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ABSTRACT This paper develops a joint strategy of condition-based maintenance and spare ordering for a
multistate system that is subject to competing failures due to external shocks and self-degradation. Failures of
this system are hidden and can be divided into two types: a one-stage hard failure and a two-stage soft failure.
The states of the system are identified by periodic inspections and replacement is executed preventively or
correctively in response to the defective or failed state. When the operating time of the system is reached the
predetermined threshold τ , the spare is ordered. Furthermore, a threshold level z is introduced to postpone the
preventive replacement (PR) when the ordered spare is delivered before the defective state is first detected.
Depending on the state of the ordered spare when replacement is required and the fault cause of the system
when a corrective replacement (CR) is needed, all possible renewal events are analyzed to establish the
joint optimization model. A modified artificial bee colony algorithm and discrete simulation algorithm are
adopted to find the optimal solutions, and the correctness of the proposed model is verified by a numerical
example. Moreover, the results from the numerical example indicate that the proposed strategy is superior
to the comparative model, thus the applicability and effectiveness of the proposed model are illustrated.

INDEX TERMS Multistate competing failure, hidden failures, condition-basedmaintenance, spare ordering,
delay-time model.

I. INTRODUCTION
With the increasing development of technology, complex
systems, which are usually subject to multiple failure modes,
have been extensively used in various industrial areas [1],
[2], [3], [4], [5]. Generally, these complex systems are
regarded as competing failure systems. Competing failures
mean that the system fails as soon as one of the failures
occurs. In the literature, the competing failure systems not
only experienced soft failures but are also subjected to hard
failures [6], [7], [8], [9], [10]. Soft failures refer to internal
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fatigue, wear, aging, and other reasons that cause a slow
decline in the performance or function of the system. In other
words, soft failures are degradation failures. Unlike soft fail-
ures, hard failures occur suddenly and those failures cause the
system to fail instantaneously. Moreover, the performance of
the system is often affected by external random shocks in the
hard failures mode, and the shock that triggers the system to
fail is called a fatal shock.

The maintenance problem for the competing failure sys-
tems subject to internal continuous degradation and external
random shocks has been highly concern by many schol-
ars [11], [12], [13]. In their papers, the Gamma process and
the Inverse Gaussian process are frequently used to describe
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the continuous degradation process, and the random shocks
are often characterized by the Poisson process. With the rapid
development of sensor and Internet of Things (IoT) technolo-
gies, although the states of a system can be monitored online
continuously, the utilization rate of the continuousmonitoring
data is a huge challenge in some systems, since maintenance
is required only when the system deteriorates to a certain
extent [14]. Besides, the complexity of decision model anal-
ysis and calculation is increased due to the data obtained
from continuous condition monitoring [15]. However, the
maintenance decision modeling based on discrete states can
effectively reduce the complexity of the model [16], and the
system is commonly monitored periodically [17]. In fact, the
degradation process of some competing failure systems, such
as light emitting diodes [18], gyros [19], generators [20],
and some bulk power electric systems [21], actually are not
continuous but exhibit multi-stage features.

In practice, 40% of failure modes of complex systems are
hidden, and 80% of these hidden failures can only be detected
through monitoring or inspection technology [22]. Therefore,
in recent years, the maintenance policies of multi-stage com-
peting failure systems with hidden failures began to attract
attention. For example, Yang et al. [23] divided the internal
degradation process into normal and defective stages by using
two Wiener processes, meanwhile assuming that external
random shocks arrive at the system with a nonhomogeneous
Poisson process. Zhang et al. [24], [25] utilized the delay-time
concept [26] to model the degradation process of the two-
stage competing failure system, and a homogeneous Poisson
process is used to describe the random shocks process so as
to seek the optimal periodic inspection strategy.

In the above studies on maintenance optimization of com-
peting failure systems, spare parts are assumed to be always
available when replacement is required. However, it is more
reasonable to research the integration of maintenance sched-
ules and spare parts management since these two factors
influence and restrict each other. The existing studies on the
joint optimization of maintenance and spare ordering mainly
focus on single failure mode systems (degradation failure
systems), which restricts the application of the existing joint
optimization model [27], [28], [29]. As far as we know, only
Zhao et al. [30] and Zhang et al. [31] investigated the joint
optimization of maintenance and spare ordering for a com-
peting failure system. Zhao et al. [30] focused on a single-unit
system with two failure modes, and considered the influence
of random shocks, which follow a homogeneous Poisson
process, on the Wiener-based multi-stage degradation level
and degradation rate. Moreover, according to the relationship
between random shock amplitude and the dynamic thresh-
old to decide whether to order a spare. Zhang et al. [31]
utilized the Gamma process and homogeneous Poisson pro-
cess to characterize the soft failure process and the hard
failure process, respectively. On this basis, a semi-Markov
decision process is formulated to derive the related indices
for a series-parallel competing failure system. However, these

results do not apply to competing failure systems with hidden
failures.

In this paper, a joint optimization model of maintenance
and spare ordering for a multistate competing failure system
with hidden failures is established. The soft failure process of
the system is described by the delay-time concept. Therefore,
the system experiences a two-stage degradation process, i.e.,
from the new state to the initial point of a defective state and
from that point to failed state. The two stages are modeled by
different probability distributions. Besides, hard failures may
lead the system to fail. In this mode, the failure process of the
system only has one stage, i.e., from new state to failed state,
due to the system being in the normal state until a fatal shock
arrives, and the stage is characterized by a general probability
distribution. Based on the abovementioned description, the
states of the competing failure system consist of normal,
defective, and failed states.

Furthermore, the periodic monitoring or inspection strat-
egy is adopted in this paper to identify the system states, and
the defective-based preventive and failed-based corrective
replacement policies are implemented for the system. The
spare ordering threshold is introduced and the random lead
time is considered to judge the state of the spare when the
system is required to be replaced. When a preventive replace-
ment (PR) is required and the spare has already arrived, the
commonly adopted strategy used in the literature is perform-
ing the replacement immediately [27], [28], [29]. However,
we allow the PR to be postponed for an additional period of
time z to improve the utilization of the system’s useful life
and reduce costs. Then, all possible renewal events are ana-
lyzed, and their occurrence probability is deduced. Eventu-
ally, based on renewal reward theory [32], a joint optimization
model is constructed by taking the minimal expected cost rate
as the objective, and the inspection interval, spare ordering
threshold, and postponed PR threshold as the optimization
variables. We use a modified artificial bee colony (ABC)
algorithm to solve suchmultivariable decision problems since
is superior to other algorithms [33], [34].

The main contributions of this paper can be summarized
as follows: (1) a joint optimization strategy regarding both
preventive maintenance and spare for a multistate compet-
ing failure system with hidden failures is developed; (2) a
time threshold level is introduced to decide whether to place
an order; (3) postponed replacement is scheduled when the
ordered spare is delivered before the defective state is first
detected; (4) the proposed strategy is compared with a special
strategy in which the PR is carried out immediately when the
defective state is first detected and the spare is in stock.

The remainder of this paper is organized as follows.
Section II gives the description of the multistate competing
failure system and the joint periodic inspection and spare
ordering strategy, while the model formulation is presented
in Section III. Section IV briefly describes the proposed ABC
algorithm procedures. In Section V a comparative model is
presented, and a numerical example is shown to demonstrate
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FIGURE 1. One-stage hard failure process.

FIGURE 2. Two-stage soft failure process.

the proposed model and method. Section VI draws major
conclusions and presents further research.

II. PROBLEM DESCRIPTION
A. THE SYSTEM STATEMENT
The system undergoes two failure modes: a one-stage hard
failure and a two-stage soft failure, they compete with each
other, and the earlier failure mode leads the system to fail.
In the case of the first failure mode, the system will operate
normally when the external shock is less than the hard failure
threshold, while once the external shock exceeds the hard
failures threshold the system will fail suddenly, as depicted
in Figure 1, where the Wj represents the shock load. There-
fore, in failure mode 1 the system consists of two states:
normal and failed. In the case of the second failure mode,
the system suffers from a two-stage degradation process,
including the normal working stage and the defective stage,

which is characterized by the delay-time concept. As such,
in failure mode 2 the system has three possible states: normal,
defective, and failed. In general, the degradation amount of
the system increases in the defective stage at a higher rate
than in the normal working stage, as shown in Figure 2.

In the hard failures mode, the duration of the system in the
normal state is described by random variable X1; in the soft
failures mode, the durations of the system in the normal and
defective states are characterized by two independent random
variables X2 and X3, respectively. The probability density
function and cumulative distribution function corresponding
to the three parts are fi(·) and Fi(·), i = 1, 2, 3, respectively.
Moreover, the two failure modes are independent of each
other, and we assume that the failures of the competing-risk
system are hidden.

B. THE JOINT STRATEGY OF CONDITION-BASED
MAINTENANCE AND SPARE ORDERING
In this paper, a periodic inspection scheme with the interval
T is adopted to reveal the normal states, defects, and hidden
failures of the system, and inspections are assumed to be
perfect. If the system is detected in the defective state, a PR
needs to be arranged. If the system is found in the failed state,
a corrective replacement (CR) is required to be done. All
replacement actions can bring the system to the ‘‘as-good-
as-new’’ state. There is no doubt that an available spare is
a key factor to perform replacement activity. The time when
the system is in a new state is recorded as time 0, our study
assumes that the spare is ordered at time τ (τ ≥ 0), and it
will be delivered after a random lead time L, which follows a
certain distribution, i.e., L ∼ ε(L).

It is clear that there exist three possible scenarios for the
state of the spare when a PR or CR is needed. If the time
of a replacement is required is smaller than the time of the
spare ordering, namely, the spare is not ordered, an order is
placed immediately, meanwhile keeping the system operating
or retaining the failed state until the spare is delivered. If the
spare has been ordered but not delivered, keep the state of
the system as it is and wait for the spare until the spare
become available. If the spare has already arrived, beyond all
doubt, a CR should be conducted immediately to renew the
system. However, considering that the holding cost per unit
time is generally no larger than the penalty cost per unit time
due to stockout, at the same time, in order to achieve better
utilization of the system’s useful life and avoid excessive
maintenance, a PR cannot be executed until z time units later.
In other words, a PR is postponed to z time units later instead
of carried out immediately when a defect is identified and
the spare is in stock. Consequently, when the replacement is
required at the k th inspection Tk (Tk = kT ; k = 1, 2, . . . ,∞),
the corresponding decisions should be made in accordance
with the system state and the state of the spare, which are
summarized in Table 1.

According to the above description, the proposed joint
strategy of periodic inspection and spare ordering can be
represented by a set (T , τ, z). Based on all possible renewal
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TABLE 1. Joint decision making under different renewal scenarios.

FIGURE 3. The defective state is first detected at Tk , before which no order is placed.

scenarios in Table 1, an optimization model that minimizes
the expected cost rate is established by using the renewal
reward theorem [32], and we intend to find the optimal strat-
egy (T ∗, τ ∗, z∗). The expected cost rate can be expressed as

C(T , τ, z) =
EC(T , τ, z)
EL(T , τ, z)

, (1)

where EC(T , τ, z) and EL(T , τ, z) are the expected cost
incurred during a renewal cycle and the expected length of
a renewal cycle, respectively.

III. MODEL FORMULATION
This section aims to derive Eq. (1), thus the probabilities for
all renewal scenarios should be firstly modeled, and accord-
ingly, the expected renewal cycle cost and length of each
scenario can be calculated.

A. SCENARIO 1
In this scenario, the spare has not been ordered when the
system is required to replace preventively at an inspection
Tk (k = 1, 2, . . . ,∞), i.e., the condition τ > Tk is met, and
the replacement of the system has to be delayed to the time
Tk + L. Since the system continues to operate after the spare
is ordered at Tk , an inspection will be executed at the arrival
time of the spare Tk +L, and there are three situations: (a) the
system is still in the defective state, as shown in event E1 in
Figure 3; (b) the degradation process is in the failed state,
as depicted in event E2 in Figure 3; (c) the system in the
failed state due to hard failures, see event E3 in Figure 3.
The occurrence probability of such three situations can be

respectively formulated as

PE11 (defective)

= P(X1 > Tk + L,Tk−1 < X2 < Tk ,

X3 > Tk + L − X2,L > 0) · I (τ − Tk )

=

∫
∞

0

∫ Tk

Tk−1

[1 − F1(Tk + L)][1 − F3(Tk + L − X2)]

· f2(x2)ε(L)dx2dL · I (τ − Tk ), (2)

where I (m) =

{
1, m > 0
0, m ≤ 0

.

PE21 (defective) = P(X1 > X2 + X3,Tk−1 < X2 < Tk ,

Tk < X2+X3 < Tk + L,L > 0) · I (τ − Tk )

=

∫
∞

0

∫ Tk

Tk−1

∫ Tk+L−x2

Tk−x2
[1 − F1(x2 + x3)]

· f2(x2)f3(x3)ε(L)dx3dx2dL · I (τ − Tk ),
(3)

PE31 (defective) = P(Tk < X1 < Tk + L,Tk−1 < X2 < Tk ,

X3 > X1 − X2,L > 0) · I (τ − Tk )

=

∫
∞

0

∫ Tk+L

Tk

∫ Tk

Tk−1

[1 − F3(x1 − x2)]

· f1(x1)f2(x2)ε(L)dx2dx1dL cdotI (τ − Tk ),

(4)

Accordingly, the expected cost and length of the renewal
cycle (0,Tk + L) caused by a defect detected at Tk can be
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FIGURE 4. The defective state is first detected at Tk , before which an order is placed and after which the spare is
arrived.

FIGURE 5. The defective state is first detected at Tk , before which the spare has been delivered.

respectively expressed as

EC1(T , τ, z)

=

∞∑
k=1

{
[(k + 1)Ci + Cr + Cp + CwL] · PE11 (defective)

+ [(k + 1)Ci + Cr + Cf ]

· [PE21 (defective) + PE31 (defective)]

+ [Cs(Tk + L − x2 − x3) + Cw(x2 + x3 − Tk )]

· PE21 (defective)

+ [Cs(Tk + L − x1) + Cw(x1 − Tk )] · PE31 (defective)},
(5)

where Ci,Cr ,Cp,Cf ,Cw, and Cs refer to the unit inspection
cost, ordering costs of the spare (including the value of the
spare), preventive replacement costs (including the installa-
tion fee and labor cost), corrective replacement costs (includ-
ing the installation fee and labor cost), penalty cost per unit
time for waiting for spare during system operation, and loss
per unit time during system failure shutdown, respectively.

EL1(T , τ, z)

=

∞∑
k=1

(Tk + L)

· [PE11 (defective) + PE21 (defective) + PE31 (defective)],

(6)

B. SCENARIO 2
As illustrated in Figure 4, in the two-stage delay-time failure
mode, the system enters its defective state in the inspection
interval (Tk−1,Tk ),where k = 1, 2, . . . ,∞, and no fatal

shock arrives at the system until Tk . Therefore, the system is
revealed to be in a defective state at inspection Tk , since the
spare has been ordered but not delivered, i.e., the condition
τ ≤ Tk < τ + L is met, the replacement is delayed until
the arrival time of the spare τ + L. Similar to scenario 1,
an inspection needs to be carried out at τ +L to determine the
type of replacement. If a PR is performed at τ + L, implies
the system has not failed during the waiting period for spare,
as described in event E4 in Figure 4. However, if a CR is
carried out at τ + L, indicates the system has failed before
the delivery of the spare, which may be caused by a soft or
hard failure (see events E5 and E6 in Figure 4). Consequently,
the occurrence probability of the three renewal events can be
respectively given by

PE42 (defective)

= P(X1 > τ + L,Tk−1 < X2 < Tk ,

X3 > τ + L − X2,L > Tk − τ ) · I ′(τ − Tk )

=

∫
∞

Tk−τ

∫ Tk

Tk−1

[1 − F1(τ + L)][1 − F3(τ + L − x2)]

· f2(x2)ε(L)dx2dL · I ′(τ − Tk ), (7)

where I ′(n) =

{
1, n ≤ 0
0, n > 0

.

PE52 (defective)

= P(X1 > X2 + X3,Tk−1 < X2 < Tk ,

Tk < X2 + X3 < τ + L,L > Tk − τ ) · I ′(τ − Tk )

=

∫
∞

Tk−τ

∫ Tk

Tk−1

∫ τ+L−x2

Tk−x2
[1 − F1(x2 + x3)]

· f2(x2)f3(x3)ε(L)dx3dx2dL · I ′(τ − Tk ), (8)
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FIGURE 6. The failed state is first detected at Tk , before which no order is placed.

PE62 (defective)

= P(Tk < X1 < τ + L,Tk−1 < X2 < Tk ,

X3 > X1 − X2,L > Tk − τ ) · I ′(τ − Tk )

=

∫
∞

Tk−τ

∫ τ+L

Tk

∫ Tk

Tk−1

[1 − F3(x1 − x2)]

· f1(x1)f2(x2)ε(L)dx2dx1dL · I ′(τ − Tk ), (9)

The expected cost and length of the renewal cycle (0, τ +

L) caused by a defect detected at Tk can be respectively
expressed as

EC2(T , τ, z)

=

∞∑
k=1

{[(k + 1)Ci + Cr + Cp + Cw(τ + L − Tk )]

· PE42 (defective)

+ [(k + 1)Ci + Cr + Cf ]

· [PE52 (defective) + PE62 (defective)]

+ [Cs(τ + L − x2 − x3) + Cw(x2 + x3 − Tk )]

· PE52 (defective)

+ [Cs(τ + L − x1) + Cw(x1 − Tk )]

· PE62 (defective), } (10)

EL2(T , τ, z)

=

∞∑
k=1

(τ + L)

· [PE42 (defective) + PE52 (defective) + PE62 (defective)],

(11)

C. SCENARIO 3
In scenario 3, a defect is first identified at Tk (k =

1, 2, . . . ,∞), and the PR is postponed to Tk + z since the
system is detected to be in the defective state after the delivery
time of the spare, i.e., the condition Tk ≥ τ + L is met.
As can be seen from event E7 in Figure 5, the degradation
process is in a defective state at the (k + 1)th inspection, and
a postponed PR is carried out at Tk + z. However, a soft or
hard hidden failure may occur before Tk + z, thus, the CR has
to be postponed to Tk + z, see events E8 and E9 in Figure 5.
The corresponding renewal probability is obtained as

PE73 (defective) = P(X1 > Tk + z,Tk−1 < X2 < Tk ,

X3 > Tk + z− X2, 0 < L ≤ Tk − τ )

=

∫ Tk−τ

0

∫ Tk

Tk−1

[1 − F1(Tk + z)]

× [1 − F3(Tk + z− x2)]

· f2(x2)ε(L)dx2dL, (12)

PE83 (defective) = P(X1 > X2 + X3,Tk−1 < X2 < Tk ,

Tk < X2 + X3 < Tk + z, 0 < L ≤ Tk − τ )

=

∫ Tk−τ

0

∫ Tk

Tk−1

∫ Tk+z−x2

Tk−x2
[1 − F1(x2 + x3)]

· f2(x2)f3(x3)ε(L)dx3dx2dL, (13)

PE93 (defective) = P(Tk < X1 < Tk + z,Tk−1 < X2 < Tk ,

X3 > X1 − X2, 0 < L ≤ Tk − τ )

=

∫ Tk−τ

0

∫ Tk+z

Tk

∫ Tk

Tk−1

[1 − F3(x1 − x2)]

· f1(x1)f2(x2)ε(L)dx2dx1dL, (14)

The expected cost and length of the renewal cycle (0,Tk +

z) caused by a defect detected at Tk can be respectively
expressed as

EC3(T , τ, z)

=

∞∑
k=1

{[(k + 1)Ci + Cr + Cp + Ch(Tk + z− τ − L)]

· PE73 (defective) + [(k + 1)Ci + Cr + Cf + Ch(Tk
+ z− τ − L)]

· [PE83 (defective) + PE93 (defective)]

+ Cs(Tk + z− x2 − x3)]

· PE83 (defective) + Cs(Tk + z− x1) · PE93 (defective), }
(15)

where Ch denotes the holding cost per unit time.

EL3(T , τ, z)

=

∞∑
k=1

(Tk + z)

· [PE73 (defective) + PE83 (defective) + PE93 (defective)],

(16)
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FIGURE 7. The failed state is first detected at Tk , before which an order is placed and after which the
spare is arrived.

FIGURE 8. The failed state is first detected at Tk , before which the spare has been delivered.

D. SCENARIO 4
Analogous to scenario 1, the condition τ > Tk is met.
When the competing failure system is detected to be in the
failed state, the failure causes should be first concerned.
If the system fails due to hard failures, there are two possible
situations for the state of the system under the two-stage
delay-time failure mode as follows: the first is in the normal
state (see event E10 in Figure 6) and the second is in the
defective state (see event E11 in Figure 6). If the system
fails due to soft failures, the defective stage must be started
and ends within the inspection interval (Tk−1,Tk ), in which
k = 1, 2, . . . ,∞, as shown in event E12 in Figure 4. The
corresponding occurrence probability for events E10–E12 are
given respectively as

PE104 (failed) = P(Tk−1 < X1 < Tk ,X2 > X1,L > 0)

· I (τ − Tk )

=

∫
∞

0

∫ Tk

Tk−1

[1 − F2(x1)]f1(x1)ε(L)dx1dL

· I (τ − Tk ),

(17)

PE114 (failed) = P(Tk−1 < X1 < Tk ,Tk−1

< X2 < X1,X3 > X1 − X2,L > 0) · I (τ − Tk )

=

∫
∞

0

∫ Tk

Tk−1

∫ x1

Tk−1

[1 − F3(x1 − x2)]

× f1(x1)f2(x2)ε(L)dx2dx1dL · I (τ − Tk ),
(18)

PE124 (failed) = P(X1 > X2 + X3,Tk−1 < X2 < Tk ,

Tk−1 < X2 + X3 < Tk ,L > 0) · I (τ − Tk )

=

∫
∞

0

∫ Tk

Tk−1

∫ Tk−x2

0
[1 − F1(x2 + x3)]

× f2(x2)f3(x3)ε(L)dx3dx2dL · I (τ − Tk ),

(19)

Accordingly, the expected cost and length of the renewal
cycle (0,Tk + L) caused by a failure detected at Tk can be
respectively expressed as

EC4(T , τ, z) =

∞∑
k=1

{[kCi + Cr + Cf ] · [PE104 (failed)

+ PE114 (failed) + PE124 (failed)]

+ Cs(Tk + L − x1)

· [PE104 (failed) + PE114 (failed)]

+ Cs(Tk + L − x2 − x3) · PE124 (failed)},

(20)

EL4(T , τ, z) =

∞∑
k=1

(Tk + L)

· [PE104 (failed)+PE114 (failed) + PE124 (failed)],
(21)

E. SCENARIO 5
The system is revealed to be in a failed state by an inspection
Tk (k = 1, 2, . . . ,∞) after the spare is ordered, but before
the arrival of the spare, therefore, the CR is delayed until
τ + L, as illustrated in Figure 7. Event E13 indicates that
the fatal shock arrives at the system before the degradation
process enters the defective state. Event E14 means that the
fatal shock arrives at the systemwhen the degradation process
is in a defective state, and Event E15 implies that a soft
failure occurred before the fatal shock arrives at the system.
Thus, we obtain the occurrence probability of the three cases
respectively as follows

PE135 (failed)

= P(Tk−1 < X1 < Tk ,X2 > X1,L > Tk − τ ) · I ′(τ − Tk )

=

∫
∞

Tk−τ

∫ Tk

Tk−1

[1 − F2(x1)]f1(x1)ε(L)dx1dL

· I ′(τ − Tk ), (22)
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PE145 (failed)

= P(Tk−1 < X1 < Tk ,Tk−1 < X2 < X1,

X3 > X1 − X2,L > Tk − τ ) · I ′(τ − Tk )

=

∫
∞

Tk−τ

∫ Tk

Tk−1

∫ x1

Tk−1

[1 − F3(x1 − x2)]

× f1(x1)f2(x2)ε(L)dx2dx1dL · I ′(τ − Tk ), (23)

PE155 (failed)

= P(X1 > X2 + X3,Tk−1 < X2 < Tk ,

Tk−1 < X2 + X3 < Tk ,L > Tk − τ ) · I ′(τ − Tk )

=

∫
∞

Tk−τ

∫ Tk

Tk−1

∫ Tk−x2

0
[1 − F1(x2 + x3)]f2(x2)f3(x3)

· ε(L)dx3dx2dL · I ′(τ − Tk ), (24)

The expected cost and length of the renewal cycle (0, τ +

L) caused by a failure detected at Tk can be respectively
expressed as

EC5(T , τ, z)

=

∞∑
k=1

{[kCi + Cr + Cf ] · [PE135 (failed)

+ PE145 (failed) + PE155 (failed)] + Cs(τ + L − x1)

· [PE135 (failed) + PE145 (failed)]

+ Cs(τ + L − x2 − x3) · PE155 (failed)}, (25)

EL5(T , τ, z)

=

∞∑
k=1

(τ + L)

· [PE135 (failed) + PE145 (failed) + PE155 (failed)], (26)

F. SCENARIO 6
As can be seen from Figure 8, a CR can be performed
immediately since the spare is available when the failed state
is found at Tk (k = 1, 2, . . . ,∞), and the condition Tk ≥

τ + L(k = 1, 2, . . . ,∞) is met, Similarly, depending on the
states of the system in two failure modes at the k th inspection,
three renewal cases should be considered, as shown in events
E16–E18 in Figure 8, and the occurrence probability for each
event is obtained as

PE166 (failed)

= P(Tk−1 < X1 < Tk ,X2 > X1, 0 < L ≤ Tk − τ )

=

∫ Tk−τ

0

∫ Tk

Tk−1

[1 − F2(x1)]f1(x1)ε(L)dx1dL, (27)

PE176 (failed)

= P(Tk−1 < X1 < Tk ,Tk−1 < X2 < X1,X3 > X1
− X2, 0 < L ≤ Tk − τ )

=

∫ Tk−τ

0

∫ Tk

Tk−1

∫ x1

Tk−1

[1 − F3(x1 − x2)]

× f1(x1)f2(x2)ε(L)dx2dx1dL, (28)

PE186 (failed)

= P(X1 > X2 + X3,Tk−1 < X2 < Tk ,

Tk−1 < X2 + X3 < Tk , 0 < L ≤ Tk − τ )

=

∫ Tk−τ

0

∫ Tk

Tk−1

∫ Tk−x2

0
[1 − F1(x2 + x3)]f2(x2)f3(x3)

· ε(L)dx3dx2dL, (29)

The expected cost and length of the renewal cycle (0,Tk )
caused by a failure detected at Tk can be respectively
expressed as

EC6(T , τ, z) =

∞∑
k=1

{[kCi + Cr + Cf + Ch(Tk − τ − L)]

· [PE166 (failed)

+ PE176 (failed) + PE186 (failed)] + Cs(Tk − x1)

· [PE166 (failed) + PE176 (failed)]

+ Cs(Tk − x2 − x3) · PE186 (failed)}, (30)

EL6(T , τ, z) =

∞∑
k=1

[Tk ] · [PE166 (failed) + PE176 (failed)

+ PE186 (failed)], (31)

G. EXPECTED COST RATE
Based on the above analysis, the expected renewal cycle cost
EC(T , τ, z) is the sum of Eqs. (5), (10), (15), (20), (25), and
(30), and the expected renewal cycle length EL(T , τ, z) is the
sum of Eqs. (6), (11), (16), (21), (26), and (31). Therefore,
EC(T , τ, z) and EL(T , τ, z) can be calculated respectively as

EC(T , τ, z) =

6∑
w=1

ECw(T , τ, z) (32)

EL(T , τ, z) =

6∑
w=1

ELw(T , τ, z) (33)

Substituting Eqs. (32)–(33) into Eq. (1), the objective func-
tion of the proposed joint condition-based maintenance and
spare ordering strategy can be obtained, and we seek for the
optimal strategy (T ∗, τ ∗, z∗) by minimizing the expected cost
rate C(T , τ, z).

IV. OPTIMIZATION METHODOLOGY
We use a modified artificial bee colony (ABC) algorithm to
optimize Eq. (1) which has multiple decision variables. The
bees in the algorithm have three different roles: employed,
onlooker, and scout bees. Assume that the number of
employed and onlooker bees is NP, and the percentages of
the two types of bees are 50%. Since the bee has the worst
food source is seen as a scout bee, the number of scout bees is
assumed as 1, where the food source represents the solution of
Eq. (1). The quality of the food source represents the value of
Eq. (1), and the maximum number of iterations is denoted
as nmax.
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The ABC algorithm consists of four phases: initialization,
employed bee, onlooker bee and scout bee. In the initial-
ization phase, we generate NP/2 initial food source in the
search space of D dimensions, where each source is denoted
as vh, h = 1, 2, . . . ,NP/2, and D is the number of deci-
sion variables. The location of the hth bee is denoted as
vh = (v(h, 1), v(h, 2), . . . , v(h,D)), and the corresponding
quality of the food source is represented as fitness(vh). In the
employed bee phase, each bee renews the location of the food
source according to the update mode, and the hth bee’s loca-
tion is denoted as v′h = (v′(h, 1), v′(h, 2), . . . , v′(h,D)). Then,
we compare the corresponding expected cost rate fitness(vh)
and fitness(v′h), if fitness(v

′
h) < fitness(vh), indicating that

the quality of the food source is improved, therefore, the
bad quality of the food source fitness(vh) is replaced by
fitness(v′h), the old food source vh is replaced by v′h, and
the non-improvement number nproh is reset to 0; otherwise,
nproh = nproh+1. In order to avoid a premature convergence
of solutions, the onlooker bee phase is executed. In this
phase, onlooker bees are selected by using the roulette wheel
selection method, and the new location of an onlooker bee is
denoted as bh = (b(h, 1), b(h, 2), . . . , b(h,D)), if fitness(bh)
is smaller than fitness(vh), the vh is replaced by bh, and
nproh = 0; otherwise, nproh = nproh+1. The main function
of the scout bee phase is to avoid falling into local optimum.
The scout bee can be determined by maximizing the nproh,
if the value is larger than the threshold nlim, this solution is
replaced by a new solution.

The pseudo code of the ABC algorithm is as follows.

V. OPTIMIZATION METHODOLOGY
A. THE SPECIAL CASE OF THE JOINT OPTIMIZATION
MODEL
To show the effectiveness of the proposed model presented
in Section III (model 1), we introduce one further model
(model 2). Model 2 assumes that the PR is performed imme-
diately when the defective state is first detected and the
spare is in stock, i.e., z = 0 in Eqs. (12), (15), and (16) of
model 1. Meanwhile, PE83 (defective) = 0 in Eqs. (13), (15),
and (16), and PE93 (defective) = 0 in Eqs. (14), (15), and (16).
Moreover, in Eq. (15) (k + 1)Ci should be changed to kCi.
Thus, the objective function of model 2 can be obtained, and
the inspection interval T and the spare ordering point τ are
decision variables.

B. INITIAL MODELING PARAMETERS
To solve the two models based on the algorithm devised
in Section IV, we assume that X2 follows Weibull distribu-
tion, X1 and X3 follow two different exponential distributions
according to Peng’s study [20], and L follows normal dis-
tribution. The parameters of these distributions are shown in
Table 2. The cost parameters are provided in Table 3, and the
values of the control parameters in the ABC algorithm are
presented in Table 4.

Algorithm 1 Artificial Bee Colony (ABC) Algorithm
Input parameters: fi(·)(i = 1, 2, 3),Ci,Cr ,Cp,Cf ,Cw,

Cs,Ch,NP, nmax, nlim
Initialization phase
For h = 1 to NP/2
v(h, j) = lj + r(uj − lj); // generate the initial
solutions vh
where r is uniformly distributed within range [0, 1];
lj and uj are the lower and upper bound of the jth

dimension search space; j = 1, 2, . . . ,D.
nproh = 0;

End
N = 1;
While N ≤ nmax
Employed bee phase
For h = 1 to NP/2
v′(h,m) = v(h,m) + r ′(v(h,m) − v(g,m));
where r ′ is uniformly distributed within range
[–1, 1]; m ∈ {1, 2, . . . ,D}; g ∈ {1, 2, . . . ,NP/2},
and g ̸= h.

If m = j
v′(h, j) = v′(h,m);
Else
v′(h, j) = v(h, j);
End//generate new solutions v′h
If fitness(v′h) < fitness(vh)
vh = v′h;fitness(vh) = fitness(v′h); nproh = 0;
Else
nproh = nproh + 1;
End

End
Onlooker bee phase
For h = 1 to NP/2

proh = (0.9 × fitness(vh)/
NP/2∑
h=1

fitness(vh)) + 0.1; //

calculate the probability of the roulette wheel selection
If r < proh
b(h,m) = v(h,m) + r ′(v(h,m) − v(g,m));

If m = j
b(h, j) = b(h,m);

Else
b(h, j) = v(h, j);

End//generate new solutions bh
If fitness(bh) < fitness(vh)
vh = bh;fitness(vh) = fitness(bh); nproh = 0;

Else
nproh = nproh + 1;

End
End

End

C. RESULTS ANALYSIS AND COMPARISON
The optimization calculation based on the ABC algorithm is
carried out on a computer with Intel(R) Core(TM) i7-8550U
CPU, and 8GB RAM. We make 10 independent runs to
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Algorithm 1 (Continue.) Artificial Bee Colony (ABC)
Algorithm

Scout bee phase
If nproe > nlim
where nproe = max(nproh); h = 1, 2, . . . ,NP/2;
e ∈ {1, 2, . . . ,NP/2}; v(e, j) = lj + r(uj − lj); //

generate new solution for the eth bee
End
N = N + 1;

End
Find the minimum fitness(vh)∗ and the corresponding solu-
tion v∗h.
Output:the optimal solution is v∗h and fitness(vh)

∗

TABLE 2. Distributions for X1, X2, X3 and L.

TABLE 3. Parameters for the costs.

eliminate stochastic discrepancy, the maximum iterative
number is set to 100, and the average calculation time is about
150 seconds. Figure 9 shows the process of the ABC algo-
rithm in obtaining the expected cost rate over the iterations,
it is noted that the expected cost rate decreases along with the
iterations, which indicates that the quality of the food source
improves as the running time of the ABC algorithm increases.
The optimal solution of model 1 is (T ∗, τ ∗, z∗) = (17, 6, 12)
with C(T ∗, τ ∗, z∗) = 88.7378, in this case, inspection should
be carried out every 17 days, the spare is ordered at the 6th

day, and when a defect is first detected, the spare has been
delivered, PR is performed 12 days later. The optimal solution
of model 2 is (T ∗, τ ∗) = (18, 8) with C(T ∗, τ ∗) = 90.5705,
in such a case, inspection is executed every 18 days and the
spare is ordered at the 8th day.

In order to verify the correctness of the proposed model,
we design a simulation algorithm based on discrete events,
which is described in Figure 11 in Appendix. We simulate
100000 times, and the simulation results of the two models
are as follows. For model 1, T = 17, τ = 6, z = 12 are
the optimal values of the decision variables, corresponding to
the minimum expected cost rate 88.7538, which is close to

TABLE 4. Parameters for the ABC algorithm.

FIGURE 9. Expected cost rate of each iteration for models 1 and 2.

88.7378. For model 2, T = 18, τ = 8 are the optimal values
of the decision variables, corresponding to the minimum
expected cost rate 90.5562, which is close to 90.5705. The
tiny differences in the optimal expected cost rate between
the ABC and the simulation algorithm can attribute to the
randomness of the simulations.

Clearly, the proposed joint strategy provides the mini-
mum expected cost rate compared with the special case.
This implies that ‘‘allowing PR to be postponed for an
additional time period when the ordered spare is deliv-
ered before the defective state is first identified’’ plays
an important role in the joint optimization of the peri-
odic inspection and spare ordering strategy. Furthermore,
how long to postpone it motivates us to explore the influ-
ence of different postponement intervals z on the expected
cost rate. Thus, we treat the expected cost rate C(T , τ, z)
as a function of z given the optimal T ∗

= 17 and
τ ∗

= 6, as shown in Figure 10. Two distinctive features
are observed: C(17, 6, 0) < C(17, 6, 1); and the expected
cost rate first decreases and then increases with z when
z > 0. The former indicates that EC(17,6,0)

EL(17,6,0) <
1EC(17,6,1)
1EL(17,6,1) ,

where 1EC(17, 6, 1) = EC(17, 6, 1) − EC(17, 6, 0),
1EL(17, 6, 1) = EL(17, 6, 1) − EL(17, 6, 0). The lat-
ter reveals that extending the system’s useful life makes
cost-effective when z is less than 12; However, the probability
of a defect accumulating into a failure increases when z is
larger than 12 that makes cost-prohibitive; Moreover, z =

12 is the trade-off point between the better utilization of the
system’s useful life and the higher costs due to the risk of
failure.
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TABLE 5. Sensitivity analysis of cost parameters.

FIGURE 10. Expected cost rate in model 1 as a function of z for the
optimal T ∗ = 17 and τ∗ = 6.

D. SENSITIVITY ANALYSIS
The influence of the cost parameters on the optimal solu-
tions is investigated by performing a sensitivity analysis,
and the results can be observed in Table 5. In the analy-
sis, the percentage of each parameter’s decrease or increase
is −20%, +20%, respectively, while other parameters are
unvaried. Correspondingly, the obtained minimal expected
cost rate for models 1 and 2 are denoted by C ′(T ∗, τ ∗, z∗)
andC ′(T ∗, τ ∗), respectively. The1C and1C ′ are calculated

to be 1C =
C ′(T ∗,τ∗,z∗)−C(T ∗,τ∗,z∗)

C(T ∗,τ∗,z∗) × 100%(C(T ∗, τ ∗, z∗) =

88.7378) and1C ′
=

C ′(T ∗,τ∗)−C(T ∗,τ∗)
C(T ∗,τ∗) ×100%(C(T ∗, τ ∗) =

90.5705), respectively, which are used to compare the sensi-
tivities of cost parameters’ variation.

It can be noted from Table 5 that the minimal expected cost
rate C ′(T ∗, τ ∗, z∗) or C ′(T ∗, τ ∗) increases with the increase
of any cost parameter, and decreases as the cost parameter
reduces. It indicates that the cost parameters affect the min-
imal expected cost rate. For model 1, the optimal inspection
interval T ∗, spare ordering threshold τ ∗, and postponed PR
threshold z∗ have increasing trends with the increases of
Ci or Cr . This finding indicates that in order to minimize
the expected cost rate, less frequent inspections, later spare
ordering, and a larger additional period of time for post-
poned replacement are recommended when the inspection
cost or the value of the spare is high. Moreover, we find
that when Ch increases from 8 to 12 with step size 2, τ ∗

increases strictly monotonically, and T ∗ has an increasing
trend but increasing not monotonically, however, z∗ keeps the
value unvaried. It illustrated that if the holding cost changes,
managers should pay more attention to the time of the spare
ordering. It is also noted that the optimal decisions are the
same when Cf changes from 400 to 600 or Cw changes
from 40 to 60. It shows that the small change of Cf or Cw
will only affect the total expected cost rate, but not affect the
optimal decisions. Analogously, the change ofCp from 160 to
240 will not affect the optimal inspection interval and the
spare ordering threshold, but lead to the optimal postponed
PR threshold having a not monotonically increasing trend.
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It can be concluded that when Cp,Cf , or Cw takes values as
shown in Table 5, the minimal expected cost rate is mainly
affected by Cp, Cf , or Cw, but the inspection cost almost does
not play a role. We also find that the optimal decisions T ∗, τ ∗,
and z∗ have decreasing trends asCs increases. It indicates that
if Cs is high, managers are prone to carry out more frequent
inspections, early spare ordering, and shorten the time limit
for a postponement so as to reduce the expected cost rate.

Form the column given the results of 1C(/%), it can be
seen that the minimum expected cost rate is the most sensitive
to the ordering costs of the spare (including the value of the
spare)Cr , next to the loss per unit time during system failure
shutdown Cs. Therefore, when the external environment is
unstable and the value of the spare changes, managers should
be concerned with decisions for the inspection interval T ,
spare ordering threshold τ , and postponed PR threshold z.
Additionally, managers should seek effective methods and
take measures to cut down the loss per unit time during
system failure shut down so that a lower expected cost rate
can be obtained. For model 2, the sensitivities of the optimal
inspection interval and the optimal spare ordering threshold
on cost parameters are similar to model 1.

Furthermore, an interesting finding is that the sum of the
optimal spare ordering threshold and the expected lead time
of the order is almost equal to the optimal inspection inter-
val. This finding illustrates that when the first inspection is
performed, improving the probability of the spare arriving at
time T ∗ can significantly reduce the expected cost rate. It is
worth noting from Table 5 that the minimal expected cost rate
of model 2, C ′(T ∗, τ ∗), is always larger than the minimal
expected cost rate of model 1, C ′(T ∗, τ ∗, z∗), with the cost
parameters increase or decrease. It illustrates the proposed
joint strategy in our paper is more cost-saving.

VI. CONCLUSION
In this research, we developed a joint periodic inspection
and spare ordering strategy for a multistate competing failure
system subject to hidden failures under a novel assumption:
we allow PR to be postponed when a defect is first detected
and the spare is in stock at an inspection. This is in con-
trast to all previous works in the literature that assume PR
is carried out immediately when a defect is first identified
and the spare has arrived. The proposed joint strategy has
three main benefits. First is that spare parts resources and
maintenance schedules are planned simultaneously can help
to reduce costs. Second is that it offers an opportunity for
adequate planning of other maintenance resources, such as
manpower and equipment, so as to reduce the probability of
poor installation and improve the responsiveness of neces-
sary resources. Third is that better utilization of the system’s
useful life meanwhile reduces the probability of ineffective
early replacement. For the system, two failure modes, i.e.,
a one-stage hard failure and a two-stage delay-time failure,
are considered. Periodic inspections are executed to identify
defects and hidden failures. When a defective or failed state
is detected at an inspection, if the spare is not in stock,

PR or CR has to be delayed until the spare has arrived;
otherwise, PR allows to be postponed for an additional period
of time, but CR is carried out immediately. The optimization
model of the joint strategy is formulated by minimizing the
expected cost rate to find the optimal inspection interval, the
spare ordering threshold, and the postponed PR threshold.
A modified artificial bee colony algorithm is proposed to
seek optimal solutions, and a simulation algorithm based on
discrete events is also presented to illustrate the correctness of
the optimization model. More critically, the traditional joint
strategy in which the instantaneous PR is performed when
a defect is first detected and the spare is in stock is also
modeled, and the proposed optimization model is illustrated
through a numerical example. The results from the numerical
example indicate that allowing the PR to be postponed when
a defect is identified and the spare is in stock at an inspection
is more cost-saving compared to the traditional joint policy.

Also, the sensitivity analysis concluded that: (a) managers
should pay more attention to the optimal solutions when the
ordering costs of the spare (including the value of the spare)
change since it is the most sensitive one; (b) Effective mea-
sures should be taken to cut down the loss per unit time during
system failure shutdown so that the minimum expected cost
rate can be reduced significantly. (c) It is also important
to reduce the inspection cost, preventive replacement cost,
corrective replacement cost, penalty cost, and holding cost
so as to reduce the expected cost rate. The proposed joint
strategy can provide a reference for the maintenance and
spare ordering schedule of a two-stage competing failure
system with hidden failures.

There are some extensions to the current work. Firstly,
extending the model to imperfect maintenance, and mean-
while considering the dependence between hard failure pro-
cess and degradation process since they are more in line
with practical applications; Secondly, it would be beneficial
to extend to multiunit complex competing failure system so
that relax the assumption of one spare unit is ordered and
stored; Thirdly, it is difficult but worth to decide the optimal
PR threshold, CR threshold, and spare ordering threshold by
using real-time condition monitoring data, so that the data-
driven joint optimization of maintenance and spare ordering
policy can be developed.

APPENDIX
The flow chart of the simulation algorithm for model 1 in
Figure 11 is as follows.
First, initialize values for all variables of the model by

using the parameters in Table 2 and Table 3, and initialize
the decision variables T , τ, z. The simulation runs until the
number of iterations q exceeds the threshold value Nmax.
Let EC and EL denote the total cost and length incurred
by the simulation process, respectively. Next, we generate
the random durations X1, X2,X3 and L, therefore, the arrival
time of the fatal shock x1, the end points of two degradation
processes x2, y, and the lead time of the spare ordering L are
determined. Meanwhile, we let t and k refer to the time and
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FIGURE 11. The simulation procedure.

the number of inspections in a renewal cycle, respectively.
Then as the simulation goes: (a) a hard failure may occur
before an inspection at t since t ≥ x1, if x2 > x1, implying
that the degradation process is in the normal state when a fatal
shock arrives at the system; otherwise, if y > x1, indicating
that the degradation process is in the defective state when the
CR caused by a hard failure is required at t; (b) however,
if the conditions t ≥ x1 and y ≤ x1 are satisfied, meaning
that a soft failure occurs before the fatal shock arrives at the
system so that the CR due to soft failure needs to be carried
out at t; (c) if the normal state is detected in the case of
t < x1, then the state of the system in the soft failures mode

needs to further identify by condition t > x2. If it is rejected,
the system is detected at the next inspection time; otherwise,
two possible scenarios are considered as follows: the first is
the degradation process is in the defective state in the case
of t < y so that a PR is required at t; the second is the
degradation process is in the failed state in the case of t ≥ y
and a CR is required at t . (d) when the replacement is needed
at t , the state of the spare is judged by the case of t > τ

or t ≥ τ + L. According to the decisions shown in Table 1,
if t ≤ τ , an order is placed at t and a delayed PR/CR is carried
out at the arrival time of the spare t+L; otherwise, the PR/CR
is delayed to τ + L in the case of t < τ + L, or, the PR is
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postponed to t + z and the CR carried out immediately at t
in the case of t ≥ τ + L. (e) since the system keeps working
when the PR is required at t , let PRT represents the time of
the replacement is performed, the state of the system at PRT
should be further determined. Similar to the above discussion,
there are also three situations: the first is the system still be
in the defective state in the cases of PRT < x1 and PRT < y
so that a PR is carried out at PRT, as stated in events E1, E4,
and E7; the second is a hard failure result in the system fail
in the cases of PRT ≥ x1 and y > x1, and a CR is executed
at PRT, as described in events E3, E6, and E9; the last is a
soft failure result in the system fail in the cases of PRT ≥ x1
and y ≤ x1, or PRT < x1 and PRT ≥ y, therefore, the CR is
performed at PRT, as stated in events E2, E5, and E8. Finally,
we obtain the expected cost rateC(T , τ, z) under the different
combinations of T , τ , and z, which is calculated as the total
cost EC divided by the length EL in the simulation process.
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