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ABSTRACT A digital twin is a powerful tool that can help monitor and optimize physical assets in real-time.
Simply put, it is a virtual representation of a physical asset, enabled through data and simulators, that can be
used for a variety of purposes such as prediction, monitoring, and decision-making. However, the concept of
digital twin can be vague and difficult to understand, which is why a new concept called ‘‘capability level’’
has been introduced. This concept categorizes digital twins based on their capability and defines a scale
from zero to five, with each level indicating an increasing level of functionality. These levels are standalone,
descriptive, diagnostic, predictive, prescriptive, and autonomous. By understanding the capability level of
a digital twin, we can better understand its potential and limitations. To demonstrate the concepts, we use
a modern house as an example. The house is equipped with a range of sensors that collect data about its
internal state, which can then be used to create digital twins of different capability levels. These digital twins
can be visualized in virtual reality, allowing users to interact with and manipulate the virtual environment.
The current work not only presents a blueprint for developing digital twins but also suggests future research
directions to enhance this technology. Digital twins have the potential to transform the way we monitor and
optimize physical assets, and by understanding their capabilities, we can unlock their full potential.

INDEX TERMS Digital twin, artificial intelligence, virtual reality, machine learning, building physics.

I. INTRODUCTION
A digital twin (DT) is a virtual replica of a physical asset,
enabled through data and simulations, that can be used for
real-time monitoring, optimization, and decision-making [1].
The motivation to study DTs is rooted in the potential cost
savings and efficiency gains they offer. In Fig. 1, we can see
the concept of a DT. The physical asset is located in the top
right side of the figure, equipped with various sensors that
provide real-time big data. However, this data has limited
spatio-temporal resolution and does not tell about the future
state of the asset. To complement themeasurement data, mod-
els are used to create a digital representation of the asset. If the
DT can provide the same information as the physical asset,
it can be utilized for informed decision-making and optimal
control. The green arrows in the figure show real-time data
exchange and analysis. To perform risk assessment, what-if
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analysis, uncertainty quantification, and process optimiza-
tion, the DT can be run in an offline setting for scenario
analysis. It is then called digital siblings. The gray box and
arrows represent the digital sibling. Additionally, the DT
predictions can be archived during the lifetime of the asset
and can be used for designing a next generation of assets,
in which the concept is referred to as digital threads. The
authors in [2] present a DT capability level scale adapted
from a DNV GL report [3] that divides a DT into six dis-
tinct levels. These levels are 0-Standalone, 1-Descriptive,
2-Diagnostic, 3-Predictive, 4-Prescriptive and 5-Autonomous
(Fig. 2). Standalone DT can exist even before the asset is
built and can consist of solid models. When the asset is in
place and is equipped with sensors, data can be streamed
in real-time to create a descriptive DT, giving more insight
into the state of the asset. When analytic tools are applied
to the incoming data stream to diagnose anomalies, the DT
advances to a diagnostic level. At the first three levels, the
DT can provide information/insight only about the past and
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FIGURE 1. Schematic of a digital twin, and digit sibling concept. The top-right most box with a house represents any asset equipped with sensors
acquiring big data. The data is processed using models to improve the spatio-temporal resolution for instilling physical realism in the digital twin.
Information from the digital twin can be used for informed decision making and public engagement. Additionally it can be used for optimally controlling
the asset. The green arrows signify real-time data/information transfer. The same architecture can also be used for conducting offline hypothetical
scenario analysis, in which case can be called digital siblings.

present. However, a predictive DT can describe the future
state of the asset. Using the predictiveDT, one can do scenario
analysis to provide recommendations to push the asset to the
desired state. This is then referred to as prescriptive level.
Lastly, the asset updates the DT at the autonomous level, and
the DT controls the asset autonomously. We will refer to this
setting as the capability level framework for DTs from now
onwards.

Within the field of DTs there is no consensus as to what
qualifies as a DT application [4]. Organizations and sectors
operate with different definitions of DTs that are simply too
vague and generic to provide any indication of the current
capabilities of the DT [5]. Due to the ambiguity of the defini-
tions of DTs, researchers and practitioners may dismiss them
as mere marketing hype. As a result, once the excitement and
the inevitable backlash have passed, interest in and use of this
promising technologymay not reach its full potential [6]. Fur-
thermore within the built environment, a BIM of a building
relates somehow to the DT of the asset, but many still struggle
to see the liaison between the two [7]. More recently some
encouraging advancements have started to happen in the field
for e.g. [8] improves the construction efficiency to ensure
the infrastructure needs of urban development using the BIM
model. In [9] the focus is on the modeling methodology used
by the energy domain to support the development of a DT
for a multi-functional building element. The authors in [10]

argue that a comprehensive perception of physical systems
is the preconditions for DTs implementation while in [11]
it is demonstrated that DT technologies can enable efficient
and responsive planning and control of facility management
activities by providing real-time status of the building assets.
Researchers in [12] studied the structural system integrity
using finite element method in historical masonry buildings
using the concept of the DT. It can be easily realized that
the capability level scale concept has the potential to make
the DT related communication more standardized and can
help compare different existing DT solutions available in
the market. A brief overview of the capability of existing
solutions in the market is presented in Table 1. It shows
a clear lack of high capability level DTs in the industry.
The connection between the DT capability level and the
service that each company provides depends on what the
focus of the provider is. For instance, Matterport [13] and
Openspace are virtual tour services that focus on providing
360 degrees photogrammetry for building management [14],
[15], and therefore only qualify as a standalone DT service.
Note that there are many other similar standalone services
in the market [16], [17]. Revit is a BIM modeling software
and is therefore only limited to constructing 3D models of
a building [18]. Invicara and TwinView have an ambition of
allowing customers to combine BIM models with IoT sensor
data integration qualifying both companies for descriptive
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FIGURE 2. Description of capability levels of a digital twin.

TABLE 1. Comparing current work with industry DT services.

DT, with the addition of Twinview providing predictive DT
capabilities [19], [20]. None of the above-mentioned applica-
tions qualify as diagnostic or prescriptive DTs. To this end,
the current work

• introduces the concept of DT and its capability level in
the context of built environment.

• presents the basic ingredients to get started with building
a DT.

• combines the power of AI, advanced sensor technolo-
gies, and virtual reality (VR) to develop the DT which is
used as a way to communicate the concept and its values.

• proposes future research directions to enhance the capa-
bility of DTs.

It is important to stress that the objective of this paper is not
to present a detailed analysis of the diverse class of data used
in this project. Instead, we are using data, and their analysis
to demonstrate the potential value of DT technology. To the
best of our knowledge, this has never been attempted before
at the fidelity addressed in the current article.

This paper is structured as follows. Section II presents the
relevant theory that has been used to develop the DT. We then
outline the methodology of the work in Section III, namely
how the data was generated, how the models were trained,
and how they were evaluated. In Section IV we present the
results and discuss them. Finally, we summarize our findings
and outline future work in Section V.

II. THEORY
This section gives a brief description of the concepts, algo-
rithms, and tools utilized to develop and demonstrate the DT
concept using the capability level framework. Since one of the
goals of this work is to provide a blueprint for developing DT
of any asset from scratch, for the sake of completion, we have
also included some theories (eg. collaborative filtering and
big data cybernetics) which we have not yet used in the
current work.

A. 3D MODEL REPRESENTATION
As explained earlier, a standalone DT is a virtual description
of an asset, disconnected from its physical counterpart. In the
current context the house might not even exist at the inception
of a standalone DT. However, the standalone DT can give
the stakeholders a feel of the building and its environment,
enabling them to make informed decisions. In creating the
standalone DT we involved three basic steps, 3D modeling,
rendering/texturing, and creating a virtual representation of
the building. These are explained in the following section.

1) 3D MODELING
The term 3D modeling is the process of using a software
tool to construct a 3D representation of an object (house in
the current context). The 3D model also called the Com-
puter Aided Design (CAD) model consisting of point clouds,
edges, and surfaces giving the illusion of physical objects.
The 3D models can be utilized for engineering analysis using
Computational Fluid Dynamics (CFD) and Finite Element
Methods (FEM).

2) 3D RENDERING
3D rendering is a computer graphics process in which sur-
faces of a 3D model are overlaid with textures such that
the 3D object achieves a photo-realistic appearance [21].
3D rendering can be broken down into three steps; visual
texturing, lighting, and detailing. Visual textures refer to
the visual perception of a spatial surface with a variety of
details such as color, orientation, intensity, size, shape, and
density [22], [23]. In addition, lighting, reflection, and shad-
ows can all be generated in 3D rendering software, and the
light-absorbing characteristics of the materials are integrated
into the texture. Detailing is the last step and requires a
designer to carefully sculpt wear and tear, imperfections,
dents, and other details into the surfaces, giving the model
a more lifelike impression. For texturing to be interpreted
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across different platforms, it is usually represented in the form
of a uv-map. uv-mapping is projecting a 2D image onto a 3D
surface, where the ‘‘uv’’ part refers to the axes of the image
projection.

3) VIRTUALIZATION USING 3D GAME ENGINE
A 3D game engine is a software development environment
that effectively allows for the rapid development of interac-
tive 3D experiences and games. A game engine is known to
support a programming environment, 2D and/or 3D render-
ing, accurate physics engines, andmanymore well-optimized
features that would take much time for a single developer to
create on their own. Thanks to commercially available game
engines, it is easy for an individual to only focus on the
specifics of their own game, simulation, or experience [24].
Creating a standalone DT of an asset with 3D modeling and
3D rendering allows only for a static 3D model while using a
3D game engine through scripting language allows for state
management of the 3D asset. This enables real-time evolution
of the DT with respect to the asset it represents.

B. VIRTUAL REALITY
The concept of VR is not recent and can be defined as a
model of the real world that is maintained in real-time, sounds
and feels real with the possibility to directly and realistically
manipulate the environment. Today there exist many afford-
able VR solutions generally consisting of a headset and com-
plimentary controllers, that either utilize their own internal
hardware or external processing power to render the virtual
environment. Such a representation of a virtual environment
through the usage of VR hardware compliments very well the
visualization of a DT asset, which allows for a more realistic
representation and feel of the asset.

C. TIME SERIES PREDICTION AND FORECASTING MODEL
A time series can be defined as sequenced data consisting
of real-valued continuous numerical observations that are a
function of time [25]. The data collected in the current work
comes from sensors sampled at regularly spaced intervals;
thus, the data can be viewed as continuous-valued but discrete
in time. Time series predictions and time series forecasting
can often be confused to mean the same thing [26]. In the
context of machine learning (ML) and this work, a time series
predictions model will refer to a regression model capable of
predicting unknown or unseen values based on present infor-
mation. On the other hand, a time series forecastingmodel is a
regression model capable of making future predictions based
on learned trends and seasonality, amongst other things.

1) AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
ARIMA, a time series forecasting model, is a versatile model
that can capture both the linear and non-linear patterns in the
data, as well as handle different types of seasonality and trend.
The ARIMA model consists of three components: Autore-
gression (AR), Integration (I), and Moving Average (MA).

AR models the relationship between an observation and a
number of lagged observations. The idea behind this is that
the current value of a time series is a function of its past
values. AR models can be used to capture linear patterns
in the data. Moving Average (MA) models the relationship
between the errors of the time series. The idea behind this
is that the errors in a time series are correlated with the
errors of the previous time points. MA models can be used
to capture non-linear patterns in the data. Integration (I) is a
technique used to transform a non-stationary time series into
a stationary. A stationary time series has a constant mean and
variance over time, which makes it easier to model. Integra-
tion is achieved by taking the difference between consecu-
tive observations. ARIMA models are typically denoted as
ARIMA(p, d, q), where p, d , and q are integers that represent
the order of the AR, I, and MA components, respectively.

2) PROPHET
Prophet [27] is a popular time series forecasting model
designed to handle seasonality, holiday effects, and other
time series features that are commonly encountered in real-
world data. It is based on a decomposable time series model
that can capture trend, seasonality, and holiday effects using
piecewise linear models. Prophet is also robust to missing
data and can handle outliers and changes in trend. Addi-
tionally, it offers a wide range of customizable options and
hyperparameters to fine-tune the model performance. Over-
all, Prophet has gained popularity due to its ease of use, flex-
ibility, and ability to provide accurate and reliable forecasts
for a variety of time series applications.

3) LONG SHORT TERM MEMORY NETWORKS
LSTM [28] is a type of RNN architecture that is specifically
designed to handle time series data. LSTMnetworks are capa-
ble of learning and remembering long-term dependencies in
time series data, making them well-suited for a wide range
of applications such as speech recognition, natural language
processing, and temperature prediction. Unlike traditional
RNNs, which have a simple structure and can suffer from the
vanishing gradient problem, LSTMs use a memory cell and a
set of gates to selectively store, retrieve, and forget informa-
tion. The memory cell can retain information over long time
periods, while the gates control the flow of information into
and out of the cell. This allows LSTMs to capture complex
patterns and dependencies in time series data, making them a
powerful tool for time series forecasting and prediction.

4) GRADIENT BOOSTING MACHINES
GBM is a powerful ML algorithm used for both regression
and classification tasks. It works by iteratively building an
ensemble of weak decision trees, where each new tree is
trained to correct the errors made by the previous trees in
the ensemble. GBM is a form of boosting, which means
it improves the accuracy of the model by focusing on the
misclassified samples in each iteration. The algorithm works
by minimizing a loss function, such as mean squared error
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or log loss, using gradient descent. GBM has several advan-
tages over other ML algorithms, such as the ability to handle
missing data and outlier detection, and it is less prone to
overfitting. GBM has become a popular choice for solving
complex ML problems. GBMwere one of the first sequential
ensemble methods of its kind created by Friedman and have
evolved to many of the state-of-the-art tree-based algorithms
such as XGBoost, CatBoost and LightGBM [29], [30], [31].

5) STACKING
Stacking uses output predictions of base models as input to
a second-level model, usually called the meta-learner. How-
ever, one cannot simply train the base models on the full
training data, generate predictions on the full test set and then
output these for the second-level training. This would not lead
to the benefits that stacking provides. Instead, K -folds of the
dataset is created. Then each model is fitted on K − 1 of the
training set and predicts only on 1

K of the data set, this is done
for K iterations until all data appears on the test set. All K
predictions of a single model are concatenated into the size of
the original test set vector, this is done for each of the models.
Finally, all these vectors are fed together as features to the
meta-regressor, which produces the final predictions [32],
[33]. Empirical evidence shows that model stacking makes
the model more robust to changes in the data set, allowing
for better generalization [34]. This is because the stacking
deduces the bias in a model on a particular data set, and then
corrects said bias in the meta-learner [35].

6) WEIGHT AVERAGING
A simple but powerful way to create a strong predictor is
by using parallel ensembling. One way to think of parallel
ensemble learning is weighting the predictions of multiple
different models. Another way of parallel ensemble pre-
dictions is to have multiple models of the same type e.g.
LSTM, but each LSTM model has different hyperparameters
or is fed with different features, and then their predictions
are weighted to get the final prediction. One can combine
and experiment with endless types of parallel ensembling,
as each dataset might work very well with a specific kind.
In Equation 1 assuming predictions from N different models,
then the final prediction ŷf is the weighted average of all the
individual models represented by ŷi.

ŷf =

∑N
i=1 ŷiwi∑N
i=1 wi

(1)

where the weights wi given by

wi =
1

(
√

1
N

∑N
k=1(y

val
k − ŷvalk )2)p

(2)

are calculated using the predictions on the validation set
(represented with the subscript val) Note that the tunable
hyperparameter p can be chosen to be any value greater than
zero.

D. SUN POSITION PREDICTION MODEL
The approximate algorithm that is used in the current imple-
mentation of the predictive DT is inspired by [36] which is
taken from Montenbruck’s book on algorithms about astro-
nomical phenomena. The precision of these calculations is
in the range of 01.03.1900 till 28.02.2100 as stated by the
author [37]. The resulting sun position algorithm in Unity
is accurate enough that it can be used for external lighting
simulations on the house. In order to calculate the azimuth
and altitude of the sun accurately, several parameters are
required to convert the input date into the correct format.
These parameters include JD, JC , tUT , tSR, tSRUT , and tLSR.
Additionally, the ecliptic coordinates of the sun, λ and β,
are calculated using the values of L0 and M0. The ecliptic
coordinate system is used to represent the apparent posi-
tions of any solar system object. These coordinates, together
with �, are then used to calculate the equatorial coordinates,
α and δ. This enables us to determine the position of the sun
relative to the earth, with the earth located at the origin of
the equatorial coordinate system. Finally, the coordinates are
converted into azimuth and altitude angles, φ and θ , which
provide the output sun coordinates relative to a stationary
point on the earth’s surface. In our case, the stationary point
is the longitude and latitude positions of the house.

First, in order to calculate the number of days relative to
the reference date and time of January 1, 2000, 12h Universal
Time (J2000), we need to calculate the Julian Date. The Julian
Date is represented by JD and can be calculated using the
following equations:

JD = 367Y −
7
4
(Y +

9
12
M ) +

275
9
M + D− 730531.5

This relates to the Julian Century as

JC =
JD

36525

Furthermore using Julian Century, Sidereal time (given in
hours) can be defined, which is the meridian of Greenwich
at midnight (00h) for a given date as well as the conversion
from sidereal time of the Greenwich meridian for Universal
Time can be calculated as follows.

tSR = 6.6974 + 2400.0513JC

tSRUT = tSR +
366.2422
365.2422

tUT

where 365.2422 is the length of a tropical year given in days.
Finally, the local sidereal time for a geographical longitude L
can be found as such.

tLSR = tSRUT + L

Local sidereal time will come in handy later when calculating
the altitude and azimuth of the sun. Firstly number of days d
from J2000 for the input date is given as.

JDd = JD+
tUT
24
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Which is needed to calculate the relative centuries from the
reference time.

JCd =
JDd
36525

Using the Julian century of the input date the sun’s mean
longitude and its mean anomaly can be calculated.

L0 = 280.466 + 36000.770JCd
M0 = 357.529 + 35999.050 JCd

The sun’s equation of center C is given as

C = (1.915 − 0.005JCd ) sin(M0) + 0.020 sin(2M0)

Using the Equation of center of the sun the ecliptic longitude
can be found. Note that the ecliptic latitude is approximately
zero (β ≈ 0).

λ = L0 + C

There are many intermediate calculations that need to be
done in order to get the correct position of the sun relative to
where a person’s relative geographical longitude and latitude.
Consequently in order to find the azimuth and altitude it
is important to find the Sun’s equatorial coordinates, right
ascension α and declination δ which are both relying on the
obliquity of the ecliptic �.

� = 23.439 − 0.013JCd
α = arctan(tan(λ) cos(�))

δ = arctan(sin(α) sin(�))

Now it is possible to proceed to find the horizontal coordi-
nates for the sun for a given input of geographical longitude
L and latitude B. First the hour angle of the object is given as.

HA = tLSR − α

Resulting in the final Equations for the altitude of the sun θ

and the azimuth φ respectively, where the algorithmic version
of the azimuth φ is calculated using Arctan2 as suggested
by [38].

θ = arcsin(sin(B) sin(δ) + cos(B) cos(HA))

φ = arctan
(

− sin(HA)
tan(δ) cos(B) − sin(B) cos(HA)

)
These angles are required is utilized to correctly render the
objects in the DT.

E. RECOMMENDER SYSTEMS
Recommender systems are widely used for information fil-
tering, providing users with valuable insights from relevant
data sources. These insights can be inferred from the data or
concatenated from a collection of data features.

1) USER-BASED COLLABORATIVE FILTERING
Collaborative filtering is an information filtering technique
that predicts a user’s interests or behavior by collecting data
from many users. The underlying assumption is that if person
A behaves similarly to person B in a specific context, then
person A might behave more similarly to person B in another
context than a randomly chosen person from the population.
Companies such as Amazon, Netflix, YouTube, and other
services extensively use recommender systems to learn about
user preferences and provide personalized recommendations
based on their behavior and similarities with other users [39].
However, the main challenge with this approach is that it
requires a lot of data about user behavior, not necessarily
from the user in question, but from the entire user base from
which the data is collected. Moreover, the cold start problem
arises when a new user registers and has not provided any
interaction yet, making it impossible to provide personalized
recommendations [40]. At the beginning, the algorithm may
not be very accurate but becomes more precise as more data
is collected while the user is active.

F. CONTROL SYSTEMS
The aim of cybernetics in autonomous DTs is to guide the
house towards an optimal set point. To achieve this, the sys-
tem’s output is continuously monitored and compared against
a reference. The difference between the two, referred to as
the error signal, is fed back to the controller, which generates
a system input to bring the output set-point closer to the
reference. As more sensors and communication technologies
become available, larger volumes of real-time data, i.e., big
data, are being generated. However, the quantity of interest
may not be directly measurable, and it becomes a challenge
to extract and understand the relevant information to be used
for control purposes. Big Data Cybernetics is a new field of
research that aims to address this challenge in a real-time
control context. The first step involves interpreting the big
data using well-understood physics-based models. The dif-
ference between the observation and the physics-basedmodel
is called the interpretable residual. In the second step, inter-
pretable data-driven modeling approaches are used to model
and analyze this residual. The remaining uninterpretable
residual is then modeled using more complex black box mod-
els like Deep Neural Networks, which generally represent
noise that can be discarded. This approach is known asHybrid
Analysis and Modeling (HAM), which continuously loops
with the availability of new data resulting in ever-improving
models. HAM is a promising new approach that aims to
combine existing physics-based models with interpretable
and non-interpretable big data-driven modeling techniques.
Fig. 3 illustrates the looped steps of the HAM process and
the overall Big Data Cybernetics philosophy. HAM models
can be utilized not only in the context of the interpretability
of big data, but also in the Controller block. They can be
incorporated alongside model-free control algorithms such
as reinforcement learning (RL), or with model predictive
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FIGURE 3. Big Data Cybernetics control loop.

control (MPC) algorithms, to improve the overall control
performance of the system.

III. METHOD AND SET-UP
This section gives the brief overview of setting up DTs at
different capability levels. For a more detailed description of
the setup we refer the readers to [41]

A. SET-UP FOR STANDALONE DT
The asset in this case consists of a house, its surroundings ter-
rain, and objects inside the house. Creating a standalone DT
involved creating CAD models as a starting point. Here we
give a detail of the steps involved in building the standalone
DT.

1) 3D CAD MODEL OF THE HOUSE
The house’s 3D CAD model was created using Autodesk
Revit software based on the 2Dfloor plans, as shown in Fig. 4.
The three floors were stacked on top of each other, and details
such as doors and windows were accurately placed. To dis-
tinguish different components of the house, each surface was
tagged and textured appropriately. This tagging ensured that
components could be identified accurately at a later stage
if necessary. The scene was rendered using Autodesk 3DS
Max and converted into a format compatible with the Unity
Game Engine. High-quality textures were obtained from

Architextures [42], a library designed for architectural mod-
els, and imported into 3DS Max. The textures were then
applied to the uv-maps of walls, floors, and other surfaces
to achieve the final look of the building.

2) UNITY GAME ENGINE FOR INTERACTION WITH THE 3D
OBJECTS
TheUnity Game Engine offers a C# .NET programming envi-
ronment, 3D rendering capabilities, accurate physics engines,
and optimized features that help developers create games
more efficiently. Importing CAD models into Unity allows
for real-time interaction with objects and instills physical
realism through precise physics engines. If the exact physics
engine is not available, it can be implemented within the
Unity framework using programming languages such as C#
or Python. While Revit and 3DS Max are integrated by
default, setting up the connection between 3DS Max and
Unity requires additional steps. Unity can be linked with 3DS
Max through a middleware called FBX Exporter, which was
developed collaboratively by Unity and Autodesk to facilitate
the workflow between their programs [43]. To use the FBX
Exporter, it must be added as a plugin to the Unity project
after installing all necessary software. Once the 3DS Max
model is exported into Unity, some final setup is required.
This includes selecting the 3D model in Unity, going under
Materials’’ in the Unity inspector, and checking off Use
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FIGURE 4. 2D floor plans of the target house with all the sensors and devices setup for the project. All sensors are identified by their label and color as
there are temperature, proximity, humidity, water detection and light sensors. All sensors are integrated into the Unity application environment where the
BIM model of the house lives.

External Materials’’ under Location’’ to import the textures
from 3DS Max. Finally, clicking on Generate Colliders’’
under the model enables Unity to treat the house as a physical
object and interact with other physical objects in compliance
with Newtonian mechanics.

This work uses Unity Version 2020.3.16f1 with the Univer-
sal Render Pipeline version 10.5.1 (URP). Unity offers three
different graphics rendering pipelines: the standard pipeline is
a general-purpose tool with limited features and options; the
High Definition Render Pipeline (HDRP) focuses on creating
high-end graphics that are supported only by cutting-edge
graphics cards and machinery; and URP is customizable and
provides optimized graphics across a broad range of plat-
forms [44]. URP is preferred for this project because the DT is
intended to run on low-end android VR platforms, such as the
Oculus Quest 2. Additionally, the setup requires the following
add-on packages from the Unity Asset Store:

• FBX Exporter version 4.1.1
• Oculus XR Plugin 1.9.1
• Post Processing 3.1.1
• Test Framework 1.1.27
• TextMeshPro 3.0.6
• Timeline 1.5.2
• Toolchain Win Linux x64 1.0.0
• Unity UI 1.0.0
• XR Legacy Input Helpers 2.1.8
• XR Plugin Management 4.1.0
• NuGet 3.0.2

each of which supports some particular module of the setup,
for example, theOculusXRPluginmakes it easier to integrate

FIGURE 5. Comparison of furnished living room.

the application in Unity with the Oculus Quest 2 with min-
imal setup. While NuGet is used to manage .NET-specific
libraries. Unity also allows the possibility of bringing differ-
ent 3D models together to live in the same environment. This
could be a car, or furniture, as seen in Fig. 5. Note that when
importing models in Unity, it is crucial to be aware of the
relative scale/unit associated with the model.

3) OTHER 3D OBJECTS
To create the paintings on the walls, we used 3DS Max
to design the image frames and add images of the actual
paintings. For other furniture pieces like the carpet, TV table,
and sofa, we downloaded models from open-source websites
such as Polantis [45], which provides free CAD and BIM
3D objects that resemble furniture from brands like IKEA.
To ensure optimal performance, it’s important to use 3D
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models with a low polygon count. High-polygon models can
create a performance bottleneck, but it’s possible to use 3DS
Max to reduce the polygon count of downloaded models
without compromising their appearance. It’s worth noting
that Unity 3D objects work on a meter scale by default,
while external 3D models may be generated using other units
of measurement like centimeters or inches. Therefore, it’s
important to be aware of the units of measurement used in
external models and scale them appropriately before import-
ing them into Unity.

4) TERRAIN
Creating terrain in Unity based on a height map of Trondheim
is not a straightforward task. However, the Norwegian gov-
ernment provides accurate height maps of Norwegian terrain
with up to 1m× 1m resolution. One can apply for this data at
Kartverket website, by selecting the specific region one wants
to extract from themap of Norway and sending a request [46].
The data retrieved from Kartverket needs to be preprocessed
from its original file format GeoTIFF to RAW, which is the
input format that Unity supports for height maps. Here is an
enumerated instruction list to convert heightmap data into a
format usable in Unity:

1) Apply for heightmap data from Kartverket.
2) Import all the GeoTIFF files to the software QGis.
3) Merge the GeoTIFF files into one common one using

QGis merge option (Raster → Miscellaneous →

Merge) use output data type as UInt16 and click run.
4) Export file by converting it to a BIL file, which is a

variant of the RAWfile type. This is done by navigating
to (Raster → Convert → Translate).

5) Click on Advanced Parameters, and add the fol-
lowing commands ‘‘-ot UInt16 -outsize 2049 2049’’
into ‘‘Additonal command-line parameters [optional]’’,
note outsize needs to be scaled to be in bit format+1 i.e.
1025,2049,4097 etc.

6) Click on ‘‘Converted → Save to File’’ and change
‘‘save as type’’ to BIL files (*.bil).

7) Click run, go to the folder where you saved the BIL file,
create a copy and change filetype to ‘‘.raw’’.

8) Finally upload the extracted RAW file into a Unity
Terrain object using the height map property of the
object.

The 3D model of the house is placed in the location based
on its real location in terms of longitude and latitude, where
the top left corner of the terrain height map functions as the
origin in a Unity grid, such that the house can be precisely
positioned.

5) ORIENTATION OF THE HOUSE
The Unity environment also simulates a day-night-cycle,
including a highly accurate algorithm for the sun. Here ori-
entation and altitude of the house are essential to synchronize
the house’s position relative to the sun simulation. For the
orientation, the house needed to be rotated 203◦ from the
cardinal north direction of a compass. This was to align

the front of the house correctly with the sun’s movement.
Since the setup of the standalone DT also includes a correct
height map terrain of the outside environment in Trondheim,
the house was elevated to the correct altitude, which is 211m.

B. SET-UP FOR DESCRIPTIVE DT
At this stage, the physical house has been constructed, and
a standalone DT has been developed. The next step is to
refine the DT to match the physical house and equip it with a
diverse class of sensors. A data stream is then established to
convert the standalone DT into a descriptive DT. More details
regarding the placement of the sensors can be found in Fig. 4,
and are explained in detail in the following sections.

1) NETATMO WEATHER STATION
The Netatmo Weather Station is located in the living room,
as shown in Fig. 4, and records data once every five
minutes [47]. The station measures temperature, humid-
ity, CO2 concentration, noise levels, and pressure. While
the weather station can be customized and equipped with
many more sensors, it is only equipped to monitor the
aforementioned data. All Netatmo endpoints are located at
‘‘https://api.netatmo.com’’. Before accessing the data, it is
important to first make a POST request for an access token
by adding the ‘‘/oauth2/token’’ endpoint to the Netatmo API
link. The request must include the grant_type, client_id,
client_secret, username, password, and scope [48]. Once the
request is successful, Netatmo grants access to the current
state of the sensor via an access token.

2) PHILIPS HUE
The Philips Hue sensors are located throughout the house,
as depicted by the yellow dots in Fig. 4. A total of 16 Philips
Hue lights were used in the project. Information about the
brightness, state of the light (on/off), colors, and any other
relevant information about the lights can be retrieved in
real-time using the Philips Hue API. The API that hosts
the endpoints is ‘‘https://api.meethue.com’’. To refresh an
access token, one must provide a valid refresh token as
part of the request and perform a POST request to the
‘‘/v2/oauth2/token’’ endpoint. Assuming a valid access token,
one can access the light data by making a GET request to the
‘‘/bridge/<USER_ID>/lights’’ endpoint, where USER_ID is
an id granted by Philips Hue when an account is registered.
Like with Netatmo, the access token must be provided as part
of the GET request to obtain the data.

3) DISRUPTIVE TECHNOLOGIES SENSORS
A total of twenty-eight sensors from disruptive technologies
are positioned on all floors, as shown in Fig. 4. Among them
are 16 temperature sensors, with one placed outside the house
to track external temperatures. There are also five proximity
sensors, with one used to detect the opening and closing of
the fireplace doors, while the remaining four monitor the
open-close status of other doors. Four water sensors detect
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any water leakage in different locations, while three humidity
sensors also record the temperature. Moreover, all sensors
can function as touch sensors, meaning that if one is pressed,
it could trigger an event. This provides significant freedom
for experimentation, such as triggering an email or an action
inside the disruptive technologies platform.

The authentication process for the sensors is similar to that
of Netatmo but with an additional security layer. To obtain
an access token, the email and key_id provided at the
time of account registration must be encrypted using the
HS256 hash algorithm. The encrypted token must then be
sent using a POST request to the ‘‘https://identity.disruptive-
technologies.com/oauth2/token’’ endpoint, along with an
assertion and grant_type [49]. With a valid access token in a
GET request, various data can be obtained using the endpoint
‘‘https://api.disruptive-technologies.com/v2’’, with parame-
ter variations provided in the documentation [50]. Note that
data is updated at a frequency of every fifteen or five minutes
or when a significant change occurs.

4) WEATHER CONDITIONS
The house’s local weather data, including wind speed and
direction, is obtained by making requests to the ‘‘api.met.no’’
weather forecast API, which is operated by the Norwegian
Meteorological Institute. While there are several endpoints
available, we use the ‘‘Nowcast 2.0’’ endpoint for our specific
use case. To make a successful request to this endpoint,
a User-Agent identity is required to identify the purpose of
the request [51]. In order to visualize the wind direction and
speed, a Unity vignette is created, which appears around the
house. This visual effect is designed to show a wavy white
line moving across the sky, indicating the wind’s direction
and velocity.

C. SET-UP FOR DIAGNOSTIC DT
Once the data stream is established in the descriptive DT, data
analysis should give additional insight into the asset and this
should be presented to the end user in an easy-to-understand
format. The set-up presented here for the diagnostic DT
enables that.

1) VIRTUAL REALITY USER INTERFACE
The VR setup uses an Oculus Quest 2, where a UI ‘‘tablet’’
is implemented on the user’s left hand. This way, the user can
move the menu in and out of sight. The main focus of the UI
is to give the user a sense of empowerment, curiosity, and,
most importantly, feedback, which are all ideas derived from
the Octalysis Framework for Gamification [52]. The empow-
erment and feedback come directly from the real-time control
that a user feels when they can, for example, slide the time of
the day and see the weather change to reflect reality. Further-
more, this responsive system triggers an exploratory curiosity
in the user, making them want to seek out the remaining
contents of the UI system. Recall that the diagnostic DT is
mainly about monitoring and troubleshooting, meaning that

FIGURE 6. How to use the Oculus controllers in VR. If the play area is big
enough, one is also able to physically move around or rotate without
using the thumbsticks. Pointing at an interactable object with the right
hand controller and clicking on the ‘‘A’’ button triggers events.

sparking the user’s interest in seeking diagnostic information
is as important as presenting the information itself.

In Fig. 7 one can see the enumeration of images featur-
ing different navigation panels of the UI system. Fig. 7a
is the main menu which is at the center of all the other
monitoring and troubleshooting systems for the diagnostic
DT. Fig. 7b features the sensor inspector, providing criti-
cal information related to condition monitoring. By pointing
at spherical probes around the house and scanning them
with the ‘‘A’’ button of the right-hand controller, the sensor
inspector displays relevant information relating to that probe.
Real-time data from the specific sensor implemented for the
descriptive DT is then revealed in the sensor inspector panel.
Note that the probe positions are supposed to reflect the real
three-dimensional positions of the sensors from Fig. 4. Fig. 7c
shows the UI for the sun control panel. The sliders can be
used to simulate the lighting conditions depending on the
time of the year. Fig. 7d demonstrates how data frommultiple
sensors can be combined to create a heat map that gives a
better feeling of the indoor environment.

2) TEMPERATURE HEAT MAP
The temperature heat map is a visualization aspect of the
diagnostic DT that conveniently presents valuable informa-
tion. The heat map does not represent the temperature on the
room’s floor, but the temperature distribution of the tempera-
ture probes around the room. The heat map in Fig. 25 assumes
that the heat distributes itself in a plane, and therefore is using
a euclidean distance equation (Equation 3) for path-finding
to render the temperature gradient radially outwards onto a
Unity shader with the path limited to a reach based on α

2 .
A shader is an object that communicates how to correctly
color pixels onto a material in Unity [53]. The implemented
algorithm takes the current warmest and coldest temperature
sensor measurements in a room and uses that interval to
weight the radial output of the temperature gradient. The
color mapping from temperature to color is the same as the
one in Fig. 21, i.e. if the minimum temperature is 16.5◦C and
maximum 25.7◦C then that would be the blue and red colors
respectively, and the other temperatures would fall within the
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FIGURE 7. Navigating UI panels in Oculus Quest 2 VR.

color space in between.

d (p, q) =
α

2

√√√√ n∑
i=1

(qi − pi)2 (3)

3) FOG PARTICLE EFFECTS
Another possible way to monitor the real-time data coming
into Unity from the various data sources is by using the

particle system in Unity. In the current set-up, the red fog has
its opacity adjusted based on if the real-time CO2 concentra-
tion is within a certain ppm interval, while the temperature
is being mapped to color to represent the heat. The CO2
and temperature representations in Fig. 20 and 21 are imple-
mented to visualize theNetatmoWeather Station placed in the
living room, seen in Fig. 4. The temperature reading is first
transformed into an HSV value to be mapped into a color, and
then from HSV into an RGB that is finally displayed as fog in
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Unity. It is important to note that the temperature intervals can
be redefined, but for this example, the temperature interval is
set to be between zero and 40 degrees Celsius.

D. SET-UP FOR PREDICTIVE DT
This section is about the setup and methodology used to
achieve a predictive DT. At this level, the DT can predict the
system’s future states or performance and support prognostic
capabilities. To demonstrate the DT’s predictive capability,
we consider two cases, one related to the prediction of the
inner state of the house in terms of the indoor temperature and
another related to the external state in terms of the available
solar potential. The reason for choosing the first case is that
knowing the evolution of inside temperature can help develop
cost and energy-effective control strategies. The second case
is of great relevance for a country like Norway, where com-
plex terrain can significantly affect solar exposure.

This section also demonstrates two entirely different
approaches to modeling that are relevant to DT-like technolo-
gies. One is pure data-driven modeling (DDM), while the
other is physics-based modeling (PBM). DDM is effective
when the physics governing a process is not entirely known,
is computationally expensive to solve in real-time, or the
values of physical parameters are not known accurately. PBM
is more effective when the physics is known, or there is a
need for generalization in unseen situations for which no data
exists. We will use a DDM to predict the indoor second-floor
temperature based on past experiences because the state-of-
the-art building simulation model can not precisely describe
the dynamics of the buildings, and the exact composition of
the built material is unknown. On the other hand, we will
use a PBM for sun position prediction because the equations
governing the sun’s movement are well-known and can be
used to deterministically simulate any situation.

1) DATA COLLECTION AND PREPROCESSING
First, the raw time series data (temperature, humidity, prox-
imity) from Disruptive Technologies sensors are aligned and
sampled at five-minute intervals to generate a multivariate
timeseries corresponding to 90 days, out of which 70 days
were used for training, 10 for validation, and 10 for testing.
The training of theMLmodels is done on a computer with the
following specifications: Intel(R) Xeon(R) Gold 6140MCPU
@ 2.30GHz for a CPU and NVIDIA Quadro RTX 5000 for
GPU. The GPU is mainly used to speed up the training of the
LSTM utilizing NVIDIA’s CUDA library [54], [55].

2) FORECASTING AND PREDICTION PIPELINES
As seen in Fig. 8, a weight-averaging ensemble is used as
the final model. Gradient boosting machines and the stacked
model worked very well with a differencing transform of the
target, while the LSTMmodel performed better with standard
data normalization. For the Prophet model, providing extra
features increased performance. Also based on the RMSE
validation score, hyperparameters of every single model are

optimized using the Optuna Python library. The final fore-
casts on the validation and test set are achieved by using
the weighted average based on the validation RMSE of each
model. All the forecast models except for LSTM are setup
as incremental forecasting models, mainly because none of
them support an instant multi-output target. In the predic-
tion model, the data is preprocessed in a similar fashion to
the forecasting model. In practice, the prediction pipeline in
Fig. 9 can be used in two ways. First, it can be used to predict
the potential state of an out-of-commission sensor, assuming
that the fireplace sensor in the room is still operational with
data X. Or it can be used to fill in the eight forecasted
temperature sensors using the forecasted output ŷ of Fig. 8,
where in the context of Fig. 9 the forecasted fireplace data is
denoted as input X̂. Therefore assuming a temperature sensor
deployed in the second floor dies after a few years, instead of
replacing it, the sensor data can be accurately predicted based
on the fireplace sensor.

3) HYPERPARAMETERS OF THE LSTM
The neural network is simply constructed of a LSTM layer,
followed by one-dimensional global max pooling into a dense
output layer. The following hyperparameters are used, hyper-
parameters not explicitly mentioned here can be assumed to
be the default of the Keras/Tensorflow library:

• Learning Rate: 0.01
• Batch Size: 4
• Optimizer: ADAM
• Epochs: 5
• Loss Function: Mean Squared Error
• LSTM Units: 64
• Dense layer neurons: 64

E. SET-UP FOR PRESCRIPTIVE DIGITAL TWIN
This section is about the setup and methodology used to
achieve the prescriptive DT. At this fourth capability level,
the DT is able to make recommendations based on what-if?
scenarios, and through that support uncertainty quantifica-
tion. What-if scenarios in our case can be potential weather
forecasts or historical weather conditions in the past that may
have led to certain behaviors.

Behaviors can certainly be used to motivate future rec-
ommendations, given if such a situation would again occur
sometime in the future. The recommendations can be used
to give experts a decision support system, but for our case,
such a system might be used for uncertainty quantification of
the unpredictable parts of the future forecasts, that have been
modeled and highlighted in the predictive DT.

1) COLLABORATIVE FILTERING
There are only eight recorded fireplace events for 102 days.
This is a very small dataset to work from, making it hard
to conclude anything in particular about the user’s fireplace
lighting behavior. Furthermore, no data has been collected
from other homeowners and there are therefore no other
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FIGURE 8. High level view of the forecasting pipeline.

FIGURE 9. High level view of the prediction pipeline.

users, from whom we can obtain our recommendations to the
specific user. Hence there is insufficient data, as the sparsity
of data comes from that most of the days the fireplace is sim-
ply not used. The motivation for demonstrating this particular

method comes from its potential to become valuable, as more
data is collected from this house and other locations. The
collaborative filtering for fireplace lighting events is set up
with U homeowners (users) as the rows and V days (items)
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FIGURE 10. User based collaborative filtering pipeline.

as columns. Note each day has specific information about the
outdoor temperature of that certain day. In the collaborative
filtering matrix from Fig. 11, the fireplace timesteps for every
single day are extracted and used as a row for a specific user.
The timestep for when the fireplacewas approximately turned
on is inferred by finding the biggest difference between two
points on a specific day. The timestep for a lit fireplace for a
specific day can be seen in the first row, as a red vertical line
in Fig. 11.

The user-based collaborative (UBCF) pipeline as imple-
mented is visualized in Fig. 10. Given that an unknown
input outdoor temperature forecast or scenario is given to
the pipeline, first, the RMSE between the input and each
column-specific outdoor temperature is calculated to find the
most similar scenario to our input. For simplicity all users are
assumed to have experienced the same outdoor temperature in
Trondheim, therefore for users outside of Trondheim, RMSE
specific to that user needs to be calculated. The remaining
pipeline would still work the same way. Resulting in the
RMSE weight vector wRMSE seen in Equation 4.
The recommendation pipeline seen in Fig. 10 is supposed

to be for the first user. In parallel with finding wRMSE for the
user, the Pearson correlation of all the fireplace lighting event
actions of said user is calculated against the other users in the
population, assuming these exist. Then the highest correlated
users based on some threshold are extracted as aweight vector
wpearson seen in Equation 5. Where χpq is the set of days both
users p and q that have fireplace behavioral data.

Knowing the most similar scenarios to the input scenario
and the most correlated users to the user we wish to make
recommendations for, now we extract a matrix denoted T.
This matrix is the region where both the green and red
rectangles cross as seen in Fig. 10. Each row of said matrix
is weighted by the RMSE score of the specific user in a
weighted average. This gives the predicted fireplace lighting
behavior of each individual user, given that specific scenario.
That particular prediction vector tpredicted is then weighted by
the most similar users to the particular user we are recom-
mending, to produce the final recommendation time to light
the fireplace tn+1.

wRMSE =


1

(
√

1
N

∑N
k=1(T

item1
k −T input )2)

. . . 1

(
√

1
N

∑N
k=1(T

itemV
k −T input )2

 (4)

wpearson =


∑

j∈χ1i
(t1j−t̄1)(tij−t̄i)√∑

j∈χ1i
(t1j−t̄1)2

√∑
j∈χ1i

(tij−t̄i)2

. . .

∑
j∈χ1U

(t1j−t̄1)(tUj−t̄U )√∑
j∈χ1U

(t1j−t̄1)2
√∑

j∈χ1U
(tUj−t̄U )2

 (5)

F. SET-UP FOR AUTONOMOUS DIGITAL TWIN
In the current work we have not demonstrated the
autonomous capability of the DT.
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FIGURE 11. Collaborative filtering matrix. Note that other than the house
that we have collected data from in row one, the remaining houses and
their data is artificial for the sake of demonstrating user based
collaborative filtering.

IV. RESULTS AND DISCUSSIONS
In this section, we aim to showcase the potential and value
of various types of DTs. To illustrate each capability level,
we begin with a scenario that presents specific challenges,
and then use the DT to demonstrate how these challenges can
be addressed effectively.

A. STANDALONE DT
Scenario: A potential homebuyer is interested in purchasing
a yet-to-be-constructed house. The real estate company pro-
vides the buyer with a tour of the construction site (Fig. 12)
and several 2D sketches (Fig. 4) depicting the different levels
of the future house. Unfortunately, the provided documents
do not offer any insight into how the neighborhood will
look once the construction is complete. Despite the lack of
information, the buyer commits to the purchase. Later on,
the buyer is invited to customize the house, but once again,
lacks insight into how their choices will look and feel in the
real world. In this scenario, a virtual tour using a standalone
DT could provide the buyer with the necessary information to
make a more informed decision, and improve communication
between the seller and buyer.
Solution: The image provided by the real estate agent

in Fig. 12 only provides a limited idea of the site before
construction. However, with a standalone DT, it is possible
to create a more immersive experience of the interior and
exterior environment. This would allow the buyer to make
informed decisions about customizing the interior, estimating
solar potential, and assessing the recreational activities in the
area. By using a DT, the buyer can gain a better understanding
of the property and make more informed decisions.

It is apparent that Figs. 13 and 14 providemore comprehen-
sive information in contrast to Fig. 12. Figs. 13a and 13b offer
a better understanding of the surroundings after construction,
facilitating the selection of building materials that comple-
ment the natural environment. The available space in the
driveway, as shown in Fig. 13c, can assist in planning which
car sizes can be accommodated, or whether the driveway

FIGURE 12. A visit to the site before the deal of the house was finalized.

FIGURE 13. Demonstration of the external environment using a
standalone DT.

design should be altered to allow for larger cars. In addition,
the balcony lighting simulation (illustrated in Fig. 13d) can
provide an estimation of the sunlight availability for any day
and time of the year. Furthermore, visualization of the interior
environment (depicted in Fig. 14) can aid in optimal place-
ment of lighting fixtures, selection of wall colors, flooring,
furniture, and other relevant objects.

B. DESCRIPTIVE DT
Scenario: Suppose a standalone DT of the house was avail-
able, allowing the buyer to make an informed decision and
customize the house to their liking. With digitalization in
mind, advanced sensors and controllers were installed, pro-
viding real-time information about various aspects of the
house, including indoor air quality, water leakage, door
status, occupancy, security breaches, and external weather
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FIGURE 14. Demonstration of the internal environment using a
standalone DT.

FIGURE 15. Real-time states of 2OfficeDoor, 2Stair, HueColorLamp2
located in the second floor, observed 21.02.2022. Note that the color of
the spheres follows the same standards set in Fig. 4 and their positions
represent the 3D position of the sensor in the physical asset.

conditions. The homeowner wants to monitor the house
remotely while away and desires more insight into the indoor
environment while present inside the house.
Solution:We now show how a descriptive DT can provide

additional information regarding the house using real-time
data from the installed sensors.

In Figs. 15 and 16, the real-time states of the house are
displayed, based on the data collected by various sensors and
lights. The presented data is raw and unprocessed, intended
for human interpretation to draw relevant conclusions. Fig. 17
provides an example of rendering the prevailing weather con-
ditions on specific days. Additionally, Fig. 18 shows real-time
data from sensors measuring CO2, humidity, temperature,
and paintings, which are otherwise not visually representable

FIGURE 16. Demonstration of various door and light sensor states in the
descriptive DT. Observations recorded throughout the day on 21.05.2022.

in the descriptive DT. The homeowner regularly updates the
data from the sensors, and the DT database stores this infor-
mation. This enables the DT to reflect the up-to-date state
of the objects in the house, such as the name of the selected
painting. Although monitoring the name of a painting may
seem trivial, the same concept can be applied to other objects
in the house, such as monitoring resource inventory levels or
the amount of wood remaining in the fireplace. Advanced
object detection and classification algorithms are necessary
to monitor such details.

C. DIAGNOSTIC DT
Scenario: Imagine two scenarios, one where the homeowner
is physically present inside the house and the other where the
homeowner is remotely located and does not have physical
access to the house. With the multitude of sensors installed
in the house, the diagnostic DT provides not only real-time
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FIGURE 17. Demonstration of weather conditions taking place in the
descriptive DT.

updates on the current state of the house, as with the descrip-
tive DT, but also critical alerts in case of any changes. When
the homeowner is physically present, the diagnostic DT can
be utilized to gain insight into the internal environment using
virtual reality to visualize air quality, noise, or temperature
maps, which are not visible to the naked eye. On the other
hand, when the homeowner is remotely located, the diagnos-
tic DT can provide analytics on the current situation in the
house, such as temperature increases, room occupancy, and
other relevant information by fusing data from various sensor
sources.

1) REMOTE LOCATION
When the homeowners are remotely located, they can diag-
nose whether a room is occupied or not by analyzing tem-
perature and door sensors related to a specific room. Fig. 19
shows a clear temperature rise in the office when the door was
opened. Since the sensor was placed under the table, it can
sense the body heat of the occupant, and by using simple
diagnostic tools, these peaks corresponding to occupancy can

FIGURE 18. Information from the remaining sensors and other objects,
obtained using a virtual reality interface.

be automatically detected and communicated. Thus, one can
diagnose that the room was occupied between 11:00-14:00.

2) INSIDE THE HOUSE
When the homeowners are present inside the house, they
can visualize diagnostic information such as temperature and
CO2 density, as shown in Figs. 21 and 20, respectively. This
information can be used to gain insight into those aspects of
the indoor environment which are otherwise invisible to the
naked eye, such as CO2 and CO concentration. Note that at
the descriptive level, these data could only be presented as
numbers, while the diagnostic DT allows for visualization
and interpretation of the data to gain a deeper understanding
of the indoor environment.

D. PREDICTIVE DT
Scenario: The homeowner now has access to a signifi-
cant amount of high-quality sensor data from both past and
present, but is interested in knowing the future state of the
house to plan for more efficient and cost-effective utilization
of energy. They may also want to know about the availability
of natural sunlight due to potential future developments, such
as the construction of a high-rise building.

1) TEMPERATURE PREDICTION AND FORECASTING
To fill in missing temperature values for eight sensors when
only the fireplace sensor is available, the predictive model
pipeline can be used, as shown in Fig. 22. This ensures that
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FIGURE 19. Diagnostic information from fusing office temperature and
office door proximity sensor. Scenario one recorded 21.01.2022.

FIGURE 20. Visualizing CO2 concentration from Netatmo Weather Station
as fog in the Unity Game Engine based on 4 predefined intervals.
Recorded 27.11.2021.

the temperature in the room can still be tracked even if some
sensors go out of commission in the future.

Fig. 23 shows how different timeseries forecasting models
predict the future temperature profile at the fireplace (2Fire-
place) during a typical day when the fireplace is routinely
lit. The black line represents the profile used to train the
model for the next 24 hours. The weight averaging ensemble
model was found to be the best for making accurate forecasts.
Once the future temperature profile is available, it can be used
to predict the temperature profiles at other sensor locations.
Fig. 24 presents the weight averaging ensemble predictions
at all the other locations, showing good agreement with what
was later observed. Finally, these point measurements are

FIGURE 21. Visualizing indoor temperature from Netatmo Weather
station as fog by converting temperature in Celsius to an RGB color
representation. 15.6◦C was observed 30.11.2021 at 07:30 AM, 20◦C at the
same date 10:30 AM and 35◦C was not an observation but a simulated
scenario to display how that would look like in the event of such an
occurrence.

converted into contour plots and projected onto the floor
surface for visualization purposes in Fig. 25.

2) SUN POSITION PREDICTION MODEL PERFORMANCE
Fig. 26 shows results from the predictive sun model for each
month, for informing decision-making around sun hours for
the entire year. Furthermore, Fig. 27 shows the same algo-
rithm used in VR. The significance of knowing about how
many sun-hours, a house gets in the span of a day is a key
factor for any potential homeowner. Therefore having a PBM
that accurately displays that future prediction both as a bar
plot of the entire year as well as viewing a specific day visu-
ally within the VR setup, allows for better decision-making
around the biggest investment that the majority of people go
through. While the bar plot does show you the sun hours, the
value of the visual demonstration is that it fills in the gaps by
showing exactly which part of the house will be exposed to
the sun. For instance, if the terrace or balcony does not get a
lot of sun exposure, some buyers would become disinterested
in the property.

E. PRESCRIPTIVE DT
Scenario: Now that the homeowner has a predictive DT,
he can foresee possible future scenarios based on past data or
physics simulations. However, he is not only interested in the
forecasts but specific recommendations in the house based on
his past behavior. Such as what time of day is it recommended
for the user to turn on the fireplace, given the tempera-
ture profile the next day. Perhaps there is also a cluster of
neighbors with a DT setup, and the recommendations can be
supported by all of them if they share a similar behavioral
pattern.

In Fig. 28 we are trying to predict day 23 of the 102 regis-
tered days in the dataset, using the seven other existing sce-
narios where the fireplace is turned on. The RMSE threshold
is set to 1.5, and the days with RMSE under 1.5 are then days
one, two, and 25, which resemble the outside weather of day
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FIGURE 22. Temperature predictions at different sensor locations when the temperature profile at the fireplace is known. This approach can be used
to fill in missing data due to sensor malfunction or should need to decommission some of the sensors arises in the future. The Fig. shows the
performance of different regression models. The best model is the weight averaging ensemble from Fig. 9, which weighs the contribution of each
model based on their validation set RMSE.

VOLUME 11, 2023 35053



E. M. Elfarri et al.: Artificial Intelligence-Driven Digital Twin of a Modern House Demonstrated in VR

FIGURE 23. 2Fireplace temperature forecast. Given 24 hours of past
fireplace sensor data from Disruptive Technologies temperature sensor
‘‘2Fireplace’’ (black graph), these models are constructed to forecast
24 hours into the future of said sensor. The best forecasting model is the
weight averaging ensemble (blue graph), weighing the contribution of
each model seen in Fig. 8. Note that the random walk is not part of the
forecasting model, but merely a way to demonstrate that the models can
learn a pattern better than a baseline coin flip forecast. The ground truth
is the red graph where the models are compared to that.

FIGURE 24. Using the output of the fireplace forecaster in Fig. 23, we can
feed it to the weighted average prediction model from Fig. 9, similarly to
the one used to output Fig. 22 and generate forecasts for the remaining
second floor temperatures.

23 the most out of the existing samples. There isn’t any other
user data, such that the final recommendation is only based
on the user’s weighted average of other similar days, and not
the Pearson correlation. Therefore the recommendation uses
only the RMSE part of the UBCF pipeline in Fig. 10. We can
see the recommendation for turning on the fireplace based on
previous observations is very close.

FIGURE 25. Using the forecasting model to forecast the next 24 hours
in the future (29.03.2022), visualized in the temperature heat map made
for the diagnostic DT. The visualization shows how the model believes
that the temperature on the second floor will develop the next day.

FIGURE 26. Predictive sun position model used to give a range of
sunlight for the last day of each month in the year 2022 from the location
of the house.

F. AUTONOMOUS DT
Scenario: Now imagine that the homeowner has an accurate
and computationally efficient model for predicting the future
state of the house and its surroundings under the influence of
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FIGURE 27. Sunlight simulation in Unity using the sun position algorithm.
This observation was made at 07.03.2022. Note that the view is from the
balcony of the virtual house placed in the correct altitude, rotation and
geographic location on a terrain generated based on a Trondheim height
map from Kartverket.

FIGURE 28. Recommendation to turn on the fireplace. Performance for
day 23 of the dataset. 0 corresponds to midnight and the timestep
corresponds to 5 minutes resulting in 288 data points, which corresponds
to the 24th hour.

input changes that the homeowner can affect. These models
in combination with advanced control algorithms can be used
to get humans completely out of the loop. The asset can
continuously update the DT while the latter can control the
asset to push it towards a preset optimal operating condition.

Despite the ability to develop control algorithms and the
availability of remotely controllable equipment like the bal-
ance ventilation system and heat pump, no effort was made
to demonstrate this capability. There are several reasons for
that, which we briefly mention here. Due to a lack of time, all
the algorithms and modeling tools presented could not be rig-
orously tested. Furthermore, using black-box neural network-
based methods for predictions complicates the matter. Unless

the model’s working is humanly interpretable, it is not wise to
use them in a controlled setting. Doing so could risk the safety
of the inhabitants or at the least make the manufacturer’s
guarantee on the equipment null and void.

V. CONCLUSION AND FUTURE WORK
In this work, we exploited the power of artificial intelligence,
advanced sensor technologies, and virtual reality to develop a
fully functional and high capability level digital twin (DT) of
a modern house. The work involved creating a realistic 3D
model of the house that is not only good for visualization
but also for conducting engineering simulations. This cor-
responded to a standalone DT. The physical house was then
equipped with a diverse class of sensors, and the correspond-
ing digital representation of the house was updated accord-
ingly. A real-time data acquisition pipeline was established
to update the state of the DT with any changes in the state of
the physical house, resulting in a descriptive DT. Analytics
tools were applied to the incoming data to detect critical
changes, resulting in a diagnostic DT. These three levels of
DT were not capable of giving any information about the
future state as they all relied on the incoming data. At the next
level, i.e., the predictive DT, an ensemble of pure data-driven
timeseries forecasting models was built and trained to predict
the future state of the house accurately. In addition, a physics-
based modeling approach to predict the sun’s movement and
its obstruction by the local terrain was also implemented to
predict the solar potential for any time in the future. At the
prescriptive DT level, it was argued how data/insight from
similar houses in the neighborhood could be utilized using
collaborative filtering. It also demonstrated how a prescrip-
tive DT could learn about the user’s own behavior to sup-
port future recommendations. Finally, the autonomous DT
wove all the subsystems together by closing the control loop.
The main contributions of the work can be enumerated as
follows:

• We demonstrated the concept and value of DT [1] and
its capability levels [2]. Although the asset chosen for
the demonstration was a modern house, the workflow
proposed is generic in nature.

• We have shown the concept and value of DT [1], as well
as its capability levels [2]. While we used a modern
house as an example, the proposed workflow is appli-
cable to various contexts.

• We have highlighted the significance of a diverse set
of data and two distinct modeling approaches (physics-
based and data-driven) to enhance the physical realism
of DTs.

• We have demonstrated how computer graphics, specif-
ically virtual reality technology developed with game
engines, can significantly enhance the capability levels
of DTs.

• Through an interactive graphical interface in virtual real-
ity, we have showcased the potential of DTs not only for
remote monitoring but also for remote interaction with
assets.
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• Our proposed workflow and future research directions
outlined in the following section can serve as a guide for
developing DTs from scratch.

While we have highlighted the strengths of our work,
we have also identified areas where improvements can be
made. One advantage of the DT framework we developed
is its modular nature, which allows for individual capabili-
ties to be extended and improved without compromising the
functionality of others. We list these areas for improvement
below:

• Standalone DT: At this capability level, we manually
created a 3D model of the house and its furnishings,
which can be a bottleneck for scaling DT technology
to encompass multiple houses in a neighborhood. How-
ever, this issue can be addressed with image-based pho-
togrammetry, as demonstrated in recent works [56], [57].
Additionally, solid models are typically represented by
textured tessellated polygon surfaces, whose number
can be reduced without an observable degradation in
quality to enable the DT to run on low-end, affordable
computing devices.

• Descriptive DT: Geometric change detection [58] can
be implemented in a descriptive DT to keep track of
geometric changes within the house using cost-effective
solutions like RGB cameras, limited communication
bandwidth, and storage. Furthermore, real-time satellite
data can be used to more accurately describe the external
environment, such as cloud cover.

• Diagnostic DT: Principal component analysis or autoen-
coder can be used for detecting deviations from the norm
in heterogeneous multivariate data to detect anomalies.
Other sensor data, like temperature, humidity, noise,
and air quality, are only measured in a few discrete
locations. A simple interpolation scheme was imple-
mented to create heatmaps, which can be improved by
sensitizing inverse distance weighting with door states
and wall corner locations [59]. Additionally, optimal
sensor placement strategies [60] can be evaluated for
more efficient use of sensors and reconstruction.

• Predictive DT: In the current project, we used either a
purely physics-based model or a data-driven model to
predict the external and internal state of the house, but
both approaches have inherent weaknesses, as discussed
in [2]. Recent works [61], [62] have shown how a hybrid
modeling approach can address these weaknesses and
make accurate and more certain predictions, making
it ideal for modeling partially understood physics and
addressing the issues of input parameter uncertainties.
For instance, [63] has already shown the applicability
of accurately modeling heat transfer in an aluminum
extraction process, which is similar to the building
energy modeling considered in our work.

• Prescriptive DT:At this level, we used the DT to provide
recommendations based on learning from the behavior
of the same house. However, we faced challenges due
to the lack of available data for training ML algorithms,

as the house was newly constructed. Collaborative filter-
ing or self-organizing maps can be useful to learn from
the performance of older houses for which data exists.

• Autonomous DT: We could not practically demonstrate
the full potential of a fully autonomous DT due to con-
cerns of voiding equipment guarantees, such as the bal-
ance ventilation system and heat pumps.While the smart
lights could be controlled remotely, no datawas recorded
to develop a control strategy for lighting. Therefore,
recording data regarding the lighting preferences of
occupants and developing a controller to satisfy those
preferences would be interesting. Alternatively, research
on the psychological effects of lighting on occupants
can be integrated into the autonomous DT. Addition-
ally, making the models on which decisions are made
humanly interpretable is a challenge worth addressing
before realizing a fully autonomous DT.

The concept of DT is rapidly advancing and this work,
along with the future research directions proposed, represents
only a small piece of the larger puzzle. However, this work has
produced an extensible DT framework that can be valuable
for educational purposes and for testing new techniques that
can help make DT indistinguishable from its physical coun-
terpart.
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NOMENCLATURE
α Right Ascension.
β Sun’s Ecliptic Latitude.
δ Declination.
λ Sun’s Ecliptic Longitude.
� The Earth’s Obliquity of the Ecliptic.
φ Azimuth from North.
θ Altitude.
ARIMA AutoRegressive Integrated Moving Average.
B Input Latitude.
C Sun’s Center.
D/M/Y Input Day/Month/Year.
HA Hour Angle of Object.
JC Julian Century.
JD Julian Date.
L Input Longitude.
L0 Sun’s Mean Longitude.
M0 Sun’s Mean Anomaly.
RMSE Root Mean Squared Error.
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tLSR Local Sidereal Time.
tSRUT Sidereal Time Greenwich for Universal time.
tSR Sidereal Time Greenwich.
tUT Universal Time.
ADAM Adaptive Moment Estimation.
AI Artificial Intelligence.
API Application Program Interface.
AR AutoRegressive.
BIM Building Information Model.
CAD Computer Aided Design.
CFD Computational Fluid Dynamics.
DDM Data-Driven Modeling.
DT Digital Twin.
FEM Finite Element Method.
GBM Gradient Boosting Machine.
HAM Hybrid Analysis and Modeling.
HDRP High Definition Render Pipeline.
HSV Hue Saturation Value.
I Integration.
IoT Internet of Things.
LSTM Long Short Time Memory.
MA Moving Average.
ML Machine Learning.
MPC Model Predictive Control.
MSE Mean Squared Error.
PBM Physics-Based Modeling.
RGB Red Green Blue.
RL Reinforcement Learning.
RNN Recurrent Neural Network.
UBCF User-Based Collaborative Filtering.
UI User Interface.
URP Universal Render Pipeline.
VR Virtual Reality.
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