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ABSTRACT This article present a highly efficient and performance-enhanced Softmax Function (SF)
designed for a deep neural network accelerator. The SF is an essential component of deep learning models,
primarily used in the classification layer, and also in hidden layers of advanced neural networks like
Transformer and Capsule networks. The primary challenge of designing an efficient hardware architecture
for SF is the complex exponential and division computational sub-blocks. To address this challenge,
a hardware-optimized pipelined CORDIC-based architecture is proposed, leveraging the mutual exclusivity
of the CO-ordinate Rotational DIgital Computer (CORDIC) algorithm, designed for enhanced throughput,
area, and power. To maintain good accuracy in deep learning models, the proposed SF design undergoes a
Pareto study that evaluates the variation of accuracy concerning the number of pipeline stages. The proposed
design is quantized to 16-bit precision, and inference accuracy is validated for different datasets. The SF
is prototyped using Xilinx Zynq FPGA, operating at 685MHz, and ASIC implementation is performed for
45nm technology node at 5GHz of maximum operating frequency. The design achieves a validation accuracy
loss of less than 2% while reducing silicon area and Energy-Delay-Product (EDP) by 12×. Post-synthesis
simulation results indicate that the proposed design outperforms state-of-the-art architectures, achieving
3× better performance in terms of area, power, and logic delay.

INDEX TERMS Softmax function (SF), CORDIC algorithm, deep learning, hardware optimization,
performance enhancement, pipeline stages.

I. INTRODUCTION
The IoT-inspired world is greatly impacted by deep learn-
ing, where energy and area-efficient Deep Neural Network
(DNN) computation with high throughput is required [1].
Numerous neural network accelerators have been proposed
in previous works [1], [2], [3] to enhance the efficiency
of DNN accelerators. Improving the neuron’s architecture
and layer-to-layer interconnects can optimize the runtime
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configurability of the DNN accelerator. Furthermore, effi-
cient hardware implementation of non-linear functions like
Softmax is also a crucial research area [2], [4], [5]. Softmax
Activation Function (AF) has been used in the classification
layer of present DNN models like AlexNet, ResNet, and
LeNet for image, sound, audio, and other classification tasks.
Meanwhile, advanced neural network co-processors such as
Transformer and Capsule network use Softmax Function (SF)
in their hidden layers [6], [7].

The most power and area-intensive blocks in classi-
cal Softmax architecture are the Exponential and Division
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operations [5], [8], [9], [10]. As Softmaxmoves from lower to
higher precision, such as 8-bit, 12-bit, and 16-bit, the number
of quantization states increases exponentially, leading to an
exponential rise in required memory elements. Conventional
memory-based implementations that use a memory lookup
table are not suitable for higher precision. To address this,
the authors have improved the naive exponential operation to
enable an area-efficient implementation at higher bit preci-
sion. In [11] and [12], a modified Softmax expression using
the log unit instead of division is considered, along with a
shift and subtract operation to compute division. To compute
exponential, a fixed-point input value is divided into integer
and fractional parts, while a log-sum exponential trick is
utilized for implementation [5], [12], [13], achieving a 10×
reduction in hardware area over conventional memory-based
DNN accelerators. In [14], the authors have implemented
an area and energy-efficient iterative CORDIC based SF
by utilizing the property of CO-ordinate Rotational DIgital
Computer (CORDIC) algorithm, achieving 10 to 100× area
reduction. However, the design suffers from low throughput
due to its recursive nature.

An investigation into an area and power-efficient
computational design has led to the development of an
architecture based on the CORDIC-algorithm. This archi-
tecture comprises simple logic blocks such as a multiplexer,
adder/subtractor, shift register, and a few memory elements,
enabling various arithmetic computations with reduced
power consumption [15]. CORDIC, an iterative algorithm
that performs pseudo rotations in two modes - Vectoring and
Rotational, can be used to perform various arithmetic oper-
ations, including division, multiplication, trigonometric, and
hyperbolic functions [16]. Research onMultiply-Accumulate
(MAC) and non-linear Activation Functions (AFs) using the
iterative CORDIC algorithm has shown promising results
in terms of reduced area. However, a significant concern
remains the throughput [14], [17], [18], [19].

The focus of this research article is a hardware-efficient
and performance-centric class-adjustable SF. However, the
recursive CORDIC algorithm used in the implementation
has low throughput. To address this issue, we propose a
pipelined CORDIC architecture that balances area, power,
throughput, and accuracy with pipeline stages. The key
challenge in pipelining is to minimize the area overhead
while maintaining high accuracy. To overcome this chal-
lenge, we present an empirical approach that achieves a
trade-off between area, power, throughput, and accuracy
with pipeline stages. The proposed architecture is novel
and efficient, achieving low power consumption, reduced
computational time, and high throughput. The research is
focused on Edge-AI applications that require low-power
and high-throughput solutions, despite a reported loss in
accuracy. The contributions of this study include a novel
pipeline CORDIC architecture that optimizes area, power,
and throughput without sacrificing accuracy significantly.
The major contributions of the author’s work are summarized
below:

• The presented SF design enhances performance by uti-
lizing an optimized pipeline staged CORDIC architec-
ture with reduced area, energy consumption, and high
frequency of operation. The design uses Block Random
Access Memory (BRAM) memory for First-in-First-out
(FIFO) buffer implementation.

• Deep pipeline: A Pareto study investigated the pipeline
CORDIC architecture for SF implementation using the
LeNet and TensorFlow Convolution Neural Network
(CNN) model. It was determined that four pipeline
stages for Hyperbolic Vectoring mode (exponential
operation) and five pipeline stages for Linear Rotational
mode (division operation) returned better performance
than iterative CORDIC-based implementation with less
than 2% accuracy loss.

• Class Adjustable: The presented SF design is class
adjustable, allowing for multi-class classification. The
proposed SF can be configured for various output classes
ranging from 10 to 1024, enhancing the operation of
many DNNs.

The proposed SF has been validated for accuracy using
software simulation on various CNNmodels. Further, the pro-
posed design has been implemented on a Xilinx-Zynq Field
Programmable Gate Array (FPGA) board. Additionally, the
design has also been verified using an Application-Specific
Integrated Circuit (ASIC) implementation at the 45nm tech-
nology node. The software evaluation reveals that the pro-
posed design achieved an accuracy of 98.83%, which is
only 0.15% lower than the single-precision software-based
implementation in Python tested on a CNN model for the
MNIST dataset [20]. The hardware implementation results
demonstrate that the proposed design has reduced the area by
around 15% compared to the architecture proposed in [12],
and it also shows better power efficiency. Furthermore,
the proposed design exhibits nearly 5× higher throughput
performance than the iterative-CORDIC evaluation and is
more efficient than the state-of-the-art SF implementations.
The outline of the paper is as follows. Section II explains
related work and motivation, Section III discusses the real-
ization of the activation function using CORDIC architecture.
Section IV explains the performance-centric pipelined archi-
tecture of SF. Section V presents the experimental eval-
uations, Section VI covers the Pareto-point extraction for
limiting the pipeline stages, the experimental results, and
comparisons. In the end, Section VII provides the article’s
conclusion.

II. RELATED WORK AND MOTIVATION
This section has covered previous efforts towards achieving
accurate and efficient hardware implementation of SF for use
in DNN models, as well as the rationale behind its imple-
mentation. One specific type of SF, known as normalized
exponential or naive probabilistic SF, is defined in Equation 1,
where x’ represents a j’-dimension input vector and SF(xi)
represents the output probability for the ith element. There-
fore, for classification tasks involving ‘j’ classes, SF can be
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utilized to classify the probability of occurrence for each
class.

SF(xi) =
exi∑N
j=1 e

xj
(1)

Eq. 1 mathematically demonstrates the primary segments
in SF, such as exponential evaluation followed by successive
addition and division. Thus, the majority of computations are
required for exponential and division operations.

A. RELATED WORKS
Researchers in [8], [9], [10], [11], [12], [13], [14], [17], [19],
[21], and [22] have proposed two categories of SF architec-
ture that focus on the trade-off among hardware area, power,
latency, and accuracy, with emphasis on the optimized imple-
mentation of exponential and division blocks. The authors
have mainly focused on the accuracy of SF operation [8], [9],
[10], [12], [21] and utilized various methods such as Piece-
Wise Linear (PWL) approximation [10], Stochastic Compu-
tation (SC) [21], and Taylor series expansion [23] for accurate
architecture. The maximum mean absolute error (MAE) has
been observed for [21], i.e., on the order of magnitude of e−2,
and on the order of e−4 for [10]. Although a PWL approxi-
mation method to implement exponential units requires many
resources at higher bit precision, SC incurs a significant
propagation delay to improve accuracy. In [5], a base-split
calculation method has been proposed to implement expo-
nential unit and bit-shift and subtract for division operation,
showing a remarkable decrease in logic propagation delay
and MAE in the order of magnitude of e−8. The main dis-
advantages of these approaches are their low throughput and
high complexity at high precision computation.

Secondly, researchers have also investigated the optimiza-
tion of SF architectures for resource efficiency and time-
constraint considerations [9], [11], [12], [13], [14], [17],
[19]. These works have focused on modifying SF using
log-sum-exp-trick [9], [11], [12], [22] for the Exponential
Unit (ExU) and using the logarithmic unit in place of the
Division Unit (DiU). In [9] and [12], the authors imple-
mented a resource-efficient yet accurate SF, but on-chip
power increased exponentially with an increase in the num-
ber of inputs in [9]. In [12], a high throughput design has
been implemented, but due to 4-stage pipelined computa-
tions, logic propagation delay increased. However, through
pipelining, the intermediate block propagation delay can be
reduced in such architectures [11] with a slight increase in
the hardware area. Similarly, Wang et al. in [22] imple-
mented the ExU using a shifter, two adders, and advanced
constant multiplier blocks, and the DiU was implemented
using LOD (Leading One Detector) and shift blocks. The
authors reported a high throughput SF model at the cost of
greater on-chip power. In addition, Marchisio et al. in [24]
provided a naive approximate softmax function with an area
and power-efficient architecture targeting lower precision
Natural Language Unit (NLU), specifically for the CapsNet
model. As the architecture occupies a small hardware area

and lower dynamic power, the logic propagation delay of
the overall architecture is quite high. This makes the archi-
tecture well-suited for lower precision, resource, and power
constraint applications.

The iterative CORDIC algorithm is a suitable choice
for implementing an area-efficient non-linear function [17],
[19]. However, due to the recursive nature of CORDIC,
throughput is a significant concern in such architectures.
In [14], the authors implemented an SF design using an
iterative CORDIC algorithm for exponential function evalua-
tion. While the design provides an area-efficient architecture,
it suffers from inferior logical propagation delay. This archi-
tecture’s major drawbacks are high computational power and
low throughput. Thus, a power-efficient logic architecture
with high operating frequency is highly desirable.

B. MOTIVATION
SF is extensively used in several DNNmodels [25], [26], [27]
for the classification layer, making a hardware-efficient and
performance-optimized SF crucial for high-speed, power-
efficient classifier models at the edge. Additionally, Trans-
formers, a type of neural network architecture that has
gained popularity, often use SF activation in each layer.
However, ExU and DiU, being the most resource-intensive
and power-hungry blocks in SF, increase hardware complex-
ity when used multiple times within the model [26]. The
CORDIC algorithm has been proposed to address power
and area-efficient architecture in the design. ExU and DiU,
which consume a lot of resources, can be realized using the
iterative CORDIC algorithm in different modes. However, the
recursive nature of the CORDIC algorithm results in longer
computational delays and, consequently, low throughput. Par-
allel processing and pipelining are two popular techniques
employed to enhance the throughput of any computing sys-
tem [15]. This paper proposes a performance-centric pipeline
CORDIC architecture for efficient and improved SF imple-
mentation. Each pipeline stage in the CORDIC architecture is
identical and independent of each other; thus, pipelining can
reduce overall operational latency. However, more pipeline
stages are required to achieve sufficient output accuracy,
which subsequently leads to area and power overhead.

Accuracy deviation has been studied by varying pipeline
stages of ExU and DiU implementation. It manifested that for
more than 4 and 5 stages for ExU andDiU respectively, model
classification accuracy for different datasets such as MNIST
and CIFAR-10 is almost optimal when implemented on the
CNNmodel [20]. Furthermore, bit-precision plays a vital role
in implementing the neural model; higher bit precision prof-
fers higher classification accuracy yet leads to more hardware
area. It has been observed that inference accuracy of SF for
float16 bit precision gave optimal results [11], and a similar
conclusion has been made for fixed 16-bit precision repre-
sentation in [12]; thus, a similar representation is considered
for the proposed work as represented in FIGURE 1. How-
ever, higher bit precision computation is desirable to achieve
higher accuracy. Thus, the proposed architecture works well
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FIGURE 1. The data representation is for a signed fixed-point number
that has a 13-bit fractional part and a variable-length integer part.

TABLE 1. Generalized CORDIC algorithm.

for higher bit precision with the least computational power,
delay, and resource constraint applications. In this paper,
a fixed-point representation is considered with 13 bits for the
fractional part and a variable integer part, depending on the
computation precision as depicted in FIGURE 1.

III. PROPOSED SOFTMAX FUNCTION ARCHITECTURE
USING CORDIC ALGORITHM
A. INTRODUCTION TO BASIC CORDIC ALGORITHM
TheCORDIC algorithm computes variousmathematical rela-
tions using trigonometric calculations by transforming planar
coordinates into rotational coordinates. It performs iterative
computation based on the step-by-step pseudo rotation of
vector to enumerate arithmetic calculations and mathemati-
cal functions [28]. There are various modes in CORDIC to
solve a variety of mathematical relationships as summarised
in TABLE 1. CORDIC architecture is formulated to operate
in two modes: Vectoring and Rotational, where each of these
modes operates in three planar coordinates – Circular, Linear,
and Hyperbolic.

The functions (including trigonometric, square root, hyper-
bolic and its inverse, and other basic mathematical calcula-
tions) can be performed by Rotational and Vectoring mode
CORDIC algorithm in different planar coordinates as repre-
sented in TABLE 1.

The CORDIC algorithm is based on pseudo rotation,
a scaled form of actual rotation involving X, Y, and Z vari-
ables. Based on the mode of operation to be performed, these
variables are initiated where X and Y represent coordinates
of pseudo rotation and Z keeps track of the angle at which the
vector is being rotated [19]. Taking a common scaling factor
K and CORDIC equations in pseudo rotation for all modes of
trajectories are then formulated as:

Xi+1 = Xi − Yi· di· tan αi (2a)

Yi+1 = Yi + Xi· di· tan αi (2b)

Zi+1 = Zi − di· αi (2c)

where, Xi, Yi and Zi are variables values at ith iterations.
Further, αi is the rotation angle in radians at each iteration
i ∈ {1, 2, 3, . . . n}. Also, αi is represented as Ei consid-
ered as memory element for ith iteration. In Linear, Circu-
lar and Hyperbolic coordinates Ei is 2−i, tan−1(2−i) and
tanh−1(2−i) respectively.

The unified form of the CORDIC algorithm is reformu-
lated by Walther [15], which is suitable for performing cir-
cular, linear, and hyperbolic operations. CORDIC performs
all mathematical operations shown in TABLE 1 using sim-
ple logic blocks such as adder/subtractor, multiplexer, barrel
shifter, and memory elements [17]. The CORDIC trigono-
metric equations in pseudo rotation converge to linear form
for the hardware implementation, as shown below in Eq. 3.

Xi+1 = Xi − m· di·Yi· 2−i (3a)

Yi+1 = Yi + di·Xi· 2−i (3b)

Zi+1 = Zi − di·Ei (3c)

where mode m ∈ {0, 1, −1} indicates a linear, circular, and
hyperbolic coordinate system, respectively. Further, di ∈

{1, −1} shows the rotation direction for ith iteration which
is sign Zi for rotational mode and −(sign Xi ∧ sign Yi) for
vectoring mode operations [19]. As used in TABLE 1, K is
the scaling factor in the pseudo rotation of vector; it is a
product ofKi for i iterations. WhereKi is cos(αi) and cosh(αi)
for Circular mode and Hyperbolic mode, respectively, and
the product converges in ith iterations [17]. Scaling factors
decreases monotonously at each iteration; it converges to
Kh ∼ 0.8281 for hyperbolic coordinate and Kc ∼ 1.6467 for
circular coordinate [15], [28]. The post-processing remarks
of different modes of operation result in exponential, loga-
rithmic, and hyperbolic functions. Utilizing CORDIC Hyper-
bolic Rotational (HR) and Linear Vectoring (LV) modes for
exponential and division operations, respectively, have been
performed.

This work has usedHRmode for exponential function eval-
uation and LV mode for division operation for proposed SF
implementation. Further, hardware architectural optimization
has been done to make an area and power-efficient design
as discussed in detail in section IV. Additionally, the details
about CORDIC computations and Scaling factor evaluation
can be found in [15] and [17].

B. SOFTMAX FUNCTION EVALUATION USING CORDIC
ALGORITHM
The recursive CORDIC algorithm in a different mode of
operation converges to perform various mathematical com-
putations, as illustrated in TABLE 1. The CORDIC-based
softmax implementation is area and power-efficient at the
cost of lower throughput. We have designed an effi-
cient softmax function using CORDIC architecture. Observ-
ing the expression represented in Eq. 1, we have real-
ized exponential computation and division operation using
CORDIC in hyperbolic and linear mode, respectively.
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FIGURE 2. The arithmetic calculations that are involved in the first iteration of CORDIC when it is operating in
the hyperbolic mode.

FIGURE 3. The arithmetic calculations that are involved in the first iteration of CORDIC when it is operating in
the linear mode.

The implementation details for the Exponential Unit (ExU)
and Division Unit (DiU) are examined below:

1) EXPONENTIAL FUNCTION EVALUATIONS USING CORDIC
The CORDIC algorithm in Hyperbolic Rotation Mode can
be used to implement the hyperbolic trigonometric operation.
The generalized equations in a hyperbolic mode of operation
are shown in Eq 4. In this mode, hyperbolic trigonometric
functions sinh and cosh can be evaluated using hyperbolic
coordinates. The CORDIC algorithm sets variable m to -1 and
divides results by scaling factor Kh, i.e., 0.8281. To calculate
sinh and cosh, the hyperbolic rotational mode of the CORDIC
algorithm have used. At last, division by scaling factor can
be eliminated by dividing initial variables, thus setting X0 to
1/Kh, Y0 to 0, and setting the input to Z0. The rotations are
selected such that rotation scaling factors are negative power
of 2, i.e., αi = tanh(2−i). Therefore, from TABLE 1, it is
observed that outputXn, Yn and Zn converges as:Xn to coshZi;
Yn to sinhZi; and Zn to zero ( i.e. Z → 0).

Xi+1 = Xi + di·Yi· 2−i (4a)

Yi+1 = Yi + di·Xi· 2−i (4b)

Zi+1 = Zi − di· tanh−1 2−i (4c)

For the first iteration, i.e. i = 1 CORDIC computation is
shown in FIGURE 2. After nth iterations, it computes sinh(Z )
and cosh(Z ) that can be used for further exponential function
evaluation using Eq. 5 [17].

f (Z ) = exp(Z ) = eZ = sinh(Z ) + cosh(Z ) (5)

2) EVALUATION OF DIVISION OPERATOR USING CORDIC
To perform division using CORDIC alogrithm, the vector
mode of operation with linear coordinates can be used as
shown in TABLE 1. Rotation operations in linear coordi-
nates are derived using Eq. 3 by setting the mode vari-
able (m) to 0 and memory element Ei = 2−i. After setting
the parameter’s value in the revised form, the linear vector-
ing mode output is expressed in Eq. 6. To perform division
operation, this mode of CORDIC algorithm is being used.
On setting X0 as a divider, Y0 as dividend and Z0 as Zero, after
n iterations, Zn holds the quotientY0/X0. FIGURE 3 shows the
first CORDIC iteration i = 1 where the divider is set to X0 as
the sum of exponentials for all the neurons’ output from the
previous layer, dividend in Y0 as exponential for a particular
neuron’s output, and Z0 is set to 0, after n iterations, Zn holds
the quotient Y0/X0, as SF estimation for each neuron.

Xi+1 = Xi (6a)

Yi+1 = Yi + di·Xi· 2−i (6b)

Zi+1 = Zi − di· 2−i (6c)

The computation of the CORDIC algorithm for differ-
ent coordinates is valid in a specific convergence range,
as explained in [29]. For Hyperbolic coordinate input:
[-1.1182,1.1182]; and for Linear coordinates input: [-1,1] are
the range of convergence corresponding to Eq. 2 of CORDIC
algorithm. Thus, to ensure the input converges, the SF has
been normalized to the range of [-1,1] in the proposed work.
Using Eq. 6, Zi+1 computes the Softmax output when Y→ 0.
The detailed evaluation and consideration of the model have
been discussed in Section IV.
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An iterative CORDIC algorithm should iterate for (i+1)
iterations for an i-bit output precision. However, each
iteration incurs some propagation delay on account of
adder/subtract, barrel shifter, multiplexer, and feedback regis-
ter with conventional CORDIC architecture [16]. Therefore,
on increasing bit-precision to maintain maximum computa-
tion accuracy, the latency and on-chip area rise. Furthermore,
in the SF calculation, both exponential and division oper-
ations are resource-intensive, especially for high-precision
hardware implementation. To handle this bottleneck, we pro-
posed a performance-centric SF where we used pipeline
stages of CORDIC architecture.

IV. EVALUATION OF ENHANCED PERFORMANCE
CORDIC-BASED SOFTMAX FUNCTION
Any computing system’s performance can be enhanced using
parallel processing and pipelining techniques. Each iteration
of the CORDIC algorithm is mutually independent, and thus,
it can process parallel. However, the pipeline stages come
with an on-chip area and power overheads. The Pareto study
is perceived to determine the optimal number of pipeline
stages in the ExU and DiU to improve the performance
of complete SF design. The proposed performance-centric
architecture for the SF is shown in FIGURE 4. The archi-
tectural block diagram delineates pipelined CORDIC-based
softmax function. Exponential Unit (ExU) and Division Unit
(DiU) are constructed using P-stage and Q-stage pipelined
CORDIC computation in Hyperbolic Rotational and Linear
Vectoring Mode, respectively.

The computations are performed in two parts manifested
as part-1 and part-2. Part-1, includes ExU, two adders, a De-
Multiplexer (DeMUX), and a memory element (Ei) outlined
with pink color dotted line in FIGURE 4. An input of the
softmax function is the initial fixed-point value of variable
Zin[N:0], which is fed to the ExU at the input clock rate. The
hyperbolic trigonometric functions cosh and sinh obtained
from pipelined CORDIC architecture, and the exponential
function (of input Zin) is determined by summing them as
shown in Eq. 5.
All inputs of the softmax layer, which are usually the

output classes of the classification network, are sequentially
processed by the ExU unit, and their exponents are suc-
cessively stored in FIFO as shown in FIGURE 4. At the
same time, Adder2 accumulates exponential values of each
input class (Z1,Z2, . . .Zn). The control signal Run_in is
used to control DeMUX operation and signal Run_out is
generated to notify the completion of part-1. Run_in is
the select line for DeMUX. When Run_in is ‘high,’ the
exponential values of successive inputs Zin are summed;
otherwise, the sum is fed to the DiU unit. Thus, Run_in
is ‘high’ until exponential for all the inputs are calculated,
thereafter Run_out gets ‘high’. Part-2 incorporates division
operation in DiU and memory block. The sum of exponential
from DeMUX and the exponential of input from FIFO are
the input to the DiU as shown with a green dotted line
border in FIGURE 4. Here, Run_out signal of part-1 goes

FIGURE 4. The block-level architecture of the proposed Softmax function,
which utilizes the CORDIC algorithm.

to Run_in of phase 2. Also, until all softmax calculations
are performed Run_in remains ‘high’, thereafter a ‘high’
Run_out from phase 2 shows the end of softmax operation.
The performance-centric design of pipelined CORDIC for
ExU and DiU is discussed in Section IV-A and IV-B.

A. PERFORMANCE-CENTRIC PIPELINED ARCHITECTURE
FOR EXPONENTIAL UNIT
Exponential Unit (ExU) used in the proposed architecture
depicted in FIGURE 4 consists of ‘P’ pipelined stages
of CORDIC architecture operating in Hyperbolic Rota-
tional mode. Each pipeline stage represents one iteration in
CORDIC computation. From Hyperbolic Rotational mode
CORDIC equation Eq. 4 it follows that next Xi+1 is calcu-
lated by increasing or decreasing present Xi by the shifted
Yi, next Yi+1 by increasing or decreasing present Yi by
shifted Xi, and next Zi+1 by increasing or decreasing Zi by
tanh−1(2−i) where the sign of Zi control the operations. Thus,
each CORDIC stage includes a fixed shifter, add/sub-block,
ROM/registers to store Ei, and pipeline registers connecting
two consecutive stages as shown in FIGURE 5. Keeping
in mind the convergence range in Hyperbolic mode opera-
tion [29], input to SF (Zin) is normalized in the range [−1, 1]
so sinh and cosh of input values are obtained in the range
[−e/2, e/2]. The output of CORDIC unit after summing
the sinh and cosh terms converges to [0, e]. Considering
this, the ExU is represented in a 16-bit fixed⟨16, 13⟩ format
with an extra sign bit. Overflow has been saved during the
accumulation of exponentials of input; the accumulator must
be widened by at least log2 n bits. For at most 1000 out-
put classes, additional 10 bits in an input to the SF are
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FIGURE 5. Exponential Unit including i-stage Pipeline CORDIC
architecture used for N-bit precision.

TABLE 2. Four stage hyperbolic mode CORDIC calculation using
fixed ⟨16, 13⟩ representation.

required; thus, the exponential sum is represented in fixed-
point ⟨26, 13⟩ format.
CORDIC in Hyperbolic mode with an initial condition

evaluates the sinh and cosh function, which iterative calcula-
tion is shown in TABLE 2. A performance-centric evaluation
using four pipeline stages for ExU has been demonstrated.
The calculation has elaborated for the first stage for standard
⟨16, 13⟩ fixed-point as represented in FIGURE 2. More-
over, similar evaluation for subsequent stages architecture
shown in FIGURE 5 have elaborated in TABLE 2, where
finally evaluated cosh and sinh on output port Xi+1[16:0]
and Yi+1[16:0] respectively. The exact hyperbolic calculation
for input Z0 = 0.5, sinhZ0 and coshZ0 is 0.502337 and
1.121416 respectively. Whereas, the proposed model return
sinhZ0 and coshZ0 are 0.502319 and 1.121459 respec-
tively, shown in TABLE 2. Although the mean deviation for
16-bit precision is nearly 0.00012% compared to the same
64-bit floating-point calculation result. Further, design is effi-
cient regarding physical parameters such as area, power, and
critical delay, as discussed in Section VI. The entire class’s
exponential output and the accumulated sum are fed to the
division unit to predict a multinomial probability distribution.

B. PERFORMANCE-CENTRIC PIPELINED ARCHITECTURE
FOR DIVISION OPERATION
Division Unit (DiU) shown in FIGURE 4 consists of
Q pipelined CORDIC stages, and the green dotted line high-
lights its top-level architecture. Considering Linear Vectoring
mode CORDIC equations that perform division operation,
the pipeline stages are constructed as shown in FIGURE 6.
On utilizing Eq. 6, Xi+1 is evaluated by increasing or decreas-
ing current Xi by factor of the shifted Yi, next Yi+1 by

FIGURE 6. Division Unit including i-stage Pipeline CORDIC architecture
used for N-bit precision.

increasing or decreasing current Yi by factor of shifted Xi
and next Zi+1 by increasing or decreasing Zi by 2−i where
sign of Xi & Yi control the operations. Hence, each stage
of the pipeline structure includes a fixed shifter, add/sub-
block, memory element to store Ei, and pipeline registers
for storing the intermediate computation between the two
pipeline stages. In SF implementation, the division is per-
formed for the exponential value of each SF input and the
accumulated sum of all exponential values as given in Eq. 1.
Where exponential values obtained from ExU unit are in
16-bit Fixed ⟨16, 13⟩ format. The sum of exponentials
requires extra bits to prevent accumulated value, thus repre-
sented in 26-bit Fixed ⟨26, 13⟩, i.e., 13-bits for the fraction
part and 13 bits for the integer part. The additional overhead
bits in the integer part of the sum of exponential depend on
the output class, which is log2(n), where n is the output class
of the classification model.

Depending on the number of output class overhead bits
decided, we have used ten overhead bits for 1024 classes;
this makes the design class adjustable. Further, the sum of
exponential and exponential values for each class is quan-
tized to 21-bit Fixed ⟨21, 13⟩ format before it is given to
the DiU. The resource utilization of DiU for higher bit preci-
sion is quite large. The computation in DiU is carried out in
a 21-bit Fixed ⟨21, 13⟩ format.

The division computation for the first CORDIC stage in
16-bit Fixed ⟨16, 13⟩ format is described in FIGURE 3.
Pipelined architecture enhances throughput, but it comes with
an area overhead. As pipelining is used in this article, we have
evaluated the necessary pipeline stages at which desirable
accuracy is achieved. Complete illustration for 5-stages is
compiled in TABLE 3. The output Zout [21:0] converges to
division of Y0/X0 after i iterations such that Yi+1 → 0.
Continuing ExU output from TABLE 2, the sum of hyper-
bolic trigonometric function (sinhZ0 and coshZ0) after four
iterations returns a value 1.623778 (i.e., exponential for input
Z0 = 0.5). Let the overall sum exponentials for different
SF inputs as 2.51.

The exact Linear mode calculation for input Y0=1.623778
and X0=2.51 undergoes division, and output Y0/X0 will
be 0.64692. The output for five iterations of Linear Vectoring
mode CORDIC returns a value 0.656250 in Zi+1 which is
SF output for input 0.5, and Yi+1 nearly approaches 0 as
shown in TABLE 3. Thus, a division operation is performed,
where computed exponential values of individual SF input
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are fed to Y0 and the sum of exponential values of SF
inputs to X0; after ith iterations, Zout holds the SF output
for given input values. The SF output Zout is scaled down to
Fixed ⟨16, 13⟩ from Fixed ⟨21, 13⟩ format. One can observe
that the mean, standard deviation for 21-bit precision is
nearly 1.44% compared to the exact 64-bit floating-point
calculation. The proposed architecture shown in FIGURE 4
returns better physical design parameters such as area, power,
and critical delay at the cost of insignificant accuracy loss,
discussed in Section VI.

C. CLASS-ADJUSTABLE ARCHITECTURE
The classification class of a dataset plays a significant role in
SF architecture constructed using its exact expression Eq 1.
Themodel’smemory requirement to save the exponential val-
ues varies with the input class. Generally, an SF architecture
is designed for a fixed output class of dataset with limited
LUT memory to keep minimum resource utilization in VLSI
design. However, architecture with higher precision makes
the model resource-intensive and output classes dependent.
In the proposed SF architecture, input class (N) regulates
the memory requirement for intermediate calculations, mak-
ing it class-adjustable. The depth of FIFO gets adjusted in
variation with the output class in a dataset. Considering the
number of CORDIC stages and the arithmetic bit precision,
the proposed SF architecture has calculated accurately up
to 1024 classes of a dataset. To implement the proposed
SF for beyond 1024 classes, the Pareto analysis for finding
the number of CORDIC pipeline stages and a variation of
fixed-point notation can be similarly analyzed.

D. TIMING ANALYSIS OF PROPOSED PIPELINED
ARCHITECTURE
The overall timing analysis of complete architecture is dis-
cussed in this section. Here, for x SF inputs, we requireDExU
clocks delay for ExU execution and DDiU clocks delay for
DiU execution, and L denotes the latency of architecture.
All the exponential operations for SF input, followed by
accumulation, are performed in the first phase. The DExU
delay incurred during this phase due to P staged ExU is shown
in Eq 7. In the second phase, the division unit operates and
incurs a clock delay of DDiU due to Q staged DiU shown
in Eq 7. The ExU and DiU units can operate in pipelined
manner for two different sets of computations, thus increasing
the overall throughput of the model. The latency L of the
architecture is the sum of ExU and DiU clock delays. In con-
trast, the delay of SF output is equal to DDiU due to mutual
exclusivity between the two phases. The total required clock
cycles (TR) for x SF outputs is equal to the overall latency of
the architecture and can be estimated using Eq. 7.

DExU = x + P (7a)

DDiU = x + Q (7b)

L = DExU + DDiU (7c)

TR(x) = L = (x + P) + (x + Q) (7d)

TABLE 3. Five stage linear mode CORDIC calculation using ⟨21, 13⟩

representation.

The SF architecture takes initial ‘x+P’ clocks for exponen-
tial evaluation and ‘Q’ clocks for the division unit to gener-
ate the first output for SF. Therefore, the first output takes
‘x+P+Q’ clock cycles, and after that design produces output
at every clock cycle. The total required clock cycles have
been enumerated in Eq. 7. The frequency,f of the complete
architecture is due to the delay incurred by the single-stage
operation of DiU. Thus, Throughput (T) is calculated using
Eq. 8, where k is the number of operations per clock.

T = f × k (8)

V. EXPERIMENTAL EVALUATIONS
We conducted experiments to investigate the design param-
eters through Pareto analysis for improving the performance
and efficiency of SF used in DNN accelerators. The exper-
imental setup involved both software and hardware-based
implementations. Firstly, we validated the proposed model
using the QKeras Version 2.4 library for 16-bit fixed-point
arithmetic in Python. Secondly, we described the proposed SF
model in Verilog-HDL language and simulated it at the Resis-
tor Transistor Logic (RTL) level using ModelSim simulator.
We later synthesized it at 45nm technology using Synopsis
Design_Compiler and presented the post-synthesis results.
We further performed FPGA synthesis and implementation
using the Xilinx−Vivado 17.4 tool. The evaluations included:

1) We have evaluated the accuracy using the CNN
model [20] for MNIST and CIFAR-10 datasets.
To evaluate whether the proposed SF is accurate
enough, we compare the accuracy of CORDIC-based
architecture in Python with standard TensorFlow com-
putation [30]. Furthermore, we simulated fixed-point
behavior by quantizing the SF’s operations. Hence, our
CORDIC-based python implementation replicated the
hardware design in terms of accurate evaluation.

2) To enhance the throughput and energy consumption
of CORDIC-based SF, pipelined CORDIC stages were
used in the implementation of ExU and DiU units.
In order to determine the sufficient number of pipelined
stages for optimum accuracy, we extracted the Pareto
points using the CNN model. The error deviation from
the exact computation was also analyzed by mean
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TABLE 4. Classification accuracy(%) for quantized and unquantized CNN
model with Tensorflow’s softmax model and proposed SF.

average error (MAE) and mean square error (MSE)
calculations.

3) Based on previous evaluations, we have selected the
number of pipelined stages for each CORDIC unit.
We have achieved post-implementation performance
parameters for the proposed CORDIC-based architec-
ture for the Zybo board and were compared with previ-
ous works.

4) In order to evaluate ASIC compatibility, we simulated
the post-synthesis results for 45nm technology and
compared the physical design parameters like area,
energy, and frequency of operation with other state-of-
the-art implementations.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
This section describes software validations of enhanced
performance CORDIC engine-based SF and its hardware
implementation performance parameter. Using a hardware
description language (HDL), model simulation results have
been evaluated for 16-bit Fixed ⟨16, 13⟩ precision. In the
Python Version3 platform, two CNN models, LeNet and
ResNet, were implemented using Fixed ⟨16, 13⟩ precision
and trained on MNIST and CIFAR-10 datasets. The CNN
model has been designed using Python and customized for the
proposed SF at the classification layer. The network accuracy
is evaluated for MNIST and CIFAR-10 datasets. Further, the
SF hardware implementation was performed on a Zybo board
with a Xilinx XC7z010 device, and the resource utilization
and timing analysis were observed. The ASIC post-synthesis
results for physical parameter analysis were also evaluated
and compared with currently existing designs. A detailed of
the experimental evaluation and explored results are given in
the following subsections.

A. PARETO ANALYSIS FOR IDENTIFYING PIPELINE STAGES
In order to analyze the impact of the number of pipeline
stages on the accuracy of deep neural networks, a Pareto
analysis was performed. At first, training and validation
were performed for a CNN-based model [20] on MNIST
and CIFAR-10 datasets in the Python platform. The model
was trained using the TensorFlow softmax function at the
classification layer and validated the classification accuracy
for both datasets as shown in TABLE 4. Similarly, the vali-
dated accuracy has been recorded for the proposed SF at the

TABLE 5. Classification accuracy (%) for quantized ResNet-18 model with
Tensorflow’s softmax model and proposed SF.

classification layer, considering different pipeline stages in
the Exponential Unit(ExU) and Division Unit(DiU).

FIGURE 7 and FIGURE 8 depict the inference accuracy
variation on unquantized and quantized models for different
sets of pipeline stages in MNIST and CIFAR-10 datasets,
respectively. The graph concludes that the accuracies almost
converge to their maximum value after 4 and 5 pipeline stages
for ExU and DiU respectively. The achieved maximum accu-
racy is almost equal to the accuracies of TensorFlow-based
implementation. As accuracy improveswith an increase in the
number of pipeline stages, the amount of hardware resources,
as well as energy consumption and latency, increases at a
higher rate. For an area, energy, and throughput-efficient SF
architecture, it was concluded that a combination of 4 and
5 pipeline stages in ExU and DiU respectively is the best
choice for performance-centric, optimum architecture. Also,
to analyze the effect on accuracy due to quantization, the
computation was performed for unquantized and 16-bit quan-
tized CNN models as shown in TABLE 4. Due to computing
quantization, there is less than 2% loss in accuracy validation
for MNIST and CIFAR-10 datasets. The SF architecture has
also been verified in the 16-bit quantized LeNet model for
MNIST and CIFAR-10 datasets. To further verify the SF
architecture’s efficacy on a dataset with more classes, the
CIFAR-100 dataset has been tested on the ResNet-18 model.
The inference accuracy using the proposed SF is 57.92%
i.e. 3% loss with respect to TensorFlow-based implemen-
tation. Although, the significant accuracy loss of 2-3% for
CIFAR-100 datasets is not desirable in applications where
accuracy is of utmost importance. Nonetheless, in the context
of physical performance parameters for low power and high
throughput applications, such a loss may be tolerable as it can
result in significant savings in hardware resources and power
consumption. Also, with increased classes (beyond 1024),
a higher precision implementation and more CORDIC stages
will be required to increase the classification accuracy. Thus
once again, Pareto analysis needs to be performed.

Here, the proposed CORDIC-based SF design is first pro-
totyped using Python Library, and the Tensor framework
is used to evaluate the performance accuracy of the CNN
model. Besides, RTL of the SF design is implemented using
Xilinx-Vivado for its functional verification, and, through
simulation, it validated the ASIC compatibility using the
Seimens-ModelSim simulator. We set the software envi-
ronment similar to the hardware implementation for the
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TABLE 6. Hardware utilization and performance parameter at different bit precision for pipeline CORDIC base proposed softmax function.

TABLE 7. Hardware implementation results of iterative and pipeline (4,5)
CORDIC based SF for fixed⟨16, 13⟩.

SF design; the python-based evaluation faithfully replicates
the results for the hardware implementation.

Furthermore, the proposed SF architecture’s Mean Square
Error (MSE) was evaluated using 16-bit precision in which
three integer bits and 13 fractional bits are considered. In the
experiment, 1000 random values in the range [-1,1] were used
as input; the values were uniformly distributed over the range.
MSE for the proposed pipeline stage combination is in the
order of e−5. Increasing the number of pipeline stages in the
proposed model can reduce the error by sacrificing efficient
hardware area utilization and Power Delay Product (PDP).

B. HARDWARE IMPLEMENTATION RESULTS FOR
PIPELINED AND ITERATIVE CORDIC-BASED SF
This section brings a comparison between pipeline and iter-
ative CORDIC-based SF implementation. Both architectures
were developed using Verilog HDL, and resource utilization
has been reported. The hardware-implemented architectures
were done on Xilinx-Zybo board at different bit precision. For
establishing a correct comparison, iterative CORDIC-based
architecture has also been implemented on hardware and
results have been compared with proposed ExU, DiU, and
SF architectures.

Firstly, hardware-efficient pipelined CORDIC-based SF
with 4 and 5 pipeline stages for ExU and DiU, respectively,
was implemented as explained in Section VI-A. SF is used as
a classification function in many neural network models and
is thus expected to have high classification accuracy.Whereas
a higher precision computation returns better accuracy; there-
fore, SF implementation at a higher bit-precision representa-
tion is desirable. In order to observe the effect of bit-precision
on the proposed model, physical parameter comparisons for
signed 8-bit, 16-bit and 32-bit precision have been evaluated,

FIGURE 7. MNIST validation accuracy for CNN model developed in [20]
with proposed Softmax Function with different CORDIC stages in ExU
and DiU.

FIGURE 8. CIFAR-10 validation accuracy for CNN model developed in [20]
with proposed Softmax Function with different CORDIC stages in ExU
and DiU.

as shown in TABLE 6. Consequently, for different preci-
sion, we have reported resource utilization, critical delay,
and Power-Delay-Product(PDP), where power includes sig-
nal and logic power in TABLE 6. Resource utilization and
PDP increase by 1.66× and 1.52×, respectively, when the
precision increases from 8-bit to 16-bit. Furthermore, when
precision is increased from 16-bit to 32-bit, resource uti-
lization increases by 1.8×, and PDP increases by 3.065×.
A significant rise in PDP when precision is from 16-bit to
32-bit is due to increased dynamic power at higher-bit
precision. Considering accuracy and resource utilization
to be optimum, signed 16-bit precision implementation
is selected for further analysis. Similar state-of-the-art
architectures [11], [12] have also considered 16-bit preci-
sion SF implementation as an efficient choice for energy,
throughput, and resource-efficient design without any sig-
nificant loss in accuracy. Resource utilization and energy
metrics comparison of proposed SF with various state-
of-the-art implementations at 16-bit precision is shown
in TABLE 8.
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TABLE 8. Performance parameters of proposed and state-of-the-art softmax function at different technology nodes.

Secondly, we have implemented signed 16-bit precision as
an optimum choice and compared the performance parameter
of the proposed pipelined ExU, DiU, and CORDIC-based SF
with their iterative counterparts as shown in TABLE7. The SF
with 4 and 5 pipelined CORDIC stages consumes 427 LUTs,
whereas iterative CORDIC architecture utilizes 325 LUTs.
Although the proposed SF design has increased resource
utilization by 1.31× but achieved better performance metrics,
i.e., lower PDP (1.88×) and higher throughput (19.03×) than
the iterative process CORDIC-based SF implementation. The
reason for 1.31× resources scaling is the absence of feed-
back registers, multiplexer, and barrel shifter, in the proposed
architecture, unlike iterative CORDIC-based design. Thus,
resource utilization has not increased proportionally with the
number of pipeline stages. On the other hand, we enhanced
the throughput by pipelining CORDIC stages. Consequently,
the total critical delay for the proposed design has shown an
almost 5× decrease than the iterative CORDIC-based design
for an MNIST dataset as the iterative CORDIC-based SF
design took 9× the delay for ten classes of data. TABLE 7
reports the results for iterative and pipeline CORDIC archi-
tecture. The edge AI application demands high-throughput
and energy-efficient design. Thus, our proposed pipelined
CORDIC-based SF function will be an optimum choice.
Whereas iterative CORDIC-based SF will be useful in appli-
cations where resources are constrained.

C. PERFORMANCE PARAMETERS COMPARISON FOR
FPGA AND ASIC IMPLEMENTATION
The hardware implementation depends on the targeted appli-
cation, design requirements, cost, and the number of units
that need to be manufactured. For that FPGA and ASIC
implementation compatibility has been validated. This sec-
tion discusses the proposed design’s physical performance
parameters and comparison with existing works in [5], [11],
[12], [14], and [22]. Furthermore, the utilization impact of the

proposed SF architecture is examined, and all comparisons
are made for fixed 16-bit precision, as shown in TABLE 8.

The FPGA result shows the proposed design has lower
LUT and FF utilization, which are 77% and 82% respec-
tively, than the efficient method in the state of the art [11].
The proposed design has lower resource utilization due to
its CORDIC-based implementation, and besides, we have
limited the CORDIC stage by systematic evaluation of per-
formance versus pipeline stages. However, limiting pipeline
stages affects the insignificant accuracy loss, around 0.2%
decrease in MNIST and CIFAR-10 classifications. The pro-
posed design has used only 0.5 BRAMs as a FIFO to store
the exponentials for each output class of data. Thus, we can
see the benefits of the proposed SF architecture compared to
previous work. Since the model is parameterized for the vari-
able N of output classes (datasets) where the memory require-
ment for storing the intermediate data is variable. In order
to improve the throughput performance, pipeline stages have
been used, which come with area overhead compared to itera-
tive architecture. However, it still outperformsmany currently
used SF models [5], [11], [12], [22] in resource utilization,
PDP, and operating frequency of operation. A higher operat-
ing frequency for the proposed model depicts high computa-
tional speed.

Besides, the proposed architecture’s experimental results
validate the ASIC implementation. The physical parameters
are evaluated at the 45nm technology node and compared
with the state-of-the-art. The performance parameters at dif-
ferent technology nodes for state-of-the-art implementation
are depicted in FIGURE 8. As we know by Moore’s Law,
on down-scaling the technology node, the silicon chip area
halves successively from one technology node to another.
Thus, we can make a fair comparison between different
designs at various technology nodes from TABLE 8. As per
the observed results at the 45nm technology node, when
we scale our device from 45nm to 28nm, the chip area

34922 VOLUME 11, 2023



S. Mehra et al.: Empirical Evaluation of Enhanced Performance SF in Deep Learning

will reduce by 4× approximately. It proves that the pro-
posed design (at 45nm) outperforms the other state-of-the-art
design in terms of hardware area utilization. As explained in
Section IV-B, ExU and DiU utilize four and five CORDIC
stages, respectively, in the proposed SF design. As a result,
one Softmax output per clock is obtained in the proposed
model, reducing the architecture’s overall throughput. How-
ever, the loss in throughput is not significant enough com-
pared to the iterative CORDIC-based SF design. Further-
more, it was observed that the proposed design has 3×
improved total logic delay than the best state-of-the-art
design [12]. Energy-Delay-Product(EDP) reduces signifi-
cantly by 10× compared to the previous designs [5], [11].
The proposed design has a maximum frequency of 5GHz

at 45nm ASIC implementation. Here, a high frequency of
operation justified that the architecture is compatible with a
wide range of deep learning applications. Furthermore, from
TABLE 8, it has been concluded that the maximum frequency
of operation of the proposed design is 3× and 1.8× the fre-
quency of operation in [12] and [22] respectively, which are
maximum amongst all state-of-the-art techniques. Therefore,
it validates that the proposed model is advantageous in terms
of area, power, delay, and speed of operation.

VII. CONCLUSION
This study introduces a novel and efficient class-adjustable
SF architecture that employs a pipelined CORDIC-based
design to achieve area and power-efficient operation. The
proposed architecture efficiently addresses high through-
put requirements by generating the final output serially
at each clock after an initial computational latency. The
performance-centric design is instantiated using Pareto anal-
ysis for accuracy and pipeline stages, and we have com-
pared it with other architectures using FPGA and ASIC
implementation. Our proposed model, with 16-bit precision,
achieves almost lossless accuracy for MNIST and CIFAR-10
on the LeNet model and significantly for CIFAR-100 on the
ResNet-18 model. We have evaluated the proposed design
through simulation and synthesis on FPGA and ASIC with
45nm technology. The experimental results demonstrate
that our performance-enhanced technique in SF architecture
opens up possibilities for area and power-efficient designs
in edge AI computing applications and iterative low-power
designs for IoT applications. Furthermore, our results sug-
gest that the proposed design is highly extensible for higher
precision arithmetic computation due to its area-efficient
architecture.
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