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ABSTRACT Based on the celebrated Generalized Nyquist Criterion, this paper presents a new
frequency-domain method to analyze the impact of governor-turbine systems (GTSs), power system stabiliz-
ers (PSSs) and wind turbine generators (WTGs) on small disturbance stability in power systems. Compared
with other common analysis method, the newmethod can avoid the calculations of eigenvalues, eigenvectors
and residues, and the impact of multiple controllers orWTGs can be obtained using simplematrix operations.
In addition, themethod is intuitive for users since the stability analysis results can be displayed in the complex
plane directly. The new method indicates that the impact of controllers and WTGs on power system is
determined by the phase of certain elements in the transfer function matrices of controllers, WTGs and
synchronous grid. Based on the information provided by the afore-mentioned transfer function matrices, the
parameters of controllers can be optimized properly. The proposed method has been tested using the data
of a four-machine two-area system and a regional power grid in China. The results demonstrate that the
effect of controllers and WTGs can be conveniently identified, and the effectiveness of parameter tuning for
controllers is verified.

INDEX TERMS Frequency response, governor-turbine systems (GTS), low-frequency oscillation (LFO),
power system stabilizers (PSS), wind turbine generator (WTG).

I. INTRODUCTION
Low-frequency oscillation (LFO) is one of the most typical
small-signal stability problems in modern power systems [1].
Themost popular analysis methods for the problem aremodal
analysis method [2], [3], [4], [5], [6] and damping torque
analysis method [7], [8], [9], [10], [11], [12], [13], [14].
The former provides eigenvalues, eigenvectors, by which the
information such as frequency, damping ratio, participation
level, etc., can be obtained. Furthermore, the eigenvalue sen-
sitivity technique and residues can be employed to analyze
the impact of single parameter variation on damping ratio,
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as well as the parameter tuning of power system controllers.
The latter is first proposed for the single-machine infinite-
bus system, which explains the physical mechanism of LFO
well through deriving the relation between damping torque
coefficient and damping ratio of oscillation mode. After that,
the method of damping torque analysis has been extended
to multi-machine power system to perform power system
stabilizer design.

Power system stabilizer (PSS) is one of the most effective
controllers for suppressing LFO [1]. Identifying the effect of
PSSs and optimizing the parameters of PSSs have always
been the subjects of major concern in the field. In [15],
a modal decomposition method for PSS tuning is proposed,
which eliminates the interaction among different modes and
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provides sufficient damping for interarea mode of concern.
Reference [16] develops a computation time-saving trans-
fer function and eigenfunction analysis method by means
of eigenvalue sensitivity concept for coordinated tuning of
the PSS of large power systems. The research progress of
using PSS to enhance interareamode damping of longitudinal
power system is performed in [17]. A method of coordinated
design of multiple PSSs in multi-machine power system
which is developed from damping torque method is reported
in [18]. Governor is another essential controller which can
affect LFO. Reference [19] focuses on the contribution of
hydro and steam-turbine governors on oscillation damping,
where eigenvalue sensitivities are applied.

In addition to PSSs and governor-turbine systems (GTSs),
the impact of the integration of WTGs on small-disturbance
stability is another research hotspot in recent years. Due to
the high penetration of wind power, the dynamic interaction
brought out by WTGs becomes a new affecting factor for
LFO. References [20], [21], [22], [23], [24], and [25] com-
pare the electro-mechanic mode before and after the integra-
tion of WTGs. Modal analysis method is adopted in [22] and
participation factors are computed to acquire the extent to
which the WTGs participate in LFO. However, the participa-
tion factors can not reflect that whether the impact of integra-
tion is positive or negative. Comparedwith that, [26] develops
an approach to convert WTGs into equivalent synchronous
machines and evaluates the sensitivity of eigenvalue with
respect to inertia. Amethod based on damping torque analysis
is proposed in [27], the impact of two factors including the
change of load flow and dynamic interaction introduced by
DFIG is examined separately. On the basis of [27] and [28]
derives the sensitivity of electromechanical oscillation mode
to the dynamic interactions introduced by DFIG.

The main analysis methods for LFO require the calcula-
tion of eigenvalues, eigenvectors and residues. Furthermore,
it is difficult to distinguish the effect of multiple con-
trollers and multiple WTGs without repeated calculations.
A new Nyquist-type method based on frequency response
is proposed in this work, it can be utilized to analyze the
effect of PSSs, GTSs and WTGs on power system stabil-
ity. The method can avoid the calculation of eigenvalues,
eigenvectors and residues, only frequency response matrices
of PSSs, GTSs, WTGs and synchronous grid are required.
In addition, the method facilitates the calculation and anal-
ysis since the impact of controllers and WTGs can be
obtained by simple matrix operations. The parameters of con-
trollers can also be optimized with reference to the analysis
results.

The paper is organized as follows. Section II develops the
feedback interconnection model of power system with the
installation of GTSs and PSSs, and the feedback interconnec-
tion model of power system with the integration of WTGs.
Based on that, the new method is proposed in Section III,
where the rank of loop transfer function matrix of the feed-
back interconnection model is proved to be approximately
equal to 1 at the frequency of low-frequency oscillation.

Then the property is utilized to identify the impact of GTSs,
PSSs and WTGs on stability margin. The effectiveness of
the proposed method is verified in Section IV, where the
effect of GTSs and PSSs in four-machine two-area system,
and the effect of WTGs in a regional power grid in China is
investigated.

Some preliminary results of this work have been intro-
duced in [29], on the basis of which, the versatility of the
proposed method is further developed with abundant analyt-
ical findings in this paper.

II. THE FEEDBACK INTERCONNECTION MODELS
In this section, the feedback interconnection model of power
systems with the installation of GTSs and PSSs, and the
feedback interconnection model of power systems with the
integration of WTGs are introduced.

A. THE FEEDBACK INTERCONNECTION MODEL OF
POWER SYSTEMS WITH GOVERNOR-TURBINES SYSTEMS
AND POWER SYSTEM STABILIZERS
Firstly, the linearized state-space model of controllers includ-
ing GTSs and PSSs in a power system is shown as follows:[

s1Xc
0

]
=

[
J11 J12
J21 J22

] [
1Xc
1Y c

]
+

[
Bc1
Bc2

]
1ω[

1Pm
1UPSS

]
=

[
J31 J32
J41 J42

] [
1Xc
1Y c

]
+

[
Bc3
Bc4

]
1ω (1)

where 1Xc represents the state variables of controllers, 1Y c
represents the algebraic variables of controllers, 1ω repre-
sents the rotor speed of the synchronous machines in which
the controllers are installed, 1Pm and 1UPSS are the output
signals of the GTSs and PSSs respectively. The readers are
referred to [1] for details on the frequency-domain model of
power system stabilizers and governor-turbines.

After eliminating 1Y c, we have

s1Xc = Ac1Xc + Bc1ω[
1Pm

1UPSS

]
= Cc1Xc + Dc1ω (2)

where

Ac =

[
J11 − J12J−1

22 J21
]
, Bc =

[
Bc1 − J12J−1

22 Bc2
]

Cc =

[
J31 − J32J−1

22 J21
J41 − J42J−1

22 J21

]
, Dc =

[
Bc3 − J32J−1

22 Bc2
Bc4 − J42J−1

22 Bc2

]
(3)

Then we have[
1Pm

1UPSS

]
=

[
Cc(sI − Ac)−1Bc + Dc

]
1ω

=

[
GM (s)
HPSS (s)

]
1ω

= T (s)1ω (4)
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where

1ω =
[
1ω1 · · · 1ωn

]T
,

1Pm =
[
1Pm,1 · · · 1Pm,n

]T
1UPSS =

[
1UPSS,1 · · · 1UPSS,n

]T (5)

GM (s) =

GM ,1(s)
. . .

GM ,n(s)

 (6)

HPSS (s) =

HPSS,1(s)
. . .

HPSS,n(s)

 (7)

Here GM ,i(s) and HPSS,i(s) are the transfer functions of the
GTS and PSS installed in the i-th synchronous machine
respectively, and n is the number of synchronous machines
in the power system.

The standard model of a synchronous machine is described
as follows:

sδ = ω − ωb

M · sω = Pm − Pe − KD(ω − ωb)

T ′

d0 · sE ′
q = −E ′

q − (Xd − X ′
d )Id + Efd

TA · sEfd = −Efd + KA(U∗
t − Ut + UPSS )

0 = Ut sin(δ − θt ) − XqIq
0 = E ′

q − Ut cos(δ − θt ) − X ′
d Id (8)

As for the injection bus of each synchronous machine,
we have

0 = IdUt sin(δ − θt ) + IqUt cos(δ − θt ) + PLt

−

n∑
j=1

UtUjYtj cos(θt − θj − αtj)

0 = IdUt cos(δ − θt ) − IqUt sin(δ − θt ) + QLt

−

n∑
j=1

UtUjYtj sin(θt − θj − αtj) (9)

The definitions of the variables in (8) and (9) are explained
in [9], [30], and [31].

The linearized state space model of the rest of the power
system can be represented as follows:[
s1Xg
0

]
=

[
911 912
921 922

] [
1Xg
1Yg

]
+

[
Bg1 Bg2
0 0

][
1Pm

1UPSS

]
1ω =

[
931 0

] [
1Xg
1Yg

]
(10)

where 1Xg represents the state variables of the rest of the
power system, 1Yg represents the algebraic variables of the
rest of the power system.

After eliminating 1Yg:

s1Xg = Ag1Xg + Bg

[
1Pm

1UPSS

]
1ω = Cg1Xg + Dg

[
1Pm

1UPSS

]
(11)

FIGURE 1. The feedback interconnection model of the power system with
the installation of GTSs and PSSs.

where

Ag =

[
911 − 9129

−1
22 921

]
, Bg =

[
Bg1 Bg2

]
Cg = [931] , Dg = [0] (12)

It can be derived that

1ω =

[
CG(sI − AG)−1BG + DG

] [
1Pm

1UPSS

]
=

[
F1(s) F2(s)

] [
1Pm

1UPSS

]
= F(s)

[
1Pm

1UPSS

]
(13)

where

F1(s) =

F1,1(s) · · · F1,n(s)
...

. . .
...

Fn,1(s) · · · Fn,n(s)

 ,

F2(s) =

F1,n+1(s) · · · F1,2n(s)
...

. . .
...

Fn,n+1(s) · · · Fn,2n(s)

 (14)

According to (4) and (13), the feedback interconnection
model of the power system with the installation of GTSs and
PSSs can be presented in the form as Fig. 1 depicts.

B. THE FEEDBACK INTERCONNECTION MODEL OF
POWER SYSTEMS INTEGRATED WITH WIND
TURBINE GENERATORS
Taking the voltage amplitude of the interconnection nodes
between WTGs and power system as the input signals and
the power output of WTGs as the output signals, the lin-
earized state-space model of the WTGs can be demonstrated
as follows:[

s1Xw
0

]
=

[
011 012
021 022

] [
1Xw
1Yw

]
+

[
Bw1
Bw2

]
1Uw[

1Pw
1Qw

]
=

[
0 032
0 042

] [
1Xw
1Yw

]
+

[
Bw3
Bw4

]
1Uw (15)

where 1Xw represents the state variables of WTGs, 1Yw
represents the algebraic variables of WTGs, 1Uw represents
the voltage amplitude of the interconnection nodes, 1Pw and
1Qw are the active and reactive power of WTGs.
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After eliminating 1Yw, we have

s1Xw = Aw1Xw + Bw1Uw[
1Pw
1Qw

]
= Cw1Xw + Dw1Uw (16)

where

Aw =

[
011 − 0120

−1
22 021

]
, Bw =

[
Bw1 − 0120

−1
22 Bw2

]
,

Cw =

[
−0320

−1
22 021

−0420
−1
22 021

]
, Dw =

[
Bw3 − 0320

−1
22 021Bw2

Bw4 − 0420
−1
22 021Bw2

]
(17)

Then the transfer function matrix of WTGs is:[
1Pw
1Qw

]
=

[
Cw (sI − Aw)−1 Bw + Dw

]
1Uw

=

[
WP(s)
WQ(s)

]
1Uw

= W (s)1Uw (18)

where

1Pw =
[
1Pw,1 · · · 1Pw,n

]T
,

1Qw =
[
1Qw,1 · · · 1Qw,n

]T
1Uw =

[
1Uw,1 · · · 1Uw,n

]T (19)

WP(s) =

WP,1(s)
. . .

WP,m(s)

 ,

WQ(s) =

WQ,1(s)
. . .

WQ,m(s)

 (20)

m is the number of WTGs integrated in the power system.
Refer to (8) and (9), the linearized state space model of

the synchronous machines in the power system is shown as
follows: [

s1XG
0

]
=

[
811 812
821 822

] [
1XG
1YG

]
(21)

where 1XG represents the state variables of the rest of the
power system, 1YG represents the algebraic variables of the
rest of the power system.

As for the injection bus of each WTG, we have

0 = Pw −

n∑
j=1

UwUjYwj cos(θw − θj − αwj)

0 = Qw −

n∑
j=1

UwUjYwj sin(θw − θj − αwj) (22)

where Uw and θw are the voltage amplitude and phase-angle
of the injection bus of WTG, Uj and θj are the voltage ampli-
tude and phase-angle of the j-th bus of the system, Ywj and αwj
are the amplitude and phase-angle of admittance between the
injection bus of WTG and bus j.

After linearizing (22) for all the WTG buses in the system
and combined with (21), the linearized state space model of
the rest of the power system can be expressed as: s1XG

0
0

 =

 811 812
821 822
0 832

 [
1XG
1YG

]
+

 0
0
BG3

 [
1Pw
1Qw

]

1Uw =
[
0 842

] [
1XG
1YG

]
(23)

After eliminating 1YG, we have

s1XG = AG1XG + BG

[
1Pw
1Qw

]
1Uw = CG1XG + DG

[
1Pw
1Qw

]
(24)

where

AG =

[
811 − 812

[
822
832

]−1 [
821
0

]]
,

BG =

[
−812

[
822
832

]−1 [
0
BG3

]]
,

CG =

[
−842

[
822
832

]−1 [
821
0

]]
,

DG =

[
−842

[
822
832

]−1 [
0
BG3

]]
(25)

Then the transfer function matrix of the rest of the power
system can be derived as:

1Uw =

[
CG (sI − AG)−1 BG + DG

] [
1Pw
1Qw

]
=

[
GP(s) GQ(s)

] [
1Pw
1Qw

]
= G(s)

[
1Pw
1Qw

]
(26)

where

GP(s) =

 G1−1
P (s) · · · G1−m

P (s)
...

. . .
...

Gm−1
P (s) · · · Gm−m

P (s)

 (27)

GQ(s) =


G1−1
Q (s) · · · G1−m

Q (s)
...

. . .
...

Gm−1
Q (s) · · · Gm−m

Q (s)

 (28)

Similarly, the feedback interconnectionmodel of the power
system with the integration of WTGs can be displayed
in Fig. 2.

III. PROPOSED METHODOLOGY
In this section, on the basis of the afore-mentioned feedback
interconnection models, a new methodology is proposed to
analyze the impact of GTSs, PSSs and WTGs on small-
disturbance stability.

37464 VOLUME 11, 2023



Q. Zhang et al.: Method for Evaluating the Impact of Controllers and WTGs on Low-Frequency Oscillation

FIGURE 2. The feedback interconnection model of the power system with
the integration of WTGs.

FIGURE 3. Nyquist Curve And Stability Margin.

A. STABILITY MARGIN BASED ON THE GENERALIZED
NYQUIST CRITIRION
First we briefly review the celebrated generalized Nyquist
theorem for multi-input multi-output system [32]. Let ρ0 be
the number of open-loop unstable poles, then the closed-loop
system with loop transfer function matrix L(s) is stable if and
only if the Nyquist curve of det[I + L(s)]

(1) makes ρ0 anti-clockwise encirclements of the origin;
(2) does not pass through the origin.

In general, ρ0 of a power system is equal to 0, therefore, the
minimum distance between the origin and the Nyquist curve
of det[I + L(s)] can be regarded as the stability margin of
the closed-loop system (see Fig. 3) [33], [34]. Furthermore,
the frequency corresponding to the point closest to the origin
on the Nyquist curve is typically near the frequency of the
low-frequency oscillation mode with weak damping (denoted
as ω0), hence it is more efficient to acquire the stability
margin by calculating det[I + L(jω0)] instead of sweeping
frequencies. For convenience, let us denote κ(jω0) as the point
on the Nyquist curve closest to the origin in the subsequent
sections.

FIGURE 4. The definition of dividing line.

FIGURE 5. The definitions of Positive-effect domain and negative-effect
domain.

B. THE IMPACT OF CONTROLLERS AND WIND TURBINE
GENERATORS ON STABILITY MARGIN
For a power system with a GTS and a PSS, the critical point
κ(jω0) can be represented as:

κ(jω0) = det [I − L(jω0)]

= 1 −
[
F1(jω0) F2(jω0)

] [
GM (jω0)
HPSS (jω0)

]
= 1−F1(jω0)GM (jω0)︸ ︷︷ ︸

κ1(jω0)

−F2(jω0)HPSS (jω0)︸ ︷︷ ︸
κ2(jω0)

= 1 + κ1(jω0) + κ2(jω0) (29)

From (29), the impact of the GTS and PSS on stabil-
ity margin can be conveniently identified through κ1(jω0)
and κ2(jω0), which is a Nyquist-type result. An illustrative
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example is provided in Fig. 4. The line perpendicular to
the line connecting κ(jω0) and the origin can be viewed as
a dividing line. Fig. 5 further provides an explanation. The
starting points of κ1(jω0) and κ2(jω0) are moved to the origin,
it is manifest that κ1(jω0) moves κ(jω0) closer to the origin,
reducing the stability margin, while κ2(jω0) moves κ(jω0)
away from the origin, which increases the stability domain.
In this way, the positive-effect domain and negative-effect
domain in the complex plane can be clearly divided, which
are demonstrated in Fig. 5.
When a power system is installed with multiple GTSs and

PSSs, the expression of κ(jω0) is more complicated since
L(jω0) becomes a matrix and κ(jω0) cannot be transformed
into the sum of several vectors directly. This is precisely why
it is in general difficult to perform stability analysis for a
multi-input multi-output system.

A key finding of the present work is to be able to recognize
that the rank of L(jω0) is approximately equal to 1, using this
property can greatly simplify the expression of the det[I −

L(jω0)] for a multi-input multi-output system, resolving the
above-mentioned challenge. This enables us to conveniently
perform stability study in a Nyquist fashion as equation (29)
does. The proof is shown in Appendix. Combined with the
fact that rank[F(jω0)T (jω0)] ≈ 1, we have

κ(jω0)

= det [I − L(jω0)]

= det [I − F(jω0)T (jω0)]

≈ 1 − L1,1(jω0) − L2,2(jω0) − · · ·Ln,n(jω0)

= 1 − [F1,1(jω0)GM ,1(jω0) + F1,n+1(jω0)HPSS,1(jω0)]︸ ︷︷ ︸
L1,1(jω0)

− · · ·−[Fn,n(jω0)GM ,n(jω0) + Fn,2n(jω0)HPSS,n(jω0)]︸ ︷︷ ︸
Ln,n(jω0)

= 1−F1,1(jω0)GM ,1(jω0) − · · · − Fn,n(jω0)GM ,n(jω0)︸ ︷︷ ︸
The impact of all the GTSs

−F1,n+1(jω0)HPSS,1(jω0) − · · · − Fn,2n(jω0)HPSS,n(jω0)︸ ︷︷ ︸
The impact of all the PSSs

(30)

It can be seen from (30) that κ(jω0) is again expressed
as the sum of vectors, which has the same form as in (29).
The above formula can be conveniently used to quantify the
impact of GTSs and PSSs on stability margin.

Moreover, the parameters of GTSs and PSSs can
also be optimized in light of the above result. For
instance, the impact of the first PSS is determined by
−F1,n+1(jω0)HPSS,1(jω0), if the calculation result shows that
the PSS exerts negative effect on stability margin, then the
phase of −F1,n+1(jω0)HPSS,1(jω0) can be adjusted through
tuning the parameters of HPSS,1(jω0), so that the effect of the
PSS can be fine-tuned. A more specific example is provided
in next section to verify the effectiveness of the method.

As for the feedback interconnection model of the power
systemwith the integration of multipleWTGs, the expression

FIGURE 6. Four-machine two-area system.

TABLE 1. Parameters of PSSs in initial case.

TABLE 2. Parameters of GTSs in initial case.

of κ(jω0) is as follows:

κ(jω0) = det [I − L(jω0)]

= det [I − G(jω0)W (jω0)]

≈ 1 − L1,1(jω0) − L2,2(jω0) − · · ·Lm,m(jω0)

= 1 − [G1−1
P WP,1(jω0) + G1−1

Q WQ,1(jω0)]︸ ︷︷ ︸
Theimpact of the first WTG

− · · · − [Gm−m
P WP,m(jω0) + Gm−m

Q WQ,m(jω0)]︸ ︷︷ ︸
Theimpact of the m-th WTG

(31)

Likewise, the vectors above indicate readily the contribution
of each WTG to the small-disturbance stability margin.

IV. CASE STUDY
In this section, two cases are presented to validate the efficacy
of the proposed method. The impact of GTSs and PSSs on
small-disturbance stability margin for four-machine two-area
system is demonstrated firstly, then the parameter optimiza-
tion on the basis of the introduced results is performed. The
data of a regional power grid in China is utilized to examine
the impact of WTGs on small-disturbance stability margin.
The conclusions drawn by the suggested method are verified
through eigenvalue calculation.

A. FOUR-MACHINE TWO-AREA SYSTEM
The configuration of four-machine two-area power system
is shown in Fig. 6. Parameters of the system are given
in [1]. GTS1-GTS4 and PSS1-PSS4 are installed in generators
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FIGURE 7. The impact of GTSs and PSSs in initial case.

TABLE 3. Inter-area mode in 9 cases.

G1-G4 respectively. The transfer functions of GTSs and PSSs
are provided in (32) below [35], [36], and the initial param-
eters are provided in Table 1 and Table 2. It is worth men-
tioning that the initial parameters are designed intentionally
to facilitate the presentation of the proposed method. Area

GM (s) =
1PM
1ω

= −
1
R

·
1

1 + sTG
·

1
1 + sTCH

HPSS (s) =
1UPSS

1ω
=
K (1 + sTa)
(1 + sTb)

(32)

The inter-area oscillation mode of the system is λ0 =

−0.0254+3.6287j, the corresponding damping ratio is 0.7%.
Substituting s = 3.6287j into (30), we obtained the singular
values of matrix F(jω0)T (jω0) as

[0.95146, 0.00103, 0.00069, 0.00050].

This is an excellent evidence for the assertion that the rank
of matrix F(jω0)T (jω0) is close to 1.

The impact of GTS1-GTS4 and PSS1-PSS4 is displayed
in Fig. 7. In this case, the point closest to the origin on
the Nyquist curve is −0.1410 − 0.6282j, and κ(jω0) =

−0.1334−0.6342j, which is close to the imaginary axis, thus

TABLE 4. Phase of vectors.

TABLE 5. Optimized parameters of controllers.

TABLE 6. Inter-area mode in 4 cases.

the real axis can be regarded as the dividing line. The positive-
effect domain and negative-effect domain are also marked in
the figure.

It is evident that GTS1, GTS2 and PSS1 have negative
effect while the other GTSs and PSSs have positive effect on
system stability. The inter-area oscillation mode is calculated
in different cases to prove the conclusion above and the results
are listed in Table 3, where Case1-Case4 respectively corre-
spond to GTS1-GTS4 being out of service, and Case5-Case8
respectively correspond to PSS1-PSS4 being out of service.
From Table 3, it can be seen that the damping ratio of

the inter-area mode increases when GTS1, GTS2 and PSS1
are out of service, in other cases, the damping ratio drops
to varying degrees. The results verifies that GTS1, GTS2
and PSS1 worsened the stability, while the other controllers
enhance the stability of the system, which is highly consistent
with the conclusion drawn by the proposed method.

Using the proposed method, the negative effect of GTS1,
GTS2 and PSS1 can be reversed by parameter tuning. Accord-
ing to (30), κ(jω0) can be expressed as:

κ(jω0) = 1 − F1,1(jω0)GM ,1(jω0) − F2,2(jω0)GM ,2(jω0)

−F3,3(jω0)GM ,3(jω0) − F4,4(jω0)GM ,4(jω0)

−F1,5(jω0)HPSS,1(jω0) − F2,6(jω0)HPSS,2(jω0)

−F3,7(jω0)HPSS,3(jω0) − F4,8(jω0)HPSS,4(jω0)

(33)

The phase of the vectors corresponding to GTS1, GTS2
and PSS1 are demonstrated in Table 4. The phase of
−F1,1(jω0), −F2,2(jω0) and −F1,5(jω0) is less than 180◦,
the parameters of controllers can be designed to shift
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FIGURE 8. The impact of GTSs and PSSs in Case 9-11.

the phase of−F1,1(jω0)GM ,1(jω0), −F2,2(jω0)GM ,2(jω0) and
−F1,5(jω0)HPSS,1(jω0) to exceed 180◦.

TABLE 7. Areas and names of injected buses of WTGs.

TABLE 8. Interarea mode in 15 cases.

In accordance with the analysis above, the parame-
ters of PSS1, GTS1 and GTS2 are optimized in order in
Case9-Case11. The tuned parameters are shown in Table 5.
Other parameters remain unchanged.

The impact of the controllers in Case9-Case11 is depicted
in Fig. 8. The vectors in circles correspond to the impact of
controllers in the initial case, and the arrows show the impact
of controllers after parameter optimization. Obviously, the
impact of PSS1, GTS1 and GTS2 has been reversed from
negative to positive side. The results are further verified by
the eigenvalues shown in Table 6.

B. AN ACTUAL LARGE-SCALE POWER SYSTEM
In this example, the impact of WTGs on small-disturbance
stability margin for a regional power grid in China is investi-
gated. 14 WTGs whose power output is 49.5MW and 0MVar
are selected from 7 areas in the system, and the names of the
injection buses are listed in Table 7.

The inter-area mode under study is λ0 = −0.1514 +

2.8045j, damping ratio is 5.390%. Substituting s = 2.8045j
into (31), we obtained the singular values of G(jω0)W (jω0)
as

[121.03412, 0.009832, 0.008348, 0.007356, 0.006233,
0.005420, 0.004911, 0.004871, 0.004665, 0.004316, 0.004058,
0.003851, 0.003732, 0.003601].

Again, the singular values nicely verify the approximate
rank-one property of matrix G(jω0)W (jω0).
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FIGURE 9. The impact of 14 WTGs on stability margin.

The impact of WTGs on stability margin is presented in
Fig. 9. The point on the Nyquist curve closest to the origin
in this case is 0.7491 + 0.3211 j, while κ(jω0) is equal
to 0.7554 + 0.3304 j. The dividing line, the positive-effect
domain and the negative-effect domain are also marked in
the figure. It is clear that only 1 WTG have positive impact
on stability, while the other 13 WTGs have negative effect on
stability. The eigenvalue calculations are also performed to
verify the results demonstrated in Fig. 9. Table 8 shows the
inter-area mode after 14WTGs are sequentially replaced with
constant power source.

It can be seen that the damping ratio of the inter-area mode
decreases when constant power source replaces the positive-
effect WTG, which means N2 is beneficial to stability. The
effectiveness of the new method is proved.

V. CONCLUSION
This paper introduces a frequency-domain approach to eval-
uate the impact of GTSs, PSSs and WTGs on small-
disturbance stability margin. The feedback interconnection
model of power system with the installation of GTSs and
PSSs and the feedback interconnection model of power sys-
tem with the integration of WTGs are presented. It is found
that the rank of the loop transfer function matrix at the
low-frequency oscillation frequency is approximately equal
to 1. Based on that and the generalized Nyquist criterion, the
impact of GTSs, PSSs and WTGs on stability margin can
be identified. Compared with other analysis approach, the
proposed approach can avoid the calculation of eigenvalues,
eigenvectors and residues, only simple matrix operations are
required to analyze the impact of multiple controllers. Fur-
thermore, the Nyquist-type analysis results can be employed
to conveniently optimize the parameters of controllers.

APPENDIX
In this appendix, the property that the rank of L(jω0) is
approximately equal to 1 is proved.

Notice that the transfer function matrix of the rest of the
power system can be described as:

F(s) =


R11,1
s− λ1

+ · · ·
Rk1,1
s− λk

· · ·
R11,2n
s− λ1

+ · · ·
Rk1,2n
s− λk

...
. . .

...

R1n,1
s− λ1

+ · · ·
Rkn,1
s− λk

· · ·
R1n,2n
s− λ1

+ · · ·
Rkn,2n
s− λk


(34)

where λ1, · · · , λk are the eigenvalues of the power system
before the installation of controllers. Here [Rxi,j] are the
residue matrix corresponding to the x-th eigenvalue and the
rank of each [Rxi,j] is exactly equal to 1 [37], that is:

rank[Rxi,j] = 1 (35)

Assume that λ1 is the weakly damped LFOmode. It is easy
to know that |jω0 − λ1| is much smaller than |jω0 − λx |, for
x = 2, 3, . . . , k . It follows that∣∣∣∣∣ R1i,j

jω0 − λ1

∣∣∣∣∣ ≫

∣∣∣∣∣ Rxi,j
jω0 − λx

∣∣∣∣∣ (36)

The above result immediately leads to the following observa-
tion

F(jω0) ≈


R11,1

jω0−λ1
· · ·

R11,2n
jω0−λ1

...
. . .

...
R1n,1

jω0−λ1
· · ·

R1n,2n
jω0−λ1

 =

[
R1i,j

]
jω0 − λ1

(37)

Since rank[Rxi,j] = 1, it follows that

rank[F(jω0)] ≈ 1 (38)

Theorem (Sylvester Inequality) [38]: If the dimensions of the
matrices A and B are m× k and k × n respectively, then

rank(A · B) ≤ min(rankA, rankB). (39)

According to the above result, we have:

rank[F(jω0)T (jω0)] ≤ min{rank[F(jω0)], rank[T (jω0)]}

(40)

An important consequence of the above equation is that

rank[F(jω0)T (jω0)] ≈ 1. (41)

Based on the above result, in what follows, we proceed to
introduce the so-called expansion for diagonal matrices [39]
to simply the expression of stability margin. We denote by
Y i1···ik the principal submatrix of order n − k obtained by
deleting rows and columns i1 · · · ik of the n× nmatrix Y. Let
Z and Y be n × n complex matrices. If Z = diag(z1 · · · zn),
then

det(Z+ Y ) = det(Z) + det(Y ) + e1 + · · · + en−1 (42)
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where

ek ≡

∑
1≤i1<···<ik≤n

zi1 · · · zik det(Y i1···ik ), 1 ≤ k ≤ n− 1

(43)

Then we can infer that

κ(jω0)

= det [I − L(jω0)]

= det [I − F(jω0)T (jω0)]

= det(I) − det[F(jω0)T (jω0)] − e1 − · · · en−1

≈ 1 − en−1

= 1 − L1,1(jω0) − L2,2(jω0) − · · ·Ln,n(jω0)

= 1 − [F1,1(jω0)GM ,1(jω0) + F1,n+1(jω0)HPSS,1(jω0)]︸ ︷︷ ︸
L1,1(jω0)

− · · ·−[Fn,n(jω0)GM ,n(jω0) + Fn,2n(jω0)HPSS,n(jω0)]︸ ︷︷ ︸
Ln,n(jω0)

(44)
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