
Received 11 March 2023, accepted 2 April 2023, date of publication 6 April 2023, date of current version 12 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3265210

Integration Flows Modeling in the Context of
Architectural Views
TOMASZ GÓRSKI , (Senior Member, IEEE)
Institute of Computer Science, University of Gdańsk, 80-308 Gdańsk, Poland

e-mail: tomasz.gorski@ug.edu.pl

ABSTRACT In an increasing number of software applications, the execution of their functions depends on
communication with external systems. Messaging enables the integration of information technology (IT)
systems in a loosely-coupled manner. The paper aims to show the Integrated services architectural view
and two methods of modeling messaging flows at the service and business levels. Service flows allow for
modeling the communication between systems/services at the level of sending messages. In contrast, busi-
ness flows model the entire course of interaction among cooperating applications. The methods employ an
Integration flows diagram, which is a specialized version of the UnifiedModeling Language (UML) Activity
diagram. In addition, the business process task from the Integrated Processes view defines the context for
the business flow. Moreover, the Use Cases view identifies the integration scope within requirements. All
those views belong to the 1+5 architectural viewsmodel. The paper exerts extensibility mechanisms declared
in the UML Profile for Messaging Patterns. Besides, the profile has been augmented with stereotypes for
messaging patterns for the Apache Camel framework, stakeholders involved in communication, and up-to-
date stereotypes for structural components. The methods were used in the integration design of sending
orders and confirmations between the business applications of the brokerage house and the stock exchange.

INDEX TERMS Interoperability, messaging, 1+5 architectural views model, unified modeling language
extensibility mechanisms, service-oriented architecture, microservices.

I. INTRODUCTION
Messaging is an integration style for cooperating business
applications, which might be designed in distinct archi-
tectures and written in various programming languages.
Enterprise service buses (ESB) and message queues are
communication components that ensure infrastructure for
delivering messages while providing transformation and
routing services. Kannisto et al. [1] felicitously describe
the differences between those two components. A message
queue declares a communication protocol and defines mes-
sage formats. In consequence, cooperating IT systems have
to send messages in a standardized fashion. As a result,
it enforces adding specific adapters for diverse systems.
Enterprise service buses typically come with adapters that
support a variety of protocols and data formats. Messag-
ing integration style can be realized in both architectures:

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Ali Babar .

Service-Oriented Architecture (SOA) andmicroservices. The
architectures offer flexible integration and service reusabil-
ity due to their modular composition. An in-depth anal-
ysis of the role of interfaces in service-oriented systems
was done by Bhadoria et al. [2]. Standard ways of mes-
saging were described by Hohpe and Wolf [3] and called
Enterprise Integration Patterns (EIPs). In the recent review,
Aziz et al. [4] identified the following directions of messag-
ing development: microservices, cloud environments, and the
Internet of Things (IoT). The latest research concentrates
on the Publish-Subscribe messaging pattern. In that area,
Martinez et al. [5] introduce a new version of the pattern,
which uses Kubernetes containers for microservices orches-
tration. Moreover, Zhong et al. [6] present the pattern’s spe-
cialization in which subscribers receive paired objects instead
of separate ones. Furthermore, Livaja et al. [7] propose an
approach that couples incoming geospatial objects with the
appropriate subscriptions. While Daraghmi et al. [8] discuss
modification of the Saga pattern for distributed transactions

35220
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-8393-1585
https://orcid.org/0000-0001-9696-3626


T. Górski: Integration Flows Modeling in the Context of Architectural Views

synchronization among microservices. The topic is still rele-
vant and developing.

The ability to model messaging patterns in a commonly
understood manner is of crucial importance. A software
architecture description is commonly realized using Unified
Modeling Language. Ozkaya et al. [9] surveyed specialists
on the usage of UML diagrams. The results show that the
UML Activity diagram is commonly adopted for data flow
modeling (65% of inquired professionals). In this paper, the
author enhances the UML Activity diagram and adopts it for
modeling integration flows. Integration flows are constructed
using messaging patterns. Therefore, it is important to create
and maintain a set of reusable model elements representing
individual messaging patterns. Thanks to this, it is possible
to model integration flows in a clearly understood way. The
Unified Modeling Language is designed to be conceptually
simple. However, its semantics can be extended. Extensibility
mechanisms can be grouped into the following categories:
stereotypes, tagged values, and constraints. Moreover, UML
offers profiles as a means for grouping new semantic con-
structs [10]. Two profiles have recently been proposed in the
area of interoperability. Firstly, Petrasch et al. [11] introduced
stereotypes for data integration patterns. The patterns and
corresponding UML stereotypes concentrate on data inte-
gration tasks modeling. Secondly, Górski [12] showed the
profile that comprises stereotypes for messaging patterns.
The profile consists of stereotypes declared for the Enterprise
Integration Patterns, ZeroMQ open-source messaging frame-
work, and academic patterns resulting from recent research
work. Designing message flows requires an architectural
description that takes into account the aspect of communi-
cation between systems. The 1+5 model contains Integrated
services architectural view dedicated to the modeling of
integration flows [13].

The contribution encompasses modeling methods of two
types of messaging flows. These are service and business
flows. The paper concentrates on the following architectural
views: Integrated services, Use cases, and Integrated pro-
cesses. It should be underlined that the first view is strictly
devoted to communication modeling among IT systems. The
paper shows the usage of Integration flows diagram, which
is an enhanced version of the UML activity diagram. Par-
titions were employed to set responsibilities for actions in
message flows. Modeling of message flows allows for ser-
vice identification. UML Component diagrams were used for
presenting interacting components with identified services.
Besides, it was also shown how the integration context is
defined in the area of the business process that is modeled
in the Integrated processes view. The author also introduces
UML stereotypes for structural components, messaging pat-
terns for the Apache Camel framework, and external systems.
The latter was used in the Use cases view for emphasizing
communication between collaborating systems.

Figure 1 depicts architectural views involved in the design
of message flows. The business process model placed

in Integrated processes view identifies the business task,
which requires communication between cooperating systems.
It results in modeling the business flow in the Integrated
services view. In addition, the Use Cases view identifies the
IT system functions involved in the integration.

The remaining part of the paper has the following struc-
ture. Section II presents related work. Section III introduces
UML stereotypes for cooperating components and messag-
ing patterns. Section IV presents modeling approaches for
service and business flows on the example of integration
design between the brokerage house application and the stock
exchange system. Section V contains discussion and per-
ceived limitations. Section VI summarizes the paper and sets
directions for further research.

II. RELATED WORK
The subject of describing the architecture of information sys-
tems has been developed for many years. However, the aspect
of communication between systems is not so often consid-
ered. Recently, Kirpitsas et al. [14] underlined the importance
of Kruchten’s 4+1 architectural views model [15]. How-
ever, the authors pointed to the architectural views model
1+5 as an example of the significant progress that has
been made in the description of software architecture [13].
Similarly, Suljkanovi et al. [16] emphasized that it is the
1+5 model that consists of views that allow for a diverse
architectural description. The model comprises two views
that are crucial for modeling message flows: Integrated ser-
vices and Integrated processes. As far as communication is
concerned, Zhang and Kianfar [17] in the design of Vehicle-
to-Infrastructure communication system used Physical and
Communications views from the Architecture Reference for
Cooperative and Intelligent Transportation [18]. However,
they refer to the 1+5 model while discussing the importance
of interoperability design between various subsystems. As far
as healthcare is concerned, Marbouh et al. [19] in building a
regulatory framework for mHealth put emphasis on designing
the exchange of information between stakeholders. But, they
also employ business process modeling. The importance of
business process modeling in the process of designing IT
systems still grows. Lately, González Moyano et al. [20]
described the uses of business process modeling in the cur-
rently most proliferated agile software development projects.
In the model, the Integrated processes view has been singled
out for modeling business processes that involve cooper-
ating organizations/companies. Generally, process-oriented
organizations may benefit from implementing an integration
platform with an enterprise service bus or message queue.
There are usually many complex business processes in such
companies that span various systems. Thus, they exploit
services from multiple systems. Górski and Woźniak [21]
show that SOA and microservices may help in optimizing the
execution of business processes into three areas: Resource
Allocation, Service Composition, and Service Scheduling.
The most popular are genetic algorithms that are used to

VOLUME 11, 2023 35221



T. Górski: Integration Flows Modeling in the Context of Architectural Views

FIGURE 1. Integrated services view with integration flow in the context of the Integrated processes and Use cases architectural views.

optimize business processes during run-time. Further
advances in adaptive service composition that fulfill
user requirements were shown by Wang et al. [22].
Another important aspect, the automated discovery of
cross-organizational collaborative business processes was
shown by Montarnal et al. [23]. The business justification
of the designed functions or messaging flows is crucial for
the implementation of the system so as to realize actual user
needs. So, message flows should be placed in the context of a
business process to clearly indicate business tasks that require
integration with external IT systems. Therefore, message
flows are also called integration flows. Both terms will be
used interchangeably hereafter.

In the 1+5 model, the Integrated services view is ded-
icated to modeling the communication among cooperating
parties [13]. Therefore, the article focuses on the presenta-
tion of this architectural view. Additionally, the integration
context determines the Use cases view. In this view, the
≪IntegratedSystem≫ stereotype has been declared for the
external system being integrated. Integration flows enable
communication between systems using various data formats

or communication protocols. Researchers describe the archi-
tecture of their solutions using various architectural views and
Unified Modeling Language. For example, Akhilesh et al.
[24] present the design of the automated penetration testing
framework for IoT devices using: UMLDeployment diagram
in the Deployment view, UML Component diagram in the
Logical view, and the UMLActivity diagram in theUse cases
view. But, the Deployment view is the most frequently used.
Besides, authors apply their own UML stereotypes. Han et al.
[25] show the design of an access control framework using
Software Guard Extensions (SGX). They do not formally
construct a new UML profile but propose specific stereo-
types for nodes and services, e.g.: ≪SGXServerNode≫, and
≪distributedStorageService≫. It should be noted that the
1+5 model has been recommended by Ahmed et al. [26]
to describe the software architecture and system integration.
They proposed an incentive trust model based on blockchain
with a privacy-preserving threshold ring signature scheme
for vehicular ad hoc networks (VANETs). They focused
on Logical and Deployment views to design the informa-
tion exchange between systems. For architectural description

35222 VOLUME 11, 2023



T. Górski: Integration Flows Modeling in the Context of Architectural Views

they have used four UML diagram types: class, sequence,
communication, and deployment. They have also proposed
specific UML stereotypes for VANETs, e.g.: ≪RSUNode≫
for a roadside unit and ≪VehicleNode≫ for a vehicle
node. Researchers introduce stereotypes as semantically new
modeling elements and construct new UML profiles. For
example, Thramboulidis and Christoulakis [27] present a
UML profile that facilitates the transformation of interfaces
from the Internet of Things (IoT) to the Representational
State Transfer Application Programming Interface. Besides,
Marouane et al. [28] introduce the profile with concepts
related to real-time databases and integrate Object Constraint
Language (OCL) to enforce the variation points consistency.
As was mentioned in the section I, Petrasch and Petrasch [11]
presented Data Integration Patterns for the interoperability of
IT systems. However, the proposed patterns concentrate on
the data, and UML was applied to model data integration.
Besides, Plazas et al. [29] have proposed the STS4IoT UML
profile. The profile simplifies the definition of the Internet
of Things applications and their integration into other infor-
mation systems, such as stream data warehouses. As can be
seen, UML profiles find various uses. But there is one UML
profile for modelingmessaging patterns [12]. That profile has
been augmented with specific stereotypes for structural com-
ponents, messaging patterns for the Apache Camel frame-
work, and external systems. The paper concentrates on the
communication between IT systems. Thus the emphasis was
put on the design of integration flows within the dedicated
Integrated services architectural view.

III. STEREOTYPES
The profile uses UML stereotypes for providing semanti-
cally new modeling elements. The main part of the pro-
file constitutes a set of messaging patterns. Introducing a
new modeling element requires indicating the standard UML
model element type that is extended. The basic UML clas-
sifier for messaging patterns is UML Action. Besides, the
UML Component base type has been applied for denoting
communication components. There is also one stereotype,
which stands for an external system. For that stereotype,
the UML Actor base type has been chosen. The profile was
prepared in the commonly usedVisual Paradigm tool. The file
UMLProfile4MessagingPatterns.vpp of the profile is exposed
in the GitHub repository [30]. The profile declares the corre-
sponding stereotype for each of included messaging patterns.

A. STAKEHOLDERS INVOLVED
For the description of integration, it is important to be able
to identify the parties involved and the communication com-
ponents. In this context, new stereotypes were proposed for
model elements in two architectural views Use cases and
Integrated services. In the Use Cases view, a stereotype is
needed to distinguish the external IT system with which
cooperation is to be designed using the integration plat-
form. The stereotype ≪IntegratedSystem≫ has been previ-
ously declared [13]. However, the standard UML actor icon

TABLE 1. The stereotype in the Use cases view.

FIGURE 2. UML Profile diagram with stereotypes inheritance hierarchy
for message queues.

remained the same. From the legibility point of view of the
UML Use case diagram, it is important to highlight the actor
representing the integrated external system. Therefore, a new
icon for this stereotype has been proposed.

Table 1 show ≪IntegratedSystem≫ stereotype details and
its icon.

Communication component types reside in the Integrated
services view. The modeling method employs two types
of communication components: message queues and enter-
prise services buses. Stereotypes for those both types of
components have been included in the profile. Stereo-
types for communication components use the UML Com-
ponent element type as a base UML classifier. The
abstract ≪MessageQueue≫ stereotype was declared for the
generic message queue. Three concrete ones denote mes-
sage queue environments: ≪ZeroMQ≫, ≪RabbitMQ≫,
and ≪ActiveMQ≫.

Figure 2 presents an inheritance tree of stereotypes for
message queues.

Besides, the abstract ≪EnterpriseServiceBus≫ stereo-
type was declared for generic ESB. Eight concrete stereo-
types are specializations of that abstract one and stand
for factual environments, e.g., ≪OracleServiceBus≫,
≪MuleESB≫, ≪RedHatFuse≫, ≪TalendESB≫, and
≪WSO2EnterpriseServiceBus≫.

Table 2 presents stereotypes for actual ESB frameworks
that are comprised in the profile.

Figure 3 presents the UML Profile diagramwith the hierar-
chy of stereotypes for enterprise service buses. The definition
of stereotypes also uses a tagged value to store the full name
of the framework.

Especially in this area, the profile is open to expansion.
This is important due to the fact that the availability and
timeliness of individual integration platforms change quite
frequently over time.

VOLUME 11, 2023 35223



T. Górski: Integration Flows Modeling in the Context of Architectural Views

TABLE 2. Stereotypes for concrete Enterprise Service Buses.

FIGURE 3. UML Profile diagram with selected stereotypes in inheritance
hierarchy for enterprise service buses.

B. ENTERPRISE INTEGRATION PATTERNS
Messaging makes applications loosely coupled by commu-
nicating asynchronously. It makes communication more reli-
able because the two applications do not have to be running
at the same time. Standard ways of messaging have been
described by Hohpe and Wolf [3] and called Enterprise Inte-
gration Patterns.

The profile declares the corresponding stereotype for each
of them. The stereotypes for selected Enterprise Integration
Patterns (EIP) are described below:

• ≪MessageChannel≫ – the means of transmitting mes-
sages. The source system puts the message to the mes-
sage channel and the target system gets the message.

• ≪Message≫ – the format for the data allowed for
transmitting.

• ≪PublishSubscribeChannel≫ – one input channel
splits into multiple output channels. When an event
occurs, a copy of the message is delivered to each of the
subscribers’ channels.

• ≪RequestReply≫ – sends a pair of messages, one to
the target application and the second back to the source
application, in separate channels.

• ≪MessageTranslator≫ – translates one data format into
another.

• ≪ContentEnricher≫ – enhances a message with addi-
tional data.

• ≪Resequencer≫ – collects and re-orders messages so
that they can be published to the output channel in a
specified order.

TABLE 3. Stereotypes for selected EIP messaging patterns.

• ≪MessageRouter≫ – receives a Message from the
Message Channel and sends it to one of the alternative
channels due to conditions fulfillment.

• ≪ContentFilter≫ – removes unimportant data items
from a message leaving only important ones.

• ≪ClaimCheck≫ – involves storing message data in a
persistent store and passing proof to subsequent compo-
nents, which may use that proof to retrieve the stored
information.

• ≪DeadLetterChannel≫ – a place for storing messages
that could not be delivered to intended receivers.

• ≪GuaranteedDelivery≫ – uses a built-in data store to
persist messages.

• ≪Normalizer≫ – routes each message type through a
custom Message Translator so that the resulting mes-
sages match a common format.

• ≪MessageEndpoint≫ – the entry/exit point of a mes-
saging system used for sending/receiving messages.

Table 3 shows stereotypes and icons for selected Enterprise
Integration Patterns.

35224 VOLUME 11, 2023



T. Górski: Integration Flows Modeling in the Context of Architectural Views

FIGURE 4. UML Profile diagram with ZeroMQ stereotypes inheritance
hierarchy for Publish-Subscribe Channel specializations.

Almost all stereotypes have dedicated icons assigned.
Those missing have not been provided for by the authors
of the EIP, e.g.: Canonical Data Model, Scatter-Gather, and
Format Indicator.

C. ZeroMQ FRAMEWORK PATTERNS
However, integration solutions are constantly evolving and
new or improved mechanisms for solving existing message
exchange problems are emerging. ZeroMQ framework brings
a lot of freshness to this area. The framework defines spe-
cialized versions of Publish-Subscribe Channel [31] and
Request-Reply [32] patterns. The original EIP icons for the
Publish-Subscribe Channel and Request-Reply patterns have
been modified and a black-red-white color schema has been
adopted for icons proposed for stereotypes related to ZeroMQ
framework patterns.

The following stereotypes have been introduced for
ZeroMQ patterns that specialize Publish-Subscribe Channel:

• ≪SuicidalSnail≫ – detects slow subscribers in order to
maintain defined maximum latency.

• ≪Espresso≫ – monitors the network and prints all
incoming messages instantly.

• ≪BlackBox≫ – detects high-speed subscribers and
uses multithreading for sending and reading messages
in separate threads.

• ≪Clone≫ – maintains a common state among a group
of clients using a key-value store.

Figure 4 presents an inheritance tree of stereotypes for
ZeroMQ specializations of the Publish-Subscribe pattern.

Besides, the following stereotypes have been introduced
for ZeroMQ patterns that specialize Request-Reply:

• ≪LazyPirate≫ – rather than blocking a receive, the
pattern involves polling the socket to receive the reply.

• ≪Majordomo≫ – clients’ requests are augmented with
service names. Besides, servers are asked to register for
required services.

• ≪BinaryStar≫ – sets high-availability pair of servers in
the primary-secondary configuration. Connections from
client applications are accepted by the primary server.
The secondary server is idle but monitors the primary
one. The secondary server turns to the primary if detects
the original primary server stops working.

• ≪Titanic≫ – ensures that messages are not lost by
storing them in a message queue.

TABLE 4. Stereotypes for ZeroMQ specializations of Publish-Subscribe
Channel and Request-Reply patterns.

• ≪Freelance≫ – configures a pool of name servers. The
reliability is elevated at a higher level because if one
server stops working, clients are connected to another
server in the pool.

Table 4 shows selected stereotypes and icons for
ZeroMQ specializations of the Publish-Subscribe Channel
and Request-Reply patterns.

D. APACHE CAMEL FRAMEWORK PATTERNS
Apache Camel framework mainly implements Enterprise
Integration Patterns. Virtually the full range of seventy-seven
of these patterns is implemented in this environment. Each
of these patterns is described in detail on the website of the
framework [33]. When describing Camel’s own implementa-
tion of the pattern, the website explicitly provides information
on the original EIP pattern. However, Apache Camel also
extends its range of possibilities with additional own pat-
terns. The following patterns have been identified as Apache
Camel’s own designs because in descriptions there is no
reference to EIP ones:

• ≪LoadBalancer≫ – allows for delegating messages
to one of the endpoints using various load-balancing
policies.

• ≪ResumableConsumer≫ – the resume strategy allows
skipping reading and processing data that has already
been consumed.

VOLUME 11, 2023 35225



T. Górski: Integration Flows Modeling in the Context of Architectural Views

TABLE 5. Stereotypes for Apache Camel new messaging patterns.

• ≪ChangeDataCapture≫ – allows tracking changes in
databases and then lets applications listen to change
events, and react accordingly.

Table 5 shows stereotypes and icons for Apache Camel
patterns. An orange background has been adopted for icons
related to the patterns for that framework.

IV. MODELING OF INTEGRATION FLOWS
The article deals with placing buy and sell orders for shares
in a brokerage house (BH). Orders placed in the BH are
transferred to the Stock Exchange (SE). This is where the
communication between the systems of these two institu-
tions comes in. The SE system manages buy/sell orders.
There must be two converse sell and buy orders for the
shares of the same entity for the sale and purchase trans-
action to be concluded in the SE system. Additionally,
the buyer must consent to pay the price demanded by the
seller.

Modeling of service and business integration flows are
used in the architectural description of cooperating infor-
mation technology systems. Both structural and dynamic
sides of communication were shown in the Integrated ser-
vices architectural view. UML Component diagrams were
employed to model the structure of components taking part
in message exchange: integration component and IT systems
components. An integration component can be implemented
as a message queue or enterprise service bus. Whereas, inte-
gration flows are modeled using Integration flows diagrams
as a special form of UMLActivity diagrams. These flows can
represent a single message transfer. In such a case, it is the
service flow.

For the sake of clarity in further considerations, the
author introduces the following definition of the service flow
(Theorem 1).
Theorem 1 (Service Flow): A service flow is a sequence

of message processing steps that originate in the source sys-
tem, run in the integration component, and reach the target
system in order to invoke a specific service.

Moreover, integration flows are modeled in the context of
the business process task. For the sake of clarity in further
considerations, the author introduces the following definition
of the business flow (Theorem 2).

FIGURE 5. The business process of Placing orders to buy/sell shares.

Theorem 2 (Business flow):
A business flow is a sequence of service flows that are run on
the integration platform to reach the goal of a business task.

In addition, the following steps can be distinguished in the
modeling method of integration flows:

• business process modeling – it is done using UML
Activity diagrams. Often business modeling is realized
using the Business Process Model and Notation [34].
In the method, UML is employed to keep the same
notation for business processes and system modeling.

• identification of business tasks that involve integration,
• identification of use cases that participate in integration,
• modeling all needed service flows and eliciting services,
• composition of business flow from service flows for the
realization of a business task,

• modeling components with services.

A. INTEGRATED PROCESSES VIEW
Figure 5 presents the UML Activity diagram with the busi-
ness process for placing orders to sell/buy shares.

The design of Create and activate orders business process
task requires two-way communication and thus symmetric
flow, which comprises at least two asymmetric flows.

B. USE CASES VIEW
The context of business processes is shown in the Integrated
processes view of the 1+5 model. Activities in the business
process may be of different natures. Some can be automated
in the form of services or integration flows. Others may
involve interactions with the system user. The Use cases
view defines the system functions important to its users,
i.e. use cases. The designs of these functions, i.e. use case
realizations, are presented in the Logical view. In the context
of the example of sending buy/sell orders, it is important
to underline the beginning of the business process. In order
to be able to send orders from a brokerage house to the
stock exchange, someone has to place them. For this purpose,
an application of a brokerage house is usually used. It must
offer certain functions, including placing buy or sell orders.
In the Use case diagram, we should identify all necessary use
cases.

35226 VOLUME 11, 2023



T. Górski: Integration Flows Modeling in the Context of Architectural Views

FIGURE 6. UML Use case diagram of the Brokerage House application.

FIGURE 7. Integration flow diagram for creating the order.

Figure 6 presents the fragment of the UML Use case dia-
gram for the Brokerage House application. Among others, the
diagram shows the Create order and Activate order use cases
that communicate with an external system.Marking the Stock
Exchange actor with the ≪IntegratedSystem≫ stereotype
determines the need for integration.

It has been shown to emphasize that in order to visualize
the design of a complex integration system, it is necessary to
look at its architecture from various views.

C. INTEGRATED SERVICES VIEW
For those two use cases (Create order and Activate order),
the integration flows should be modeled in the Integrated ser-
vices view. The dynamic aspect of communication is realized
by integration flows.

FIGURE 8. Integration flow diagram for activating the order.

1) SERVICE FLOW
In Integration flow diagrams components are represented as
partitions and services are used as endpoints. By placing
actions in partitions, we allocate responsibility to compo-
nents. Figure 7 depicts the first integration flow. The flow is
responsible for sending the order from the BH application to
the SE system.

Control flows (in Figure 5) cross the brokerage house orga-
nization border two times. So, within the communication,
we should identify at least two service flows. The first one
flows from BH to SE - within Create order use case. The sec-
ond one conversely, sends messages from SE to BH - within
Activate order use case.

Figure 8 presents the second integration flow that activates
the order in the BH application. But, we are not able to get a
broader context for flow use or any dependencies.

VOLUME 11, 2023 35227



T. Górski: Integration Flows Modeling in the Context of Architectural Views

FIGURE 9. Integration flow diagram for communication in the context of Create and activate orders business process
task.

2) BUSINESS FLOW
In the example of placing share buy/sell orders, there are four
service flows combined into a logical chain of consecutive
service invocations. Figure 9 shows the Integration flow dia-
gram for communication in the context ofCreate and activate
orders business process task and both use cases: Create order
and Activate order.
The complete business integration flow includes starting

the order reading flow initiated on the message bus, down-
loading orders from the brokerage house and sending them
to the stock exchange, obtaining confirmation from the bro-
kerage house that the orders have been created on the stock
exchange, and getting a response from the brokerage house
on the message bus. As has been shown, the integration
design involves various architectural views. A single message
transfer must be placed in the complete integration flow,
which in turn should be situated in the context of a spe-
cific functional requirement. The prepared profile facilitates
modeling and enables unambiguous visualization of message
patterns.

3) COMPONENTS AND SERVICES
The structural aspect is modeled using a UML Component
diagram and encompasses the systems components and mes-
sage queue or service bus components. Two important pieces
of information are presented in the UML Component dia-
gram: the components that interact and the services provided
by each component. Services are modeled using interfaces
realized by components. The most important are the inter-
faces provided by the components representing IT systems.
Because in these components, the functions necessary to
perform the integration flow are actually implemented. The
message queue or service bus component performs flow
actions but forwards calls for execution to component ser-
vices (they are hidden behind interfaces).

Figure 10 depicts the UML Component diagram, which
contains services identified during analysis of Create and
activate orders business process task. Both systems cooperate
using the Integration Platform component.

Only by having modeled a full business flow, we can iden-
tify all the necessary services in the two components involved

35228 VOLUME 11, 2023



T. Górski: Integration Flows Modeling in the Context of Architectural Views

FIGURE 10. UML Component diagram for BH and SE systems cooperation.

in the communication. As a result of business flow modeling,
two additional service flows, and one the Find order service
were identified.

V. DISCUSSION AND LIMITATIONS
Several changes have been made to the integration flow
modeling method. The first is adding an icon for the
≪IntegratedSystem≫ stereotype representing an integrated
external system. A various level of modeling competencies
of the UML Use case diagram has been observed among
researchers and practitioners. As a rule, actors that represent
humans usually are drawn on the left. Besides, actors that
represent external systems usually are drawn on the right.
Inside reside use cases as functions of the described system.
This rule is not followed by everyone. In order to make
the integration areas even more visible, a dedicated icon for
the ≪IntegratedSystem≫ stereotype has been introduced.
In the presented example (section IV), the Stock Exchange
actor representing the integrated system is drawn on the right
side of the use cases. On the left side, there is the Registered
user actor representing the user of the system. The second
change refers to UML Component diagrams for components
taking part in integration flows. The ≪Consumer≫ and
≪Provider≫ stereotypes of the SoaML language have been
abandoned in the UML component diagram. In a situation
where the cooperating components provide their own services
and use others, it is no longer justified to mark all of them
with two more stereotypes. In addition, the use of interfaces
in UML Component diagrams with the definition of the real-
ization and usage relations brings in enough relevant infor-
mation. Furthermore, it is recommended to draw interfaces
close to the components that deliver (realize) them. As a third
change, it was decided to introduce partitions on Integration
flow diagrams. This change made it possible to clearly assign
responsibilities for activities performed in the course of the
integration flow. This is of particular importance in complex
integration projects involving several individual flows. The
author has also intended to prepare the profile in a commonly
used and affordable modeling tool. That is why the Visual
Paradigm Standard version has been chosen. The fourth ele-
ment is the inclusion of the business process aspect. Only a
broader perspective provides the context for the use of the
single integration flow. Business flow covers the context of
the business process task placed within the business process.
It shows the whole interaction among participating services.
Generally, UML proved to be the right choice for constructing

the set of modeling means and the method for integration
flows design.

Outside the scope of patterns included in the profile, there
are two important areas: IoT and blockchain. In terms of the
Internet of Things, the analysis of Covert Channels seems
to be important. Velinov et al. [35] introduce this topic.
However, in the current version of the profile, protocols
used in IoT applications are included [36]. The article shows
that the area of communication between systems/services
is constantly being developed and more and more flexible
patterns are emerging. An interesting pattern is the Free-
lance introduced in the ZeroMQ framework. It makes the
communication mechanism independent of a single inter-
mediary element. Therefore, it eliminates a single point of
failure. These types of patterns can become the basis for
communication between networks of distributed blockchain
nodes. Such exchange of messages may also be organized in
a distributed manner. Decentralized platforms for the stock
exchange that are based on blockchain technology attract
researchers’ attention [37]. It seems interesting to verify and
potentially enhance the proposed method in the case of the
integration design of the blockchain-based distributed stock
exchange. The area of model-driven engineering is also out-
side the scope of the article. Open Platform Communications
Unified Architecture (OPC UA) is a platform-independent
standard that facilitates information exchange between clients
and servers using messages. Existing work by Pauker et al.
[38] addresses an automatic transformation of UML class
diagrams to OPC UA information models. In the case of the
method, it would be interesting to investigate the feasibility
of designing the transformation of the UML activity diagram.
The work of Lee et al. [39] can be used because they define
the mapping between UML and OPCUA constructs. The cur-
rent work focuses on the modeling method. However, as part
of further work, it would be worth designing transformations
that automate the implementation of integration flows for
selected message queues and enterprise service buses. This
seems to be an interesting task. Because integration environ-
ments use a variety of integration flow implementation tech-
nologies, ranging from Java applications to Business Process
Execution Language [40] flows. At the level of UMLmodels,
it is planned to use tagged values and the Object Constraint
Language [41].

VI. CONCLUSION AND FURTHER WORK
The paper introduces business and service integration flows
and methods of their modeling. It should be underlined that
integration design involves various architectural views of the
1+5 model. Integration design is realized in the Integrated
services view.Whereas, the business process context is shown
in the Integrated processes view. Architecture description
also requires using diverse diagrams. Business processes
are modeled using UML Activity diagrams. While service
and business integration are presented in Integration flow
diagrams. The structural aspect of communication is shown
in UML Component diagrams. A business flow realizes a

VOLUME 11, 2023 35229



T. Górski: Integration Flows Modeling in the Context of Architectural Views

business process task and its implementation should be rather
done by enterprise service bus. Whereas, service flows are
well-suited for single service invocation and thus may be
recommended in a microservices architecture. As it was pre-
sented, integration flows can be diverse and quite complex.
However, one should strive to make communication between
systems or services as simple as possible. It should be under-
lined that the proposed modeling methods are generic and
not limited to a single technology or architecture. Besides,
integration flows are modeled using one notation, the Unified
Modeling Language. The same notation is used to model
the other aspects of the integration solution in the individual
architectural views of the 1+5model. Activities in a business
process may be of different natures. Some can be automated
in the form of services or integration flows. Others may
involve interactions with the system user. TheUse cases view
defines the system functions important to its users. Therefore,
it was also included in the architectural description of the
integration.

As further work, it is planned to include the Contracts
view of the model in the integration design. This is especially
important when designing solutions for which Service Level
Agreements have been established. Adapting the method for
designing communication for a distributed stock exchange,
which employs blockchain technology is also considered.
Designing the method for generating executable integration
flows for complex messaging patterns may be also a promis-
ing research direction.

REFERENCES
[1] P. Kannisto, D. Hästbacka, T. Gutiérrez, O. Suominen, M. Vilkko, and

P. Craamer, ‘‘Plant-wide interoperability and decoupled, data-driven pro-
cess control with message bus communication,’’ J. Ind. Inf. Integr., vol. 26,
Mar. 2022, Art. no. 100253, doi: 10.1016/j.jii.2021.100253.

[2] R. S. Bhadoria, N. S. Chaudhari, and V. G. T. N. Vidanagama, ‘‘Analyzing
the role of interfaces in enterprise service bus: A middleware epitome
for service-oriented systems,’’ Comput. Standards Interfaces, vol. 55,
pp. 146–155, Jan. 2018, doi: 10.1016/j.csi.2017.08.001.

[3] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley, 2004.

[4] O. Aziz, M. S. Farooq, A. Abid, R. Saher, and N. Aslam, ‘‘Research
trends in enterprise service bus (ESB) applications: A systematic
mapping study,’’ IEEE Access, vol. 8, pp. 31180–31197, 2020, doi:
10.1109/ACCESS.2020.2972195.

[5] H. F. Martinez, O. H. Mondragon, H. A. Rubio, and J. Marquez, ‘‘Com-
putational and communication infrastructure challenges for resilient cloud
services,’’ Computers, vol. 11, no. 8, p. 118, Jul. 2022, doi: 10.3390/com-
puters11080118.

[6] Y. Zhong, S. Zhu, Y. Wang, J. Li, X. Zhang, and J. S. Shang,
‘‘Pairwise location-aware publish/subscribe for geo-textual data
streams,’’ IEEE Access, vol. 8, pp. 211704–211713, 2020, doi:
10.1109/ACCESS.2020.3038921.

[7] I. Livaja, K. Pripužić, S. Sovilj, and M. Vuković, ‘‘A distributed geospatial
publish/subscribe system on apache spark,’’ Future Gener. Comput. Syst.,
vol. 132, pp. 282–298, Jul. 2022, doi: 10.1016/j.future.2022.02.013.

[8] E. Daraghmi, C.-P. Zhang, and S.-M. Yuan, ‘‘Enhancing saga pattern for
distributed transactions within a microservices architecture,’’ Appl. Sci.,
vol. 12, no. 12, p. 6242, Jun. 2022, doi: 10.3390/app12126242.

[9] M. Ozkaya and F. Erata, ‘‘A survey on the practical use of UML for
different software architecture viewpoints,’’ Inf. Softw. Technol., vol. 121,
May 2020, Art. no. 106275, doi: 10.1016/j.infsof.2020.106275.

[10] T. Pender, ‘‘Customizing UML using profiles,’’ in UML Bible.
Indianapolis, IN, USA: Wiley, 2003, ch. 21, pp. 687–723.

[11] R. J. Petrasch and R. R. Petrasch, ‘‘Data integration and interoperability:
Towards amodel-driven and pattern-oriented approach,’’Modelling, vol. 3,
no. 1, pp. 105–126, Feb. 2022, doi: 10.3390/modelling3010008.

[12] T. Górski, ‘‘UML profile for messaging patterns in service-oriented archi-
tecture, microservices, and Internet of Things,’’ Appl. Sci., vol. 12, no. 24,
p. 12790, Dec. 2022, doi: 10.3390/app122412790.

[13] T. Górski, ‘‘The 1+5 architectural views model in designing blockchain
and IT system integration solutions,’’ Symmetry, vol. 13, no. 11, p. 2000,
Oct. 2021, doi: 10.3390/sym13112000.

[14] I. K. Kirpitsas and T. P. Pachidis, ‘‘Evolution towards hybrid soft-
ware development methods and information systems audit challenges,’’
Software, vol. 1, no. 3, pp. 316–363, Aug. 2022, doi: 10.3390/soft-
ware1030015.

[15] P. B. Kruchten, ‘‘The 4+1 view model of architecture,’’ IEEE Softw.,
vol. 12, no. 6, pp. 42–50, Nov. 1995, doi: 10.1109/52.469759.

[16] A. Suljkanović, B. Milosavljević, V. Indić, and I. Dejanović, ‘‘Devel-
oping microservice-based applications using the silvera domain-specific
language,’’ Appl. Sci., vol. 12, no. 13, p. 6679, Jul. 2022, doi:
10.3390/app12136679.

[17] K. Zhang and J. Kianfar, ‘‘An automatic incident detection method for
a vehicle-to-infrastructure communication environment: Case study of
interstate 64 in Missouri,’’ Sensors, vol. 22, no. 23, p. 9197, Nov. 2022,
doi: 10.3390/s22239197.

[18] United States Department of Transportation. (Mar. 2023). Architecture
Reference for Cooperative and Intelligent Transportation, ARC-IT Version
9.1. [Online]. Available: https://www.arc-it.net/

[19] D.Marbouh,M. C. E. Simsekler, K. Salah, R. Jayaraman, and S. Ellahham,
‘‘A blockchain-based regulatory framework for mHealth,’’ Data, vol. 7,
no. 12, p. 177, Dec. 2022, doi: 10.3390/data7120177.

[20] C. G. Moyano, L. Pufahl, I. Weber, and J. Mendling, ‘‘Uses of
business process modeling in agile software development projects,’’
Inf. Softw. Technol., vol. 152, Dec. 2022, Art. no. 107028, doi:
10.1016/j.infsof.2022.107028.

[21] T. Górski and A. P. Woźniak, ‘‘Optimization of business process execution
in services architecture: A systematic literature review,’’ IEEE Access,
vol. 9, pp. 111833–111852, 2021, doi: 10.1109/ACCESS.2021.3102668.

[22] H. Wang, X. Hu, Q. Yu, M. Gu, W. Zhao, J. Yan, and T. Hong, ‘‘Inte-
grating reinforcement learning and skyline computing for adaptive ser-
vice composition,’’ Inf. Sci., vol. 519, pp. 141–160, May 2020, doi:
10.1016/j.ins.2020.01.039.

[23] A. Montarnal, W. Mu, F. Benaben, J. Lamothe, M. Lauras, and
N. Salatge, ‘‘Automated deduction of cross-organizational collaborative
business processes,’’ Inf. Sci., vol. 453, pp. 30–49, Jul. 2018, doi:
10.1016/j.ins.2018.03.041.

[24] R. Akhilesh, O. Bills, N. Chilamkurti, and M. J. M. Chowdhury,
‘‘Automated penetration testing framework for smart-home-based IoT
devices,’’ Future Internet, vol. 14, no. 10, p. 276, Sep. 2022, doi:
10.3390/fi14100276.

[25] J. Han, Y. Zhang, J. Liu, Z. Li, M. Xian, H. Wang, F. Mao, and Y. Chen,
‘‘A blockchain-based and SGX-enabled access control framework for
IoT,’’ Electronics, vol. 11, no. 17, p. 2710, Aug. 2022, doi: 10.3390/elec-
tronics11172710.

[26] W. Ahmed, W. Di, and D. Mukathe, ‘‘A blockchain-enabled incentive
trust management with threshold ring signature scheme for traffic event
validation in VANETs,’’ Sensors, vol. 22, no. 17, p. 6715, Sep. 2022, doi:
10.3390/s22176715.

[27] K. Thramboulidis and F. Christoulakis, ‘‘UML4IoT—A UML-
based approach to exploit IoT in cyber-physical manufacturing
systems,’’ Comput. Ind., vol. 82, pp. 259–272, Oct. 2016, doi:
10.1016/j.compind.2016.05.010.

[28] H. Marouane, C. Duvallet, A. Makni, R. Bouaziz, and B. Sadeg,
‘‘An UML profile for representing real-time design patterns,’’ J. King
Saud Univ., Comput. Inf. Sci., vol. 30, no. 4, pp. 478–497, Oct. 2018, doi:
10.1016/j.jksuci.2017.06.005.

[29] J. E. Plazas, S. Bimonte, M. Schneider, C. de Vaulx, P. Battistoni,
M. Sebillo, and J. C. Corrales, ‘‘Sense, transform & send for the Inter-
net of Things (STS4IoT): UML profile for data-centric IoT applica-
tions,’’ Data Knowl. Eng., vol. 139, May 2022, Art. no. 101971, doi:
10.1016/j.datak.2021.101971.

[30] GitHub Repository. UML Profile for Messaging Patterns. Accessed:
Mar. 7, 2023. [Online]. Available: https://github.com/drGorski/UML
Profile4MessagingPatterns

[31] ZeroMQ Guide. Publish-Subscribe Messaging Patterns. Accessed:
Mar. 7, 2023. [Online]. Available: https://zguide.zeromq.org/docs/chapter5/

35230 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.jii.2021.100253
http://dx.doi.org/10.1016/j.csi.2017.08.001
http://dx.doi.org/10.1109/ACCESS.2020.2972195
http://dx.doi.org/10.3390/computers11080118
http://dx.doi.org/10.3390/computers11080118
http://dx.doi.org/10.1109/ACCESS.2020.3038921
http://dx.doi.org/10.1016/j.future.2022.02.013
http://dx.doi.org/10.3390/app12126242
http://dx.doi.org/10.1016/j.infsof.2020.106275
http://dx.doi.org/10.3390/modelling3010008
http://dx.doi.org/10.3390/app122412790
http://dx.doi.org/10.3390/sym13112000
http://dx.doi.org/10.3390/software1030015
http://dx.doi.org/10.3390/software1030015
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.3390/app12136679
http://dx.doi.org/10.3390/s22239197
http://dx.doi.org/10.3390/data7120177
http://dx.doi.org/10.1016/j.infsof.2022.107028
http://dx.doi.org/10.1109/ACCESS.2021.3102668
http://dx.doi.org/10.1016/j.ins.2020.01.039
http://dx.doi.org/10.1016/j.ins.2018.03.041
http://dx.doi.org/10.3390/fi14100276
http://dx.doi.org/10.3390/electronics11172710
http://dx.doi.org/10.3390/electronics11172710
http://dx.doi.org/10.3390/s22176715
http://dx.doi.org/10.1016/j.compind.2016.05.010
http://dx.doi.org/10.1016/j.jksuci.2017.06.005
http://dx.doi.org/10.1016/j.datak.2021.101971


T. Górski: Integration Flows Modeling in the Context of Architectural Views

[32] ZeroMQ Guide. Request-Reply Messaging Patterns. Accessed:
Mar. 7, 2023. [Online]. Available: https://zguide.zeromq.org/docs/chapter4/

[33] Apache Camel—Enterprise Integration Patterns. Accessed:Mar. 7, 2023.
[Online]. Available: https://camel.apache.org/components/3.20.x/eips/
enterprise-integration-patterns.html

[34] Object Management Group. Business Process Model and Notation, Spec-
ification 2.0.2. Accessed: Mar. 7, 2023. [Online]. Available: https://www.
omg.org/spec/BPMN/

[35] A. Velinov, A. Mileva, S. Wendzel, and W. Mazurczyk, ‘‘Covert chan-
nels in the MQTT-based Internet of Things,’’ IEEE Access, vol. 7,
pp. 161899–161915, 2019, doi: 10.1109/ACCESS.2019.2951425.

[36] E. Al-Masri, K. R. Kalyanam, J. Batts, J. Kim, S. Singh, T. Vo,
and C. Yan, ‘‘Investigating messaging protocols for the Internet of
Things (IoT),’’ IEEE Access, vol. 8, pp. 94880–94911, 2020, doi:
10.1109/ACCESS.2020.2993363.

[37] H. Al-Shaibani, N. Lasla, and M. Abdallah, ‘‘Consortium blockchain-
based decentralized stock exchange platform,’’ IEEE Access, vol. 8,
pp. 123711–123725, 2020, doi: 10.1109/ACCESS.2020.3005663.

[38] F. Pauker, S. Wolny, S. M. Fallah, and M. Wimmer, ‘‘UML2OPC-
UATransforming UML class diagrams to OPC UA information
models,’’ Proc. CIRP, vol. 67, pp. 128–133, Jan. 2018, doi:
10.1016/j.procir.2017.12.188.

[39] B. Lee, D.-K. Kim, H. Yang, and S. Oh, ‘‘Model transformation between
OPC UA and UML,’’ Comput. Standards Interfaces, vol. 50, pp. 236–250,
Feb. 2017, doi: 10.1016/j.csi.2016.09.004.

[40] OASIS. Web Services Business Process Execution Language, Version
2.0. Accessed: Mar. 7, 2023. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

[41] Object Management Group. Object Constraint Language, Version 2.4.
Accessed: Mar. 7, 2023. [Online]. Available: https://www.omg.org/
spec/OCL/2.4/PDF

TOMASZ GÓRSKI (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in com-
puter science from the Military University of
Technology (MUT), Warsaw, Poland, in 1997 and
2000, respectively. He was with the Computer
Science Center of the General Staff of the
Polish Armed Forces for ten years and ended
his military service as a major. After getting the
Ph.D. degree, he worked on public-sector (Pol-
ish Border Guard, PKP CARGO) and commer-

cial integration projects (Zone Vision). From 2005 to 2020, he ran the
consulting company RightSolution, an IBM Authorized Training Provider
for the Rational brand. From 2004 to 2017, he led the IT Systems Engi-
neering Department, MUT, and built the Center for Advanced Studies
in Systems Engineering. From 2017 to 2022, he steered the IT Sys-
tems Department, Polish Naval Academy. He is currently with the Insti-
tute of Computer Science, University of Gdansk. He reviews papers for
Applied Sciences, IEEE ACCESS, Information and Software Technology, and
Journal of Industrial Information Integration. He teaches object-oriented
programming. His research interests include software architecture,
software design and test patterns, blockchain, model-driven devel-
opment, and continuous delivery. He is the author of the 1+5
Architectural Views Model in Designing Blockchain and IT Sys-
tem Integration Solutions, Use Case API Design Pattern, UML Pro-
file for Distributed Ledger Deployment, UML Profile for Messaging
Patterns, Smart Contract Design Pattern, and k+1 Symmetric Test
Pattern. He is amember of the IEEEComputer and IEEE Information Theory
Societies.

VOLUME 11, 2023 35231

http://dx.doi.org/10.1109/ACCESS.2019.2951425
http://dx.doi.org/10.1109/ACCESS.2020.2993363
http://dx.doi.org/10.1109/ACCESS.2020.3005663
http://dx.doi.org/10.1016/j.procir.2017.12.188
http://dx.doi.org/10.1016/j.csi.2016.09.004

