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ABSTRACT Air quality conditions are now more severe in the Jakarta area that is among the world’s top
eight worst cities according to the 2022 Air Quality Index (AQI) report. In particular, the data from the
Meteorological, Climatological, and Geophysical Agency (BMKG) of the Republic of Indonesia, the latest
outcomes in air quality conditions in Jakarta and surrounding areas, says that PM2.5 concentrations have
increased and peaked at 148µg/m3 in 2022. While a classification system for this pollution is necessary and
critical, the observation of PM2.5 concentrations measured through the BMKG Kemayoran station, Jakarta,
turns out to be identified as an unbalanced data class. Thus, in this work, we perform boosting algorithm
supervised learning to handle such an unbalanced classification toward PM2.5 concentration levels by
observing meteorological patterns in Jakarta during 1 January 2015 to 7 July 2022. The boosting algorithms
considered in this research include Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost),
Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM). Our simulations have
proven that boosting classification can significantly reduce bias in combination with variance reduction with
unbalancedwithin-class coefficients, with the classification of PM2.5 class values: good 62%,moderate 34%,
and unhealthy 59%, respectively.

INDEX TERMS Boosting, unbalanced classification, PM2.5, XGBoost, AdaBoost, LightGBM, CatBoost.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Steven Li .

I. INTRODUCTION
Data science is an applied science that studies explicitly
and analyzes data. In today’s digital and big data era, data
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science is fundamental because there is so much available
data that can be utilized in decision and policy-making. The
data provides information that can determine important deci-
sions in current government policy-making, especially in the
Sustainable Development Goals policy [1], [2], [3], [4], [5],
[6]. The application of data science to SDGs policies can
directly or indirectly provide data focus so that it becomes
accurate information with technology methods that are as
automated as possible [7], [8], [9]. However, there are often
no ready-to-use formulas, algorithms, or models for specific
data processing. So, a data scientist must have knowledge of
programming that can give his best contribution in support-
ing accurate, permanent, professional, effective, accountable,
efficient, and economical policy making in the utilization of
existing data sources to become information that has added
value, especially in policy towards current SDGs [3], [10],
[11], [12], [13].

One of the most fundamental aspects is urban pollution
which can be assessed with an ambient value of PM2.5 [14],
[15], [16], [17], [18], [19], [20]. The impact of the pollution
produced is that it will undoubtedly make it difficult for the
Penta-helix contributor to creating a sustainable city that will
positively impact career and business opportunities; a safe,
comfortable and affordable place to live will be able to build
a resilient society and economy [21], [22], [23], [24], [25],
[26]. To anticipate this, the Penta-helix contributor needs
to be active in making green public transportation, creating
environmentally friendly public spaces, and planning and
managing cities in an inclusive and participatory way [27],
[28], [29].

More than half of the world’s population now lives in
urban areas. By 2050, that number will rise to 6.5 billion
people, two-thirds of the world’s population. Sustainable
development will not be achieved without significant changes
in building and managing urban areas. The rapid growth
of cities in developing countries, coupled with increasing
urbanization, has resulted in an explosion in the number of
megapolitans. In 1990, there were ten megapolitans with a
population of 10 million or more. As of 2014, 28 megapoli-
tans were home to about 453 million people. Several previ-
ous studies have shown that population density also impacts
pollution levels. In addition, the location factor of an area
also has an essential role in the spread of pollution. Previous
research involved the variables of Dew Point, Wind Speed
[30], Pressure [31], Temperature Relative [32], Humidity
[33], [34], Precipitation [35], [36], [37], and Wind Direction
[38], [39].

A more sophisticated data-driven method is also called
ensemble learning. The basic concept underlying this method
is the integration of several basic models with a combination
strategy to complete the estimation [40], [41], [42]. The
ensemble model is categorized into two, namely heteroge-
neous and homogeneous ensemble models. The heteroge-
neous model can build a base model by training different
learning algorithms or by training algorithms with different
parameter settings but using the same dataset. Meanwhile,

homogeneous models use the same base model on different
training sets.

Many data science studies, especially machine learning,
are related to the environment in urban areas [43]. In addi-
tion, the industrial and commercial sectors also play a role
in exacerbating the condition. Another environmental aspect
of concern is waste management and sanitation. One recent
study discussed using internet of things (IoT) technology and
machine learning to predict industrial waste production [44].
The system successfully predicts waste production indicators
quite well and can provide an early warning system that
allows authorized officers to anticipate leaks in the sewage
system [45]. These environmental studies align with SDG
indicator 11.6 to reduce adverse per capita environmental
impacts through air quality and waste management.

The BMKG is considered a Non-ministry Government
Institution (LPND), headed by a Head of Agency. BMKG
has the mission: to implement government responsibilities
in the sector of Meteorology, Climatology, Air Quality and
Geophysics in line with the prevailing laws and regulations.
Meanwhile, we are interested in analyzing PM2.5, espe-
cially with unbalanced class data, which has never been
performed before in fundamental environmental science top-
ics in Indonesia. The boosting methods such as XGboost,
AdaBoost, and LightGBM can prevent overfitting and opti-
mize computational resources. The remainder of the paper
is organized as follows. ‘‘Recent applications on the Boost-
ing Algorithm’’ section reviews Adaptive Boosting, Gradient
Boosting, XGBoost, CatBoost, and LightGBM. ‘‘Materials’’
section presents our dataset and research location. ‘‘Results
and Discussion’’ describes descriptive statistics and analy-
sis using boosting. Finally, conclusions and future research
directions are indicated in the ‘‘Conclusion and future work’’
section.

II. RECENT APPLICATION ON THE BOOSTING
ALGORITHM
A. ADAPTIVE BOOSTING (AdaBoost)
Adaptive Boosting, abbreviated as AdaBoost, is the first
boosting algorithm successfully developed by Freund and
Schapire in 1999 [46]. AdaBoost focuses on improving per-
formance in areas where the model’s base learner or first
iteration fails. in areas where the model’s base learner or
first iteration fails. AdaBoost uses an iterative approach to
learn from the mistakes of weak classifiers, and turn them
into strong ones, with a Bayesian classifier approach that
minimizes the possibility of misclassification by combining
many weak classifiers (weak classifiers) [47], [48], [49].
The AdaBoost algorithm is an iterative procedure with a
Bayesian classifier approach that minimizes the possibility
of misclassification by combining many weak classifiers.
It starts with constructing a classifier from an unweighted
training sample, for example, a decision tree [50], [51]. If the
sample points from the training data are incorrectly classi-
fied, then the weight of the training data is boosted. Then,
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a second classifier was constructed using a training sample
with a new modified weight [52]. New weak learners are
added to the model sequentially to learn and identify more
complex patterns. The data after each iteration is never the
same, and possible misclassifications are pointed out for the
algorithm to identify and learn. The misclassification weight
is increased so that the next iteration can pick it up. This
process is repeated for the number of iterations specified as
a parameter. AdaBoost combines a number of these weak
learners to form strong learners to achieve better separation
between classes [53], [54].

B. GRADIENT BOOSTING (GBoost)
Gradient Boosting is a boosting algorithm that optimizes the
appropriate loss function [52], [55]. This idea was further
developed by Friedman and called the Gradient Boosting
Machine (GBM) [56], [57]. GBM works by trying to find
newweak learners according to the residualmistakesmade by
previousweak learners. GBMhas an additivemodel approach
which is an iterative and sequential approach to adding trees
(weak learners) step by step. Each iteration must reduce the
value of its loss function to become closer to the final model.
Gradient Boosting works using a gradient descent frame-
work [58]. Gradient descent is used to change parameters
iteratively in minimizing the loss function. In other words,
gradient descent measures the local gradient of the loss func-
tion for a given set of parameters (⊖). Moreover, take a step
towards the downward gradient. After the gradient is zero,
it has reached a minimum. An essential parameter in gradient
descent is the step size determined by the learning rate [59].
If the learning rate is too low, the algorithm will need many
iterations to find the minimum.

The advantage of the Gradient Boosting algorithm is that it
has much flexibility to optimize different loss functions and
provides several hyperparameter tuning options that make the
function very flexible [60]. Also, there is no need for data pre-
processing as it often works fine with categorical and numeric
values as is and can handle missing data, so imputation is
unnecessary. While the weakness is that because the Gradient
Boosting model will continue to be improved to minimize all
errors, this can overemphasize outliers and cause overfitting.
In addition, it is computationally expensive because it often
requires many trees (>1000), which takes up a lot of time
and memory; high flexibility generates many combinations
of parameters requiring extensive grid searches during tuning
[61], [62], [63].

C. EXTREME GRADIENT BOOSTING (XGBoost)
XGBoost is an advanced implementation of an optimized
Gradient Boosting algorithm designed to be highly efficient,
flexible, and portable [64], [65], [66]. XGBoost is a tree-
based algorithm, which sits under the supervised branch of
machine learning. While it can be used for both classification
and regression problems, all of the formulas and examples
in this story refer to the algorithm’s use for classification.

XGBoost enhances the basic GBM framework through sys-
tem optimization and algorithm improvements, following
[67], [68], [69]: (1) parallelized tree-buildingwhere XGBoost
has a sequential tree-building approach using implementa-
tions in parallel [70], (2) tree pruning where XGBoost grows
the tree to max depth and then prunes backward until the
increase in loss function is below a threshold [71], [72], (3)
cache awareness and out-of-core computing where XGBoost
designed to reduce computation time efficiently and allocate
memory resources optimally [73], [74], (4) regularization
is a technique used to avoid overfitting linear models and
tree-based models that limit, adjust or shrink the estimated
coefficients towards zero [68], (5) handling missing values,
and (6) built-in cross-validation whereas XGBoost comes
with this method at every iteration, eliminating the need to
explicitly program this seek and to specify the exact number
of boosting iterations required in a single run [75], [76], [77].

However, XGBoost has very high parameter flexibility so
it requires finding a large set of parameters in the tuning
process [78], [79]. XGBoost is a more regularized form of
Gradient Boosting. XGBoost uses advanced regularization
(L1& L2), which improves model generalization capabilities.
In addition, XGBoost delivers high performance as compared
to Gradient Boosting. Its training is very fast and can be par-
allelized across clusters [73], [80], [81], [82], [83], [84], [85].

D. LIGHT GRADIENT BOOSTING MACHINE (LightGBM)
The LightGBM algorithm uses two new techniques,
Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB), to handle a very large number
of data samples along with a large number of features.
GOSS stores all examples with large gradients and performs
random sampling on those with small gradients. The EFB
algorithm can combine many exclusive characteristics to a
much less characteristic density that can dramatically avoid
unnecessary calculations for zero feature value [86]. The
LightGBM algorithm is a histogram-based algorithm that
inserts continuous feature (attribute) into discrete values [87],
giving rise to faster training speed with higher efficiency and
reduced memory usage [88], [89].

Unlike most decision tree learning algorithms which grow
trees-based and depth-wise, the LightGBM algorithm will
grow trees leaf-wise (best-first). Level-wise will maintain the
balance of the tree while leaf-wise will reduce more losses
by splitting the leaves that experience the most losses. other
words, LightGBM will choose the leaves with the maxi-
mum delta loss to grow so that they tend to achieve lower
losses when compared to the level-wise algorithm [61], [62].
However, although leaf-wise is more flexible, it is also more
susceptible to overfitting. Therefore, leaf-wise is preferable
when dealing with large datasets.

E. CATEGORICAL BOOSTING (CatBoost)
The term CatBoost is an acronym of ‘Category’ and ‘Boost-
ing’ but that doesn’t mean that this algorithm can only handle
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FIGURE 1. SHAP (Shapley additive exPlanation) value.

categorical features but can also support numeric and text fea-
tures. Nonetheless, CatBoost has good handling techniques
for both categorical data and small datasets. The CatBoost
algorithm uses a symmetric tree or oblivious tree [90], [91].
Where at each level of the tree, CatBoost uses the same
features to divide the training sample into right and left
partitions to produce a tree that has a depth of k and exactly 2k
leaves. During training, a set of decision trees is constructed
sequentially. Each successive tree is built at a lower loss
when compared to the previous tree. The number of trees is
controlled by initial parameters to prevent overfitting [92].
If overfitting occurs then CatBoost may stop training earlier
than specified by the training parameters.

F. SHAP VALUES (SHapley ADDITIVE exPlanations)
SHAP (SHapley Additive exPlanations) is a new approach to
the complexity of predictive model results and to explore the
relationship between individual variables for predicted cases
[93]. SHAP is a useful method for sorting effects and break-
ing down predictions into individual feature impacts [94].
The SHAP value indicates the degree to which a particular
feature has changed the prediction, and allows the modeler
to decompose any prediction into the sum of the effects of
each feature value [95]. The SHAP value is used as a unified
measure in measuring feature importance. This Shapley value
is the value of the conditional expectation function of the
original model [96], [97]. Thus, they are solutions to the
equation:

∅i (f , x) =

∑
z′⊆x ′

∣∣z′∣∣! (M −
∣∣z′∣∣ − 1

)
!

M !

[
fx

(
z′
)
− fx(z′\i)

]
(1)

where fx
(
z′
)

= f (hx
(
z′
)
) = E [f (z) |zS |] and S is the

set of non-zero indices in z′. SHAP used to increase the
transparency and interpretability of machine learningmodels.

G. PERFORMANCE EVALUATION METRICS
After implementing a machine learning algorithm, we need
tools to evaluate how well the algorithm is performing. This
tool is called performance evaluation metrics. In this study,
the metrics used for multi-class classification cases are the
F1-score and the Matthews Correlation Coefficient (MCC)
[98]. F1-score, also known as f -score or f -measure, takes
precision and recall into consideration to calculate the per-
formance of an algorithm. The precision and recall values

are obtained from the confusion matrix with the following
calculations:

Precision =
True Positive

True Positive+ False Positive
(2)

Recall =
True Positive

True Positive+ False Negative
(3)

Then, the F1-score is defined as the harmonic mean of preci-
sion and recall which is formulated as follows:

F1 score = 2 ×
precision× recall
precision+ recall

(4)

The F1-score is generally used for unbalanced class cases.
The F1-score range is [0, 1] where this value will indi-
cate how appropriate the classification is with the algorithm.
In other words, this value represents how large and strong the
instances are correctly classified. High precision with lower
recall will give very accurate results but then miss a large
number of instances that are difficult to classify. The bigger
the value means the better the model performance.

The Matthews correlation coefficient (MCC) is an alterna-
tive metric that is not affected by the problem of unbalanced
data. The Matthews correlation coefficient is a contingency
matrix method that calculates the Pearson product-moment
correlation coefficient between actual and predicted values
which is formulated as follows [98], [99], [100].

MCC=
TP · TN−FP · FN

√
(TP+FP) · (TP+FN ) · (TN+FP) · (TN+FN )

(5)

MCC values are in the interval range [−1, +1], with an
extreme value of−1 reached when a perfect misclassification
occurs and a + 1 value for a perfect classification.

III. MATERIALS
The response variable or target class used in the study was
the concentration of PM2.5 in units of µgram/m3. This vari-
able has 65020 observations per hour with 9141 missing
values and 736 irrelevant data. Data labeling will also be
carried out on the PM2.5 variable by categorizing PM2.5
into several categories based on their nature. Labeling is
done manually concerning the ISPU parameter concentration
value category (Air Pollutant Standard Index) written in Law
LHK No.14 Ministry of Environment and Forestry, Repub-
lic of Indonesia. This labeling is determined by the author,
who aims to produce balanced data classes for multi-class
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FIGURE 2. Wind direction in Jakarta on 2022 (Source: https://id.weatherspark.com/y/116847.

classification analysis. The PM2.5 labels used include the
‘good’ category (0 - 28.5µgram/m3), the ‘moderate’ category
(28.5 - 40.5 µgram/m3), and the ‘unhealthy’ category
(>40.5 µgram/m3).
The dataset in this study consisted of dew point, wind

speed, pressure, temperature, relative humidity, precipitation,
and wind direction in Jakarta. The most surprising thing
is that on June 22, 2022, DKI Jakarta celebrates its 495th
anniversary and sadly gets a prize as the city with the worst air
quality and pollution in theworld. The concentration of PM2.5
or air particles smaller than 2.5-micronmeters in Jakarta air is
78.5 g/m3. Jakarta’s air quality is 15.7 times above theWHO’s
annual air quality guideline value. The transportation sector
contributed the most to Carbon Monoxide (CO), Nitrogen
Oxide (NOx), and PM2.5.
Meanwhile, the industrial sector contributed the most to

Sulfur Dioxide (SO2), as well as PM2.5, in a significant
amount. Daily pollution levels are noticeably higher in the dry
season than in the rainy season. The variation in the pollution
level in various urban areas is more significant in the rain than
in the dry season. Jakarta’s leading sources of air pollution are
vehicle exhaust fumes, coal burning, open burning, construc-
tion, road dust, and suspended soil particles. However, gaso-
line and diesel-fueled vehicles accounted for 32%–57% of
PM2.5 levels, although the proportion of on-road vehicles and
off-road emissions has yet to be determined (e.g., logistics
vehicles). Also, the Primary non-vehicle sources accounted
for 17%–46% of PM2.5 ambient air across sampling sites
in both seasons. This portion includes contributions from
anthropogenic sources such as coal burning, open burning,
construction activities (non-combustion), road dust, and nat-
ural resources such as soil and sea salt. Third, Secondary
inorganic aerosols account for 1%–16% of the concentration.

The main source of outdoor PM2.5 concentrations varies
by season and location. Due to variations in local activities
or regional sources of pollution, they depend on weather
conditions (e.g., upwind emissions from neighboring cities).
Figure 2 shows the wind direction in Jakarta during 2022. The
percentage of hours during which the average wind direction
was from each of the four major cardinal directions, exclud-
ing hours with an average wind speed of less than 1.6 kmph.
The light colored areas on the border are the percentage
of hours spent in the implied center directions (northeast,
southeast, southwest, and northwest). It is necessary to divide
the data into training and testing sets to find the optimalmodel
parameter set, which has the right balance between these two
aspects. The training set is used to build a model with some
model parameter settings, and then each model is trained with
a testing set. The testing set contains samples of known origin,
but this classification is unknown to the model. Therefore,
predictions on the testing set allow the operator to judge the
model’s accuracy. The best separation ratio to use is 80:20.
That is, 80% of the dataset goes to the training set, and 20%
goes to the testing set which represents in Figure 3.

IV. RESULTS AND ANALYSIS
A. STATISTICS DESCRIPTIVE AND PARAMTER SELECTION
Geographically, Jakarta is bordered to the west by Banten
Province and the east and south by West Java Province.
To the north, it is bordered by the Java Sea. So, in certain
conditions, Jakarta has fog intensity. Fog occurs when water
vapor undergoes a process of melting or condensing. During
condensation, water vapor molecules combine to create tiny
water droplets in the air. The eye can see mist because thick
water droplets gather to form clouds. Fog is visible because
there is too much moisture in the air, and a very humid area.
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FIGURE 3. Flowchart analysis.

In addition, to make the fog thicker, it must be assisted by
components such as pollution or particles in the air. Water
vapor condenses around the air pollution particles. Fog is
also formed in the sea, often called sea fog. Usually appears
around the sea or salt water. They are formed when water
condenses around the shores of the ocean. Fog can come
suddenly and quickly dissipate depending on the humidity
and temperature of the surroundings. The distribution status
of PM2.5 is also influenced by pressure and temperature. The
direction and speed of the wind are influenced by the forces
produced by the earth, namely the pressure gradient force,
the Coriolis force, the gravity or gravity force, the frictional
force, and the centrifugal force. We performed the dataset
transformation described in Table 1.

Figure 4a shows the faster the wind speed, the faster the
pollutants will move or spread to other locations. Based on
Table 2. obtained p-value< α = 0.05, which means that there
is a statistically significant relationship between features and
PM2.5. However, based on the obtained r coefficient, the dew
point and pressure correlation coefficient are close to zero,
meaning there is no relationship between the two features on
PM2.5.

At the same time, Figure 4b and 4c show that other features
have a weak relationship to PM2.5, where the correlation
coefficient is between 0.25 and 0.5. From these results, it can

be concluded that the dew point and pressure variables have
no effect, so they should not be included in the modeling pro-
cess. Figure 4b explains the frequency distribution; it appears
that the meteorological parameter variables tend not to fol-
low a specific distribution or distribution asymmetry. When
viewed from the distribution slope (skewness), for dew point,
air pressure, and temperature variables, they tend to have a
negative distribution (negative skewness). Meanwhile, wind
speed, relative humidity, and precipitation variables have pos-
itive skewness. In addition, by using boxplots, we can detect
outliers in the dataset shown in Figure 4c.

Most classificationmodels have one or moremodel param-
eters that are used to control formodel complexity. The higher
the model complexity, the greater the differentiating power
the model has, although the risk of overfitting also increases.
Overfitting is a phenomenon that is often seenwhen a training
model performs very well on the sample used for training but
performs poorly on a new, unknown sample, meaning that the
model does not generalize well.

B. USING ENSEMBLE META-ALGORITHM LEARNING
The first stage of data preprocessing is the data clean-
ing process, where defective, incorrect, incomplete, inac-
curate, or irrelevant parts of the data are identified. The
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FIGURE 4. Distribution frequency (A), Boxplot of PM2.5 concentration, and correlation towards PM2.5 (C).

daily hourly observation data of PM2.5 concentration con-
sists of 65020 rows of data, identified 9141 missing values

and 736 irrelevant data. The missing and irrelevant PM2.5
concentration data were deleted to overcome this problem.
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FIGURE 5. Data integration towards ensemble learning.

TABLE 1. Transformation dataset.

Furthermore, data conversion was carried out from hourly
data to daily data using averages. The total data that can

be used is 2358 observations. Then to produce a balanced
class in the PM2.5 concentration category, labeling is carried
out consisting of the ‘good’ category (0 - 28.5 µgram/m3),
the ‘moderate’ category (28.5 - 40.5 µgram/m3), and the
‘unhealthy’ category (>40.5 µgram/m3). To overcome miss-
ing data in the daily hourly observation data of meteorolog-
ical parameters by deleting the data row, except for rainfall
data. In the precipitation data, missing data were resolved
by changing it from missing values (NaN) to 0 with the
assumption that there was no rain during that hour. In addi-
tion, precipitation data containing a value of 8888 indicated
that the data was not measured. A value of 9999 indicated
that there was no data (no measurements were made), so it
was resolved by deleting the data row. Next, data conversion
from hourly to daily data was carried out for numerical data
using the daily average, while for nominal data such as wind
direction using the daily mode. Data integration means com-
bining two or more datasets into a single set for analysis, first
integrating numerical data onmeteorological parameters with
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FIGURE 6. Mean SHAP value.

TABLE 2. Variabel information.

nominal-scale wind direction data. This was conducted due
to differences in treatment in converting hourly observation
data into daily observation data, where numerical data conver-
sion using the daily average (mean) and wind direction data
using the daily mode. The following integrate meteorological
parameter data with PM2.5 concentration data, which has
been converted into daily data. The combined results of the
two datasets will be used in the studywith a total of 2358 data.
Figure 6 explains the conceptual ensemble of learning used in
this study.

In the machine learning method, boosting one of the pre-
dictive algorithms is very promising and can reduce errors in
making predictive models. This study uses several parameter
settings for boosting, as in Table 3. The selected boosting
techniques include XGBoost, Gradient Boosting, LightGBM,
AdaBoost, and CatBoost. The AdaBoost technique initially

assigns the same weight to each data set. Then, it auto-
matically adjusts the data point weights after each decision
tree. AdaBoost gives more weight to items with incorrect
classifications to be corrected in the next round. AdaBoost
repeats the process until the remaining error, or the differ-
ence between the actual and predicted values, falls below
an acceptable threshold. The boosting gradient does not give
more weight to items with the wrong classification and can
optimize the loss function.

XGBoost is a boosting algorithm that can handle large
data sets, making it attractive for big data applications. The
main features of XGBoost are parallelization and distributed
computing. Light GBM has the tree scaled vertically, while
other algorithms have the tree scaled horizontally. Light
GBM is leaf-wise, whereas other algorithms are level-wise.
In order to expand, we choose a leaf with a max delta
loss. When extending the same leaf, leaf-wise algorithms
can reduce more losses and losses than level-wise algo-
rithms. Light GBM is literally ‘‘Light’’ light because it is
fast. Light GBM can handle large data sizes and takes up
little memory when running. Another reason Light GBM
is popular is that it focuses on the accuracy of the results.
Then, CatBoost can be used to create left and right sec-
tions for each tree level and can handle missing values
internally.

The parameters used in the Boosting Algorithm are
generally diverse and different for each algorithm. Using
parameters on the algorithms CatBoost, GradientBoosting,
LightGBM, and AdaBoost use the default parameters by
setting n_estimators = 100 and tuning the learning rate.
In contrast, theXGBoost algorithm is strong enough to handle
all kinds of data irregularities. However, building the best
model using XGBoost is problematic because this algorithm
uses several parameters. In order to improve themodel, tuning
parameters must be performed. In line with this, Table 4
shows the boosting accuracy as well as runtime training and
prediction.

From the Table 4, we can see that XGBoost has the most
superior performance in terms of both accuracy and compu-
tation in training and prediction.
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FIGURE 7. Feature impact for each class impact on model output: Class 0 (a), impact on model output:
Class 1 (b), and impact on model output: Class 2 (c) 4.3 model performance evaluation.

C. FEATURE SELECTION
Figure 6 shows the average impact of features on the
XGBoost model, which is the best model, in predicting
PM2.5 concentration categories using SHAP Value. The fig-
ure shows that the wind direction has a very small contribu-
tion to the model. So it can be concluded that this feature is
considered not important for the model to make predictions.
Figure 7 shows the meteorological parameters that tend to
cause the model to predict ‘‘good’’ PM2.5 concentrations
include higher wind speed, temperature, higher precipita-
tion, and higher relative humidity. Furthermore, meteoro-
logical parameters that tend to cause the model to predict

‘‘moderate’’ PM2.5 concentrations include higher tempera-
ture, higher relative humidity, lower wind speed, and mod-
erate rainfall levels. Meanwhile, meteorological parameters
that tend to cause the model to predict ‘‘unhealthy’’ PM2.5
concentrations include lower rainfall, lower wind speed,
lower relative humidity, and a higher temperature.

Then after modeling using the Boosting algorithm, a per-
formance evaluation of the model is carried out to evaluate
how well the algorithm is performing as shown in Table 5.
The following table shows the results of the evaluation of the
classification model with a model accuracy of 54%. As for
the acquisition of F1-scores between the ‘‘good’’ class and
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TABLE 3. Boosting parameter.

TABLE 4. Boosting accuracy.

the ‘‘moderate’’ and ‘‘unhealthy’’ classes have quite a big
difference. The F1-score value obtained in the ‘‘good’’ class
is 62%, while in the ‘‘moderate’’ class is 34% and in the
‘‘unhealthy’’ class is 59%. This shows that the classification

TABLE 5. Classification report.

model can predict more accurately for ‘‘good’’ PM2.5 con-
centrations than ‘‘moderate’’ and ‘‘unhealthy’’ PM2.5 concen-
trations. When viewed from the precision and recall values,
the ‘‘good’’ class obtains a precision value of 0.58 mean-
ing that 58% of the PM2.5 concentration is predicted to be
‘‘good’’ correctly, and a recall value of 0.66 means that there
is 66% ‘‘good’’ PM2.5 concentration. correctly predicted to
have ‘‘good’’ PM2.5 In addition, the Matthews Correlation
Coefficient (MCC) value of 0.308493 is obtained which is
closer to −1. This means that the classification model still
produces a high level of misclassification in predicting the
PM2.5 concentration category.

V. CONCLUSION AND FUTURE RESEARCH
The most powerful factor behind the success of XGBoost is
its scalability across all scenarios. While the optimal param-
eters of the model depend on many scenarios, especially in
the XGBoost algorithm, it is imperative to tune them to get
a better model. Some notes should be taken into account
regarding the tuning parameters in XGBoost, namely: Under-
standing the Bias-Variance Tradeoff. Most of the parameters
in XGBoost are about the bias-variance tradeoff. When we
allow the model to become more complicated (i.e., more
in-depth), it has a better ability to fit the training data,
resulting in a less biased model. However, such complicated
models require more data to fit. For that, it is necessary to
do parameter tuning to find out whether each parameter will
make the model more conservative or not, which is to control
overfitting. There are generally two ways to control over-
fitting in XGBoost: one is to control the model complexity
directly, and the other is to add randomness to make the
training resistant to noise. It can also reduce the step size.

Solve the problem of imbalanced datasets. This is because
a highly imbalanced dataset will affect the training of the
XGBoost model. There are two ways to improve it, and if we
only look at the overall performance metric of the prediction,
then we can balance the positive and negative weights and
use AUC for the evaluation metric. However, suppose we are
concernedwith predicting the exact probability in such a case.
In that case, we cannot rebalance the data set but instead can
tune the max delta step parameter to a finite number (e.g., 1)
to aid convergence. We have provided more information for
parameter settings in Table 6 that can be used by those who
want to use the same methods.
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TABLE 6. Boosting parameter.

Future research is more appropriate to make a comparison
between the mathematical models or algorithms that were

TABLE 6. (Continued.) Boosting parameter.

adopted in the analysis and use a longer range of PM2.5 series
in minutes, as in this study we used hours. and determine the
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pros and cons of each one in relation to climatic parameters
to make data interpretation and statistical analysis for the data
more accurate.
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