer to the left and right hip joints,
respectively. The error indices were calculated by dividing
the RMSE of each dimension by the standard deviation of the
measured data. As a general trend, the further away from the
average tempo at the time of the Not fix, i.e., 124.4 BPM,
the greater the error. If the tempo deviation is 120 130 BPM,
the error is only 1.3 times larger at most.

In addition, the essence of this estimation method is to
‘‘continuously synchronize the human and robot motions’’
rather than to ‘‘estimate the joint state with the smallest possi-
ble error.’’ Therefore, the correlation coefficient between the
measured and estimated values was used as another evalu-
ation index. The results are shown in Fig. 8. The fact that
the correlation coefficient hardly changes even if the walking
tempo changes compared to the not-fixed tempo suggests that
even if the tempo differs from that at the time of training
data acquisition, the estimation can be synchronized with
the wearer’s movements. This means that human and robot
synchronization can be maintained.

One factor that guarantees robustness is the normalization
process. To be precise, the internal pressure of the PAM for

FIGURE 8. Correlation coefficients at different tempos.

estimation is not used as is but is normalized before being
used for estimation. That can contribute to the robustness to
changes in gait. Note that the device can stop use to avoid
serious accidents when there is an extreme change in gait.

III. PROPOSED CONTROL METHOD
A schematic diagram of the entire controlmethod divided into
modules is shown in Fig. 9. u is the input voltage to the valve,
F and L are the contraction force and length of the PAM for
actuation, respectively, and Pref and P are the target internal
pressure and measured pressure of the PAM for actuation,
respectively.

θ , θ̇ , and θ̈ are the angle, the angular velocity, and the
angular acceleration of both hip joints estimated by the algo-
rithm described in Section II. The control calculation process
consists of the following four steps.

1 Calculate the torque generated at the joint based on the
estimated joint information.

2 Calculate the contraction force and length of the PAM
geometrically.

3 Calculate the required internal target pressure Pref
based on Mckibben PAM model.

4 Control the valve by PI controller to perform pressure
follow-up control.

A. CALCULATION OF THE TORQUES
As a dynamic model of the walking human, consider a 5-link
system as shown in Fig. 10. The moment of inertia around
the center of gravity at link i is defined as Ii, mass as mi, and
length as li. The distance from Joint 1 to the centers of gravity
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FIGURE 9. Proposed control method.

of Link 1 and Link 2 are a1 and a2, respectively, the distance
from Joint 2 to the centers of gravity of Link 3 and Link 4
are a3 and a4, respectively, and the distance from Joint 3
to the center of gravity of Link 5 is a5. Since the purpose
of this study is to verify the effectiveness of the estimation
algorithm by applying it to gait-assistive control for the first
time, only hip flexion motion is considered as an assist target
for simplicity. In this case, since the influence of knee and
ankle angles changes during walking is sufficiently small, the
entire leg is assumed to be a single link for calculating the hip
joint torque. We also assumed that the upper body is always
vertical to the ground, and the ankle joint is always at right
angles for simplify the calculation as follows.

θ2, θ3 ∼= 90 deg (const)

θ5 ∼= θ4 − 270 deg (const) (7)

In this study, we determined the subject’s body feature
parameters appropriately based on measurements at each site
and research by Ae et al. [39]. The determination of swing
leg in applying the mechanical model is based on the hip joint
angular velocity information. That is, when the left and right
hip joint angular velocities are θ̇LH and θ̇RH , respectively, the
swing leg is determined as follows.

if θ̇LH > 0 and θ̇RH < 0: Left
else if θ̇LH < 0 and θ̇RH > 0: Right

else: Same as just before

Note that in this study, the time when both feet are landing
is not considered. The equations of motion at each link can
be solved analytically as follows.

v1 = M1f + g

v2 = M2τ +M3f + v3 (8)

v1: Vector of mass × acceleration for each link
M1: Appropriate constant matrix
f : Vectors of external forces between joints
g: Vector for the gravity term
v2: Vector of moment of inertia × angular acceleration of
each link
M2: Appropriate constant matrix
τ : Torque vector generated at joints
M3: Appropriate matrix
v3: Vectors on friction terms, etc.

FIGURE 10. 5-link human model.

By substituting the estimated joint states into the above
equations as appropriate, the vector τ , which lines up the
torques produced at each joint, is obtained as follows, part
of which is the assist torque. r is the assist rate.

τ = M−1
2

[
v2 −

{
M3M

−1
1 (v1 − g) + v3

}]
τPAM = rτ (0 < r < 1) (9)

B. CALCULATION OF CONTRACTION FORCE
AND LENGTH OF PAM
The length and contraction force of the PAM are calculated
from the fixation position determined by various parameters.
The fixation positions of the PAM for actuation are shown in
Fig. 11. The length L of the PAM is the distance between
the coordinates of both end points | ⃗A1A2| minus the length
Lfix of the clasp, belt, supporter, and metal part. Lfix should
be obtained by measurement or other means.

L = | ⃗A1A2| − Lfix (10)

The contraction force of the PAM corresponding to the
direction of the torque is obtained as follows.

F = max (τPAM/darm 0) (11)

Note that darm represents the length of the moment arm
corresponding to the artificial muscle, which is calculated by
the distance between the point O and the line A1A2.

C. MCKIBBEN PAM MODEL
The contraction force F(P,L) of a Mckibben PAM has been
modeled by Tagami et al. [40]. in their study as a two-
variable function of internal pressure and length. The various
parameters are shown in Table 2.

F(P,L) = Kg(P− Pth)(L − Lmin) + Kpr (L − L0) + nl(L)

(12)
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FIGURE 11. Position of the PAM for actuation.

TABLE 2. Mckibben PAM parameters.

where Pth is the pressure that gives the threshold value and
Lmin and L0 are the length of the PAM at its minimum
and initial length, respectively. The internal pressure can be
obtained from the contraction force and length, which is used
as the target internal pressure Pref of the PAM.

D. PI CONTROLLER
We control the internal pressure of the PAM by a simple PI
controller. When P does not reach Pref , the input voltage to
the servo valve is increased and the effective area of the valve
is adjusted to control the air flow rate to follow the internal
pressure.

E. STOP DETECTION
For switching control of start and stop walking, the deter-
mination that a subject has stopped walking is based on a
threshold value. Specifically, the internal pressure values of
the PAM for estimation for the past T seconds are buffered,
and when the maximum and minimum values in the buffer
are pmax and pmin, respectively, and the following equation is
satisfied under the appropriate threshold value pstop, the target
pressure value Pref is set to 0 and the assistive suit is stopped.
In this study, T was experimentally determined to be 5 s and
pstop was set as 0.15 kPa.

pmax − pmin < pstop (13)

TABLE 3. Control parameters.

IV. RESULTS
A. CONTROL EXPERIMENT
We first conducted an experiment on a single subject to test
the proper control of the gait-assistive robot. Walking was
performed on an electric treadmill moving at 5[km] per hour.
The tempo of walking was not specified. The experimental
procedure consisted of the following three parts.

1 We acquired PAM internal pressure and bilateral hip
joint condition data for estimation during normal walk-
ing for 90 seconds.

2 We trained with the acquired gait data.
3 We controlled the PAMs and walk for 90 seconds with

gait assist.
The assist experiment is shown in the right side of Fig. 4.

The PAM for estimation is attached to the lateral part of the
right thigh, and the PAM for actuation is attached to the
anterior part of both thighs.

The various parameters used in the experiment are shown
in Table 3. The number of clusters was appropriately deter-
mined through cross-validation, and Ps is the supply side
pressure by the regulator, which was manually adjusted.

Fig. 12 shows the results of online estimation of hip angle,
angular velocity, and angular acceleration during assist. In the
figure, the blue and orange lines indicate measured and esti-
mated values, respectively, where LH and RH refer to the
left and right hip joints, respectively. It can be seen that
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FIGURE 12. Results of the online posture estimation.

the change in gait due to assist is negligibly small, and the
posture state can be estimated correctly as in the offline case
in Section II-C. The RMSE of the hip joint angle estimation
was 1.58 deg and 2.39 deg for the left and right hip joints,
respectively.

An evaluation of the pressure tracking control performance
of the left and right PAMs is shown in Fig. 13. Note that a
low-pass filter with a cutoff frequency of 10 Hz is applied to
the pressure waveforms. The first and third rows are the left
and right hip joint angle transition, and the second and forth
rows are results of pressure tracking control, with the blue
and orange lines corresponding to the PAM internal pressure
and target internal pressure, respectively. First, it can be seen
that the PAM internal pressure is following the target pressure
by PI control. Also, it can be seen that the target pressure
waveform (Pref in the figure) is generated smoothly by the
state estimation of both hip joints. In addition, it can be seen
that the PAM internal pressure increases and contracts during
the time period when the hip joint angle begins to increase,
assisting the swing up.

B. EMG EXPERIMENT
Next, we conducted an experiment to verify the assist perfor-
mance with three subjects. Although it is possible to control
the assist suit without fixing the gait tempo, for the sake of
myoelectric analysis, the experiment was conducted with the
gait tempo fixed. In addition, a manual treadmill was used
to prevent noise from being mixed into the myoelectric data.
The experimental procedure is as follows.

1 Practice the task of walking at 5 km per hour and 120
BPM for 30 seconds.

FIGURE 13. Follow-up control of the PAM pressure.

2 Attach the angle sensor and the gait-assistive robot.
3 Record the PAM internal pressure and hip joint condi-

tion during normal walking for 60 seconds as training
data.

4 Take off the angle sensor and the gait-assistive robot.
5 5-minute break
6 Train with acquired gait data.
7 Attach surface EMG electrodes.
8 Measure EMG during MVC (Maximum Voluntary

Contraction).
9 Walk without assistance for 90 seconds and measure

the EMG.
10 Wear the gait-assistive robot.
11 Practice walking with assistance; check for 20 seconds

and add 20 seconds at a time until familiar.
12 Perform walking with assist for 90 seconds and mea-

sure EMG.
The EMG measurement points were two on the subject’s

left leg: the adductor longus (AL) muscle, which is primarily
involved in the hip flexion movement of the leg, and the semi-
tendinosus (ST) muscle. The EMG of the ST, the antagonist
muscle of the AL, was also measured to ensure that the assist
force was not interfering with the subject’s ability to perform
the hip extension movement.

Table 4 lists the physical parameters of each subject and
the number of clusters optimized for each individual. Vari-
ous body information parameters such as moment of inertia,
mass, and length of each body part were appropriately cor-
rected based on height and weight ratios.

To evaluate the performance of the EMG amplitude,
we used the %MVC index, which is expressed by the follow-
ing equation.

%MVC = 100 ×
J

JMVC
(14)

J =

√
1
T

∫ Tcycle_end

Tcycle_start
EMG2dt (15)
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TABLE 4. Subjects’ parameters for control.

Here, the average EMG amplitude J was calculated for
each gait cycle after applying the appropriate high-pass, low-
pass, and bandstop filtering to the EMG data; for JMVC , the
EMG amplitude data were obtained during maximal contrac-
tion, of which the average amplitude for 1 s was calculated.
The sensor position and clinical test method for measur-
ing MVC status were determined based on the SENIAM
project [41].

Shown in Fig. 14 is a graph of %MVC values for AL and
ST for three subjects, where Without assist refers to normal
walking and With assist refers to gait with assistance. The
bold bar means the average value and thin bar means standard
deviation. Using 30 cycles of data for each subject, significant
differences in %MVC values were calculated by Welch’s
t-test. The symbols ** and * in Fig. 14 indicate statistical
differences at the 1% and 10% significance level for one-
tailed tests.

In Subjects 1 and 2, the EMG amplitudes of both the
AL and ST were significantly lower during assisted walking
than during normal walking (p < 0.01). The reason for the
decrease in the ST, which is not the muscle to be assisted,
is that the AL and ST are antagonistically driven in terms
of muscle structure, and the decrease in the activity of the
anterior muscle, the AL, is thought to have been accompanied
by a decrease in the activity of the posterior ST. For subject 3,
although the amount of AL muscle activity was significantly
reduced (p < 0.10), the amount of ST muscle activity was
significantly increased during the assist (p < 0.01).

Fig. 15 shows the EMG amplitude data of the AL of the
left leg and the internal pressure of the attached PAM for
actuation on the left thigh for Subject 1. From the figure, it can
be seen that the internal pressure of the PAM increases during
the time of increased muscle activity of the AL. That means
the PAM was able to synchronize with the AL muscle.

Fig. 16 shows the averages of 30 cycles of myoelectric
amplitude absolute values of Subject 1, to which a low-pass
filter with a cutoff frequency of 20 Hz was applied. From the
graph, it can be seen that the amplitude of EMG ofWith assist
is lower than that of Without assist especially at the moment
of trying to swing up the hip joint, i.e., before and after the
Pre-swing phase.

Fig. 17 shows the kernel density f̂ (p, ṗ) of the internal
pressure value of PAM for estimation p and its derivative ṗ
for each subject. Gaussian kernel was used for the kernel,
and the bandwidth h was set appropriately. K is the kernel
function and n is the number of data.

f̂ (p, ṗ) =
1
nh2

n∑
i=1

K
(
p− pi
h

,
ṗ− ṗi
h

)
(16)

FIGURE 14. Results of the %MVC (mean and standard devation of 30 gait
cycles).

FIGURE 15. Change in EMG and internal pressure of PAM for actuation.

FIGURE 16. Average EMG amplitude within one gait cycle.

From Fig. 17, it can be seen that since walking is a cyclic
motion, the density distribution of pressure and its derivative
is cyclic for all subjects. Although there are some regions of
concentration for each of the three subjects, especially for
Subject 3’s PAM, the density tends to be concentrated in a
localized area. In other words, the pressure information in the
PAM in Subject 3 did not change so much with the gait phase,
and estimation was considered to be relatively difficult.
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FIGURE 17. Density distribution of the internal PAM pressure and its
derivative for each subject.

C. DISCUSSION
For the AL, the EMG amplitude was significantly reduced in
all three subjects, suggesting the effectiveness of the assistive
suit. Due to the fact that the AL and ST are antagonistically
driven, assisting the AL simultaneously eliminates the force
on the opposite side, which may be a secondary effect.

In addition, the fact that the contraction period of the PAM
was the same as the activity period of the AL muscle, and the
fact that the EMG amplitude decreased especially around the
pre-swing phase, suggest that the ideal timing of control was
achieved by using the postural state estimation method and
the mechanical model of the walker.

Moreover, the results for subject 3 showed that the ST
muscle was overloaded. There are twomajor possible reasons
for this: one is that the PAM for driving the anterior thigh was
fixed so tightly that external torque was generated on the hip
flexor side even if the PAM did not contract. Another possi-
bility is that an undesirable attachment of the suit adversely
affected the estimation of the postural state, and that the suit
control under this condition increased the difficulty of walk-
ing. From Fig. 17, for subject 3, the PAM internal pressure
and its derivative values were locally concentrated throughout
the gait cycle, which may have worsened the resolution of the
postural state estimation and increased the estimation error.

The ideal solution would be to teach the preferred way of
wearing, but it is extremely difficult to objectively observe

the wearing condition and point it out by verbalization or
other means. Another possible solution is to add PAMs for
estimation, and even if the value of a single PAM stagnates,
the estimation accuracy can be recovered by ensuring that
other PAMs do not. However, this is contrary to the con-
cept of the method of reducing the number of PAMs for
estimation, and is also undesirable from the perspective of
weight reduction. Overcoming this problem by devising an
estimation algorithm is still an ongoing research issue.

V. CONCLUSION
The conclusions of this study are as follows.

First, we proposed a new algorithm to estimate the postural
state of a wearer from a single PAM internal pressure infor-
mation with a small computational complexity by utilizing
a clustering method and the broad-sense periodicity of gait,
and confirmed the estimation accuracy in offline experiments.
Second, based on the estimated joint states of the lower limb
and the assumed mechanical model of a human, we generated
a continuous target internal pressure of the PAM for actuation
and controlled the PAM under pressure-following control.
Finally, we measured the AL muscle activity during normal
and assisted walking for three subjects and performed a one-
sided significance test using Welch’s t-test, which yielded
significant differences at the 1% significance level for two
subjects and at the 10% significance level for the remaining
subjects, allowing us to evaluate the effectiveness of the
assistive robot.

In the present study, only the limited movement of hip
flexion was targeted for the assist, but in future studies, the
assist area may be expanded to include extension and ankle
joint movement. It is also necessary to conduct research
on subjective evaluation, such as how subjects feel when
assisted. The postural state estimation method proposed in
this paper could be applied to other movements with a broad
sense of periodicity, such as swimming, running, and bicy-
cling, in addition to walking.
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