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ABSTRACT This paper offers a detailed analysis as well as a tuning and discretization approach of the
presented frequency-fixed dual second order generalized integrator based phase-locked loop (FFDSOGI-
PLL) for three-phase power systems. The method combines different single- and three-phase PLL
approaches by ensuring high phase- and frequency tracking properties. The comparison with the standard
frequency-variable DSOGI-PLL and three different recently published three-phase frequency and phase-
angle estimation systems shows, that this approach gives a fast and stable phase and frequency detection of
the grid voltage with very low computational burden. The results are applicable to, for instance, photovoltaic

or frequency converters or active power filters.

INDEX TERMS Phase-locked loop (PLL), frequency-locked loop (FLL), SOGI, synchronization.

I. INTRODUCTION

Synchronizing converters with the electrical grid voltage is
essential for their desired tasks, e.g., for a changeable power
factor [1] or for harmonic compensation with active power
filters [2]. Therefore a system is needed that calculates the
frequency and/or phase-angle from the measured supplying
voltage, independent of distortions [3].

A phase-locked loop (PLL) is a closed-loop phase tracking
method that is used for synchronization due to its simplicity,
fast dynamic response, and robustness [4], [5]. It is commonly
realized in dg-coordinates by Park’s transformation [6]
as a synchronous reference frame-PLL (SRF-PLL) which
is shown in Fig. 1 [7]. Since the grid voltage can be
disturbed and systematic or unsystematic frequency- and
phase variations can occur, a lot of PLLs “with enhanced
filtering capability” [8] were presented in the past. All of
them have in common that an additional filter is required.
Based on this, three main strategies can be identified: using
an in-loop or pre-loop filter, using an infinite (IIR) or a finite
impulse response- (FIR) filter and using a frequency-adaptive
or frequency-fixed filter. In short, for three-phase PLLs it
can be summarized that in-loop filters have to handle one
signal by higher tuning effort and less stability or tracking
speed, whereas pre-loop filters are confrontated with two
or three signals with higher implementation complexity [8].
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FIGURE 1. SRF-PLL scheme with ANS from [8].

The advantages of IIR filters are few calculation steps and
low memory size, since they are based on digitalized analog
filters or resonators in the time domain. The FIR filters,
which are based on calculations in the frequency domain,
can detect disturbances more precisely, but have a higher
complexity. Moreover, the memory size increases if the step
size decreases due to the storage of a half or full period [9].
Frequency-variable filters need the frequency from either the
PLL itself or from an additional system. The former leads
to reduced dynamics and the latter to higher implementation
and computation efforts. By using frequency-fixed filters,
amplitude and phase errors occur which is why an additional
recalculation is needed [8], [10].

With these requirements and, beside several methods like
the moving average [11], notch [12], all-pass [13], repetetive-
control [14], Kalman [15], Hoo [16], DFT/SFT [17], [18],
[19], [20], [21] or complex-coefficient-filter [22], [23], [24],
the use of second order generalized integrators (SOGI) [8],
[10], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]
as pre-loop filters in single- and three-phase applications has
been highlighted in the past.
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A frequency-variable SOGI-PLL was presented first in [25]
and analyzed in detail in [27]. The “Frequency-fixed SOGI-
PLL” (FFSOGI-PLL) approach was introduced in [28] while
the “Derivative Elements-PLL” (DE-PLL) was presented
in [35]. These single-phase PLLs (SOGI-PLL, FFSOGI-
PLL and DE-PLL) were compared and discussed in [29].
For three-phase systems a frequency variable method was
introduced as ‘“Dual SOGI-PLL” (DSOGI-PLL) in [26],
where two SOGI-structures generate four output signals from
the input voltage’s «- and B-component. With these signals
it is possible to calculate the voltage’s positive sequence
(PS). Frequency-fixed equivalents were presented in [30] as
a “Decoupled DSOGI-PLL” and in [31] as a “Frequency-
fixed DSOGI-PLL” (FFDSOGI-PLL). Both approaches use
a phase compensation for off-nominal frequencies. The first
compensates in front of the PLL and, in consequence,
it is not possible to determine the PS without additional
effort. The second compensates the phase error at the end
of the PLL by retaining the PS with an amplitude error
compensation [31], which is why it is a noteworthy approach.
However, an analytical description as well as a tuning
approach and a detailed comparison with a performance test
is missing.

This paper’s aim is to provide a fast and stable frequency
and phase-angle estimation system which yields persuasive
results compared to other recently puplished approaches.
For this purpose, a detailed analysis of the FFDSOGI-PLL
and a disturbance suppression based tuning approach with a
concluding experimental comparison to advanced PLLs with
IIR and FIR filters are given. Starting with the principle of the
DSOGI-PLL in section II, section III will introduce a detailed
analytical description, a tuning and a digitalization approach
of the FFDSOGI. This will be compared with the DSOGI-
PLL for different experimental test scenarios in section IV.
The results of the FFDSOGI-PLL in comparison to three
advanced frequency and phase-angle estimation systems will
be discussed in section V and summarized in section VI.

The main contribution of this paper is an in-depth
mathematical analysis of the three-phase FFDSOGI-PLL,
a tuning approach of the SRF-PLL which is a direct outcome
of the mathematical model, a discretization approach for a
fast implementation and a comparison to other PLL systems
with the focus on tracking behavior and computational effort.

Il. FREQUENCY-VARIABLE DSOGI-PLL

A. SRF-PLL WITH ANS

The SRF-PLL in Fig. 1 uses two orthogonal input signals
Ve and vg, which will be transformed with an estimated
phase-angle 6 toa representation of the difference between
the real phase-angle 6 and 6. Controlling this value yields
the estimated frequency &, where its time integration
provides 6 = &r. For a better performance, an amplitude
normalization scheme (ANS) and a feed-forward component
g can be added [8], [36]. A low-pass filter for the ANS
is optional and will not be applied in this paper. The SRF-
PLLs performance depends on the accuracy of the input, the
dynamic properties and the stability criteria of the whole
system [8].
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FIGURE 2. General SOGI scheme.
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FIGURE 3. Bode plot of the SOGI-Transfer functions.

B. BASICS OF SOGI

In Fig. 2 a SOGI with & as a tuning frequency and k as
damping factor is given. Its closed-loop transfer functions can
be determined by

G V() kos (1a)
O =T = R kot ot a

/ ~2
Gy () = 2 ko (1b)

vis) 24 kas+ o2

The bode plots of G(s) and G,(s) in Fig. 3 show example
values of k. As can be seen, v/ and v;, are exactly in phase
and quadrature phase with the input and have no amplitude
losses if @ matches w. Higher frequencies and, for k <
1 also lower frequencies, will be damped (compare G,(s) in
Fig. 3). Therefore it receives attention as an SRF-PLL pre-
filter. For a detailed analysis, a sinusoidal excitation of v(¢) =
sin(wt) can be assumed. After Laplace transformation of
v(t), multiplying with (1a) and (1b) respectively and inverse
Laplace transformation with some rearrangements, the SOGI
yields:

, kow .
V() = sin (wt — 8)
\/kzé;)zwz + (@2 — wz)z
— Asin (,/1 — k24 &t — ¢1)e%‘5’ (2a)
, —ké&)?
v, ) = cos (wt — 8)

\/kzc?ﬂa)z + (d)2 — a)2)2

+ Acos (,/1 — K2/4 oot — ¢2)e%”3’ (2b)

34933



IEEE Access

B. Hoepfner, R. Vick: Three-Phase Frequency-Fixed DSOGI-PLL With Low Computational Effort

"yl

Tﬁc»D»CfaC»!%/
VEF 8 @

06,3 7JFF pa

L Sl

abc

FIGURE 4. Three-phase FFDSOGI-PLL with PSC and ANS.

with
W — 2

sin (§) = . 3)
\/kzé)za)z + (@2 — w2)2

The Parameters A, ¢ and ¢ affect the amplitudes and phases
of the oscillating terms which converge to zero with a time
constant T = 2/k®. In steady-state conditions (@ = w,
t > 1) the phase-shifting term § becomes zero and the
amplitudes of v/(¢) and V/,(¢) are equal. Note that a smaller
k leads to higher damping of harmonics, but also to a higher
settling time of transients.

C. POSITIVE SEQUENCE CALCULATOR

In case of unbalanced grid conditions, the PS of the supplying
voltage has to be determined. A positive sequence calculator
(PSC) uses the principle of symmetrical component calcula-
tion by Lyon [37], which can be expressed as

v, R a  a’l[va .

+ 2 —1£E

v | = 3 a 1 a V|, a=e3 )
+ 2

Ve a a 1 Ve

7]

For the SRF-PLL, the PSC has to be applied in « and B
coordinates. The multiplication of the Clarke transformation
with (4) and Clarke’s inverse leads to

[Tus] = [Tepo] [Tuse] [Tepo]

1 1 efj%” 0

== |ei3 1 0 )
20 0 0
with
S I Vo V)
[Tupo] = 310 V32 =32 . (©6)

12 172 1/2

Instead of shifting each phase by 120°, a rotation of 90° of v,
and vg suffices for calculating their positive sequence [26],
and from (5) follows

Vo L[ 1 —e 137 [,
il=ales B 0
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A SOGTI offers this rotation with harmonic damping at once
and can be used for the PSC. The whole system, including
two SOGI as pre-filters, the PSC and the SRF-PLL with ANS,
is presented in [31], Fig. 2.

Ill. FREQUENCY-FIXED DSOGI-PLL

The idea of the frequency-fixed approach is to replace
the tuning frequency w by a fixed wy while compen-
sating any phase errors that may occur. The resulting
model is depicted in Fig. 4 and explained in the
following. To examine the behavior of the FFDSOGI-
PLL the signals vy (f) = Vysin(wt) and vg (1) =
—Vgcos (wt) are assumed to excite both SOGI, which
are tuned to a fixed frequency wy. Applying this
to (la) and (lb) gives after mathematical manipula-
tions

kwow sin (wt — Sgg)

Vop o (1) = va( (82)

\/kza)(%a)2 + (a)g — a)2)2
—kawyy;
—Asin (,/1 — k2/4 wot —¢1) e 2 )
ka)é cos (wt — Sff)
\/k2 (0 —w2)2
—kwqt
1A cos (,/1 — K4 wot — ¢2) 620) (8b)
—kwow cos (wt — Spf)
\/k2 (0 —w2)2
wQ 2 koot
A 22 cos (/1 = ks ot 2
+ wcos( /4 wo +¢3)e )

80

VFFpa 1) = Vy (

—kwg sin (ot — 8pF)
2
\/k2 + (w5 — @?)
—kawqt
A—' V1 —k2/4 wot — 7
+ - sm( /4 wo ¢1)e )

(8d)
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FIGURE 5. Error of the approximated amplitude K.

with
) w? — a)(%
sin (6pp) = > (9a)
\/kzw(%wz + (a)(z) — a)z)
kwwq
A= (9b)
\/kza)zw(z) + (a)g — a)z)z,/ 1 —k2/4
21 —k2/4 (0? — o
tan (¢1) = i (a)2 “0) (9¢)
k (a) + wo)
kza)(% +2 (w2 — a)g)
t = 9d
an (¢2) he? i (9d)
kK2w? =2 (w2 — a)g)
tan (¢3) = (%e)

2ka?/1 — k2/4

By comparing (8a) with (8b) and (8c) with (8d) it
can be determined that their amplitudes Vi, are not
equal in steady state. Actually, if o differs from
o, VléF,oz = %VF/F,pa and VléF, %VI:’F, B
If a frequency drift occurs with unbalances, differ-
ent PSC amplitudes and, as a consequence, second
order ripple would appear in the SRF. To handle this
problem, an amplitude adjustment equal to [28] will
be suggested by multiplying the quadrature signals
with ®/wo.

A. POSITIVE SEQUENCE WITH FFDSOGI

With the suggested amplitude adjustment and by applying (7)
- (9e), the output signals of the PSC are

[v;e (t)i| 1 [ng’a 3) -V%F’pﬂ (t)j| [ 1 } . (10)

vg’é ) D) vi:F’ﬁ (t) vi:F’pa (1) 0%0

Assuming ® = @ + Aw, (10) can be expressed as:

. Vo + Vs .
Va.e () = KFF[QT/S sin (wt — 8gF)

Aw . wot
+ Vg sin(@f = 8) + Ta (Ve 2 | (11a)

. V, V
Vg e (1) = —KFF[% cos (wt — 8gp)

—kawpt

A
+Va2—wcos(a)t—8pp)+Fﬁ (e 7 ] (11b)
0]
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FIGURE 6. Error of the approximated phase compensator in degree.

where

kwow
Kpr = . (12)

\/kza)%a)z + (a)(z) — w2)2

Due to irrelevance of the exact expressions of the oscillating
and decaying terms, both are summarized as I'y(¢) and 'g(z)
and decay to zero with a time constant 7, = % As can
be seen from (11a) and (11b) with (9e), a phase Sf‘lift OFF 18
present if the input frequency w does not match wy.

In addition, if the estimated frequency @ is not equal to
w, two terms with a dependency of %—Zj occur, which would
lead to unbalances if the input voltage is also unbalanced.
Furthermore, the amplitudes of both expressions (11a) and
(11b) depending on the frequency difference as can be seen
in (12). If a recalculation of the amplitude is required, (12)
can be approximated with

2 (wy — a))2
B k2w

for small deviations of w over wy. The error of this
approximation is depicted in Figure 5.

Kpp = +1 (13)

B. ANALYSIS OF THE FFDSOGI-PLL

By applying the Park-transformation with an a- to g-axis
alignment to (11a) and (11b) with 0. = &t — Spp and
Orr = wt — OfF respectively, the d- and g-component can
be calculated as:

vq (t) = V cos (GFF - ée) + D4, aw (2)

kawgt

T Tg(e 2o (14a)
vq (1) = Vsin (91:1: - ée) + Dg, a0 (1)

—kawpt

+Tqg@®e 2 (14b)
where
V= ke Ve er Vs (15a)
Aw (Vy + Vg .
Dy, aw (1) ZKFF%(QT cos ((w— @) 1)
@ cos ((w + @) 1 — 25FF)) (15b)
Aw (Vo + Vg . .
Dy nw (1) ZKFF%(QT sin ( (0) - w) ’)
VY i (04 ) - 23FF)) (15¢)
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FIGURE 7. Small-signal model of the FFDSOGI-PLL.

and the amplitudes of the decaying terms are summarized
as I'q () and T'q (r). Under locked conditions cos(Ggr —
éé) = 1 and sin(Ogg — 0}) = Opp — 9; respectively, for
which vq (¢) yields the amplitude and v (¢) the systems phase
error information. Note that unbalances with a frequency
drift lead to disturbances Da,, (t), where their influence is
marginal because of Aw < 2w. Moreover, higher frequency
conducted distortions respectively harmonics could lead to
off-nominal conditions. To examine their influence it is useful
to assume a positive sequence harmonic of order 7 with
Vh sin(hot + ¢yn) and —V;, cos(hwt + ¢n). Processing this to
equations (8a)-(14b) results in

h+1
Dy (1) = W

[VEE, ph|
x cos((h — Dt + Sppn + ¢n) (16a)
h+1
Dgn (1) = Vh |VEE, phl
x sin((h — Dt + 8pp.n + ¢n) (16b)
where
1) kw(z)
[VEF, ph| = — =
@o \/k2h2w(2)a)2 + (a)2 — h?e?)
and
k
[VEE, ph| = (17

K22 + (1 — h2)?

respectively, if ® = & = wy. From (16a) and (16b) it is
obvious that, e.g., a PS of a third-order harmonic! would lead
to second-order ripple. Note that a negative sequence yields
a h+ 1 oscillation with a % amplitude. The frequency drift
and the harmonic term can be summarized to a combined
distortion D(e) () = D(e),Aw (t) + Die),n (), Where (o)
can be replaced by d or q. Because of the low-pass filter
characteristic, a phase step will be delayed with 7,. From
(14b) it can be seen that Opp — 0. will be summed up with
Dy (). With respect to the ANS, the g-axis can be expressed
in the Laplace domain as [28]

Va (5) = (OFF (5) — e (5)) + D}y (s) (18)
with
_ 1 , . Dq (1)
O ) =0 9) . Dy ) = == W

IFour wire systems can contain unbalanced third-order harmonics.
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FIGURE 8. Discretization scheme of the FFDSOGI.

From (9e¢) it is known that O and, hence, 6, includes a phase
drift of —dpr if w does not match wq. Since the European
standard EN 50160 strictly regulates the frequency with a
maximum deviation of 2.5 Hz and a nominal frequency of
50 Hz, (9¢) can be expressed as

2 _ .2
w wq

Srr = (20)

kwow

and can be recalculated by replacing w with @ or due
to better harmonic behavior, with the integrational control
part w; as suggested in [28] and Fig. 4. The error between
the exact and the approximated solution of Spp is depicted
in Fig. 6. Summing up the recalculated §gg; with 6. yields
the estimation of the real phase-angle 6. Since w; has a
settling time, the phase compensator affects the phase-angle
estimation with

OFFi = iAa)i = pAwi, Awj= wi— wy 21
kwo

as shown in [29]. By comparing the analysis with [28]
and [29] it is obvious that the FFDSOGI-PLLs dynamic
behavior is quite similar to the one of the single-phase PLL.
Fig. 7 shows the small-signal model which can be derived
from (18), (19) and (21). It is identical to the one of the
FFSOGI-PLL [29].

C. DIGITALIZATION OF FFDSOGI

For discrete systems with a step time 7, the transfer
functions (la) and (1b) have to be converted from Laplace-
to Z-domain. For this purpose it is common to use either
the explicit or implicit Euler or the Tustin method. It is
known from [25] that the latter, in which the frequency
parameter is replaced by s = (% ;_—}), yields the best results.
Applying this to (1a) and (1b) with a substitution of @ by
wy yields

)
G = by — (22)
1 —a1z7! —arz
142771 4+ 272)0.5w0T.
Gy (2) = bo( — ) —— (23)
1—aiz7' —apz
where
2kwoTs
by =
2ka)OTs + (wOTs)2 +4
8 — 2(woT5)?
ay =
' DkaoTs + (woTs)? + 4
2kaoTs — (woTs)? — 4
ar = woTs — (woTs) 24)

B 2kwoTs + (CUOTS)Z + 4
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FIGURE 9. Experimental setup with TMS320F28379D DSP.

With respect to the amplitude adjustment, a discrete imple-
mentation scheme, depicted in Fig. 8, can be derived. Note
that all coefficients in (24) are constants. This represents a
first advantage over the original SOGI, since its coefficients
have to be calculated during every computation cycle.
However, it will be slightly mitigated due to the remain-
ing multiplication with w; and the phase compensator’s
calculation.

D. TUNING OF THE FFDSOGI-PLL

From Fig. 7 the closed loop transfer function of the
FFDSOGI-PLL is determined with

(s
0 (s)

D>
N

Gl (s) =

Lky + pki)s + ki
= - - - (25
§7 4 (kp + 2057 + (ki + kp s + ki

The third-order polynomial represents a stable system, if the
following Hurwitz criteria are fulfilled [28]:
1
D ky + Tpk2> 0
T )
2) kpki + o™ +T§ >0
ki ko ok

3) o kpki+%+é > 0.
Since 7, > 0 and negative values of k, and k; are
nonsensical, it can be concluded that the system is always
stable. This is a second, distinct advantage over the DSOGI-
PLL. By separating the pre-filtering- and rearranging the

remaining term into the standard second-order form, (25) can
be rewritten as

1 twn+ rpa)ﬁ)s + w?

G (s) = s+ 1 8+ 20ns + 02 (26)
with
kp =2¢wn, ki = a)rz1
It is common to set the damping term ¢ = 1/+/2,

which ensures a tradeoff between overshot and settling
time. In [28] a natural frequency of w, = 2732 Hz
was presented. However, this leads to poor behavior during
harmonic excitation [29]. If a defined attenuation of a specific
harmonic order Atty, at a frequency hw is needed, w, can be

VOLUME 11, 2023
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determined by solving
L 0Gho) | _ k1 k
Yh 2 e+ (1 m2)?

(2¢wn + 1) (h — Djow + w?
—(h — 1)?w? 4+ 2t wn(h — Djo + ©?

Atty

27)

which can be obtained by (16b), (17) and (26). By comparing
(1a) with (26) it can be derived that k = 2¢ = +/2 would
be a suitable choice. However, with a closer look at Fig. 3
it becomes clear that k < 1 yields to a slightly DC-offset
damping, which is another small advantage over the DSOGI-
PLL.? If a third harmonic order has to be attenuated with
Att3 = —20dB and a pre-filter gain of k = 1/+/2 is chosen,
(27) yields a natural frequency of w, = 2721.975 Hz.
A value of k = /2 as suggested in [26] leads to w, =
2716.877 Hz. The small signal models simulation result for
a phase jump of 20° with the former parameter set is depicted
in Fig. 11a.

IV. EXPERIMENTAL RESULTS
Following the detailed analysis of the FFDSOGI-PLL,
this section compares it to the DSOGI-PLL from [26]
by implementing the digital conversion from Fig. 8 in a
TI-TMS320F28379D digital signal processor. An internal
voltage source loop was programmed to generate four test
scenarios:
1) aphase jump of 20° (Fig. 11a),
2) afrequency jump of 2.5 Hz (Fig. 11b),
3) a20 % PS third harmonic injection (Fig. 11c),
4) a 80 % voltage sag (Fig. 11d),
The source’s results are read sequentially from two
FFDSOGI- and one DSOGI-PLL loops with chosen sets of
parameters
FE1: k =1/+/2 and w, = 2721.975 Hz,
FE2: k = /2 and w, = 2716.877 Hz,
DSOGIL:  k = 2.1 and w, = 2721.885 Hz [27]°
and an overall sample time of 50 ps. The source voltage, the
source and estimated frequency as well as the phase-angle
difference (9 — ) are shown in Fig. 11. Additionally, Fig. 11a
includes the simulation results of the small signal model of

2k < 1 for DSOGI would lead to unacceptable settling times.
3The DSOGI parameter set was determined to ensure Att3 = —20dB,
which is why it is comparable to the FF,1/FF,2 parameter.
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FIGURE 11. Results of two different tuned FFDSOGI-PLLs (red — k = 1/+/2, blue — k = ~/2) in comparison with the DSOGI-PLL (gray).

Fig. 7 with the FF,1 parameter set. After observing the test
scenarios, four fundamental statements can be made:

1. Compared to the DSOGI-PLL, all results show an equal
or better performance with the FFDSOGI-PLL under stable
conditions for all test scenarios.

2. Fig. 1la reveals that the experimental result nearly
perfectly matches the simulation from Fig. 7, which is a
convincing verification of this paper’s analysis.

3. During the harmonic injection, all PLLs have an
oscillating phase error of nearly 0.02 rad (Fig. 11c). That
represents —20dB of the input’s 20 % harmonic content,
which validates equation (27).

4. By determining the execution time, it can be observed
that both FFDSOGI-PLLs are faster, since they process with
1.78 s and the DSOGI with 2.13 ps.

V. COMPARISON WITH ADVANCED 3~ PLL
Section IV show that the frequency-fixed approach is very
fast and stable. Therefore, the FFDSOGI-PLL (FF,1) will be
compared with advanced three-phase frequency and phase
angle estimation systems which were published in the recent
past and briefly presented in the following.

The ‘“‘enhanced SOGI frequency-locked loop PLL”
(eSOGI-FLL-PLL) in [38] provides a DSOGI-related
approach where two SOGI structures yield four output signals
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to apply a PSC. However, instead of the PLL’s estimated
frequency, an extra FLL was applied to the SOGI tuning and
a variable gain improves its transient performance. Another
approach is the “‘enhanced transfer delay frequency locked
loop” (ETD-FLL) from [39]. By using relationships between
the grid voltage and its delays, a doubled structure yields
four signals to calculate the PS equal to the FFDSOGI- or to
the eSOGI-FLL-PLL. However, it was not specified how to
estimate the phase-angle which is why the inverse tangent was
used. The “cascaded delayed signal cancellation frequency
detection method” (CDSC-FD) from [40] uses multiple
cascaded transfer delays with adjustable delay length as filter.
For that, an additional frequency detector will be applied.
To determine the phase-angle from the filtered output signals,
a notable inverse tangent approximation was presented.

These PLL methods are tuned to give a tradeoff between
fast response and high disturbance rejection which is why
they are comparable to the presented tuning method.

The comparison will be performed in the same manner as
in section IV, however, due to the increased computational
burden, with a sample time of 200ps (fy = SkHz) and
with four more test scenarios to get a more comprehensive
validity*:

1-4) same scenarios as in section IV (Fig. 12a-12d),

4For reasons of clarity it was decided not to show the o8 signals.
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FIGURE 12. Experimental comparison of the FFDSOGI-PLL (black) to the eSOGI-FLL-PLL (red), ETD-FLL (magenta) and CDSC-FD (blue).

5) unbalance of +15 % and -80 % (Fig. 12e),
6) two DC-offsets of 10 (Fig. 12f),

7) 25 Hz/s frequency ramp (50-52.5 Hz) (Fig. 12g),

8) scenario 5) with a frequency jump of 2.5 Hz (Fig. 12h).
Moreover, a performance test of all systems with a sample
frequency of fy = SkHz and 10kHz was carried out.
The experimental setup is depicted in Fig. 9 and the
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results are presented in Fig. 10. It will be illustrated that
the FFDSOGI-PLL is the most efficient system and that all
SOGI systems are distinctly faster than the delayed one.
The latter shows a dependency on f; which can be explained
with more delay steps that will be needed for the same
time delay. The experimental results can be interpreted as
follows:
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1) By observing Fig. 12a, it can be ascertained that the
settling times for the frequency of the FFDSOGI and eSOGI
are close together, where the ETD is faster and the CDSC
slower. The phase-angle estimation of the eSOGI and CDSC
have long settling times. The ETD shows the best results,
followed by the FFDSOGI.

2) The frequency jump (Fig. 12d) shows again a fast
frequency decay for the ETD, followed by the FFDSOGI.
The eSOGI is slightly and the CDSC much slower. The ETD
shows the best results for the phase-angle estimation whereas
the eSOGI and the CDSC (for the back step) have a long
settling time. The FFDSOGI is a good compromise among
the systems.

3) The delayed systems yield full harmonic cancellation
after decaying, whereas the SOGI based systems have
remaining oscillations (Fig. 12c). The eSOGI has less
damping in frequency and a slight steady-state error in phase-
angle estimation.

4) Observing scenario (Fig. 12d) reveals a large frequency
deviation and phase-angle oscillations of the ETD. The other
systems have similar settling times, whereas the CDCS has
less overshoots.

5) Fig. 12e again shows a poor behavior of the ETD. The
eSOGI frequency oscillates and the CDSC settling time is
long. The FFDSOGI shows the best results.

6) With its full DC-Offset cancellation, the ETD yields the
best results followed by the FFDSOGI (for the frequency,
Fig. 12f). For the phase-angle estimation the eSOGI has a
slightly better damping than the FFDSOGI. The CDSC shows
a poor DC behavior.

7) A similar frequency behavior can be seen for both
SOGIs in Fig. 12h, whereas the CDSC jumps and the ETD
oscillates with less steady-state error.

8) The unbalances with a frequency drift yields the
combination of the frequency and phase-angle estimation
results. The ETD shows a large frequency deviation and
phase-angle oscillations. The eSOGI has an unacceptable
phase-angle settling time. The CDSC shows the best results
followed by the FFDSOGI.

In summary, it can be stated that the FFDSOGI-PLL yields
good results for all test scenarios by retaining a very low
computational effort which is why it is a superior choice for
applications with high computational load.

VI. CONCLUSION
An in-depth analysis of a three-phase frequency-fixed
DSOGI-PLL has been presented in this paper. From an
exhaustive mathematical description a parameter-tuning and
a digitalization approach was given. The experimental sce-
narios showed that the FFDSOGI-PLL has certain advantages
towards to the standard DSOGI-PLL and advanced frequency
and phase-angle estimation systems which where published
in the recent past. The presented PLL can be tuned with
the focus on harmonic suppression by retaining an improved
dynamic behavior.

It was demonstrated and reasoned that the FFDSOGI-
PLL is the fastest system for micro controllers which
yields persuasive results in all test scenarios as shown
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in Figures 10 and 12. Especially if phase- or frequency
jumps, voltage sags or unbalances occurs, the FFDSOGI
shows good results. To enhance the tracking performance
of this PLL, further studies could focus the DC-rejection
capability which is comparable to other methods but still
improvable. Furthermore, like all presented PLLs, this
method is not able to maintain the frequency and phase-angle
if a permanent voltage loss occurs as a result of a grid fault.
However, the FFDSOGI-PLL can unhesitatingly be used as a
frequency and phase-angle detection system for three-phase
applications, especially with high computational burden like
active power filters or photovoltaik converters with additional
grid services.

The investigations of this paper also reveals, that FIR
methods (like the presented ETD and CDSC or others like
the DFT/SFT or MAF based PLLs) can provide notable
disturbance rejection results. However, due to the storage of
a half or full period of either the fundamental- or different
harmonic components, a higher computational burden is
given, which can be critical for micro controllers. In addition,
with increasing sampling frequency, it needs increasing
number of delay steps for the calculation which leads to a
dependency of computation time and sampling frequency.

If a grid connected inverter with high switching and
calculation frequency needs a robust and fast phase-tracking
method with low computational burden, this paper offers a
persuasive solution with the FFDSOGI-PLL.
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