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ABSTRACT The maintenance of critical components plays a crucial role in ensuring the overall stable
operation of equipment andminimizing damages caused by functional errors. However, Traditional operation
and maintenance (O&M) modes suffer from problems such as reliance on empirical judgment, lack of data
support, insufficient preventive maintenance, and inadequate collaborative management. To address these
issues, a viable approach is to adopt more intelligent O&M modes. Based on the characteristics of digital
twin technology, such as virtual interaction and real-time feedback, a digital twin framework for critical
component maintenance of equipment is proposed, providing a new approach for the practical application
of digital twin in intelligent maintenance processes. This framework consists of two key components: the
digital twin maintenance model and the proxy model. The process of establishing the digital twin model is
elaborated in detail, and amechanism that integrates digital twin technology and the proxymodel is proposed,
along with a prediction process based on the fusion of simulation and monitoring data. Finally, based on the
summary of the modeling process and the proxy model, a visualization interface for intelligent maintenance
of components is built using relevant engineering software.

INDEX TERMS Digital twin, operation and maintenance, proxy model.

I. INTRODUCTION
During the usage of mechanical components, damages and
even failures can occur due to external and internal fac-
tors, making it difficult to maintain a stable operating state
over a long period of time [1]. As components are used
over an extended period, the operating environment becomes
increasingly complex, posing new challenges for equip-
ment diagnosis and maintenance [2], [3], [4]. Currently, the
maintenance of mechanical components is mainly based
on after-the-fact maintenance and limited experience-based
predictive maintenance, which limits the accuracy and
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effectiveness of component maintenance and can affect the
operation of the entire equipment [5].

In recent years, the widely discussed digital twin technol-
ogy hasmade it possible to visualize and predict the usage sta-
tus of individual components [6]. A high-fidelity digital twin
that integrates geometric models, mechanism models, and
predictive models of physical entities can reflect their physi-
cal properties, dynamic interactions, and evolutionary mech-
anisms, thereby enhancing the real-time perception capability
of component predictive maintenance [7]. Based on real-time
synchronization, reliable mapping, and high-fidelity models,
fault information can be analyzed and presented more clearly
and accurately, and single-component fault diagnosis and
prediction can be performed in a more realistic simulation
process [8], [9].
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With the emergence of industrial transformation strate-
gies such as Germany’s Industry 4.0 and China’s Made in
China 2025, as well as the development of big data, cloud
computing, and sensor technologies, digital twin technology
has been widely applied [10]. Braatz R. [11] proposed a
novel probabilistic fault detection and identification method
which adopts a newly developed deep learning approach
using Bayesian recurrent neural networks (BRNNs) with
variational dropout. Liu et al. [12] developed a lightweight
digital twin model using multi-fidelity surrogate (MFS) mod-
eling to monitor the structural health of a crane boom in real-
time, ensuring its operational capability under design load
capacity. Chen et al. [13] constructed a digital twin-driven
residual effective life prediction model based on an implicit
semi-Markov model to predict the remaining effective life
of equipment. Song et al. [14] proposed a solution called
‘‘algorithm-measurement fusion’’ that combines mechanis-
tic modeling and measured data to meet the timeliness and
accuracy requirements of digital twin models and construct
a digital twin framework for ‘‘form-essence integration’’ of
major equipment. M.G. Kapteyn [15] proposed a method that
combines a component-based reduced-order model library
with Bayesian state estimation to create a data-driven digital
twin. Ierapetritou M [16] reviewed recent advances in the
area of surrogate models for problems in modeling, feasi-
bility analysis, and optimization. Two of the frequently used
surrogates, radial basis functions, and Kriging are tested on
a variety of test problems. Xie et al. [17] aim to describe
the development of an AR-supported automated environmen-
tal anomaly detection and fault isolation method to assist
facility managers in addressing problems that affect building
occupants’ thermal comfort. Glaessegen [18] integrated ultra-
high fidelity simulationwith the vehicle’s on-board integrated
vehicle health management system, maintenance history and
all available historical and fleet data to mirror the life of its
flying twin and enable unprecedented levels of safety and
reliability.

Although complex simulations are still insufficient to meet
engineering requirements, high-precision simulations that
reflect the real-time operating details of components may
take several hours to complete. Therefore, relying solely on
high-precision simulations is impractical and unfeasible [19].
An alternative solution, which has garnered much attention,
is to use proxy modeling to capture the main features of the
original model. This technology approximates input-output
relationships while reducing computational costs, provid-
ing better real-time feedback and reliability predictions that
reflect the actual operational conditions of physical entities,
thereby assisting in equipment component diagnosis and
maintenance [20].

In summary, the concept of digital twins has provided
a new approach to the maintenance and management of
critical components. This paper emphasizes the advan-
tages of proxy modeling in state perception and pre-
diction of digital twin models. The main contributions
include:

(1) proposing a general framework and implementation
roadmap for real-time perception and prediction of com-
ponent operational status based on digital twin and proxy
modeling,

(2) utilizing engineering software such as ANSYS,
PyCharm, and Unity to visualize operational results for effi-
cient and convenient operation.

II. DIGITAL TWIN FRAMEWORK FOR EQUIPMENT
COMPONENT MAINTENANCE
Mechanical equipment components have long operating
cycles and harsh working environments [21]. The virtual
interaction and real-time feedback features of digital twins
are beneficial for ensuring the efficiency and reliability of
critical equipment components. In response to the character-
istics and requirements of mechanical equipment in actual
use, we focused on key issues such as state monitoring and
fault prediction for critical equipment components. We estab-
lished a multidimensional digital twin model for maintenance
management [22]. In equation (1), MDT represents the dig-
ital twin model used for component monitoring and diag-
nosis, CPE represents the physical entity of the component,
CVE represents the virtual component model, CCN represents
the connection between the physical entity and the virtual
model, CDD represents real-time monitoring data obtained
from sensors and other equipment used in the component,
and CPD represents predicted data obtained through proxy
models.

MDT = (CPE ,CVE ,CCN ,CDD,CPD) (1)

Digital twin model is a virtual, digital counterpart of a
real-world physical object or process that reflects the state
and behavior of the real world by collecting, processing,
and analyzing large amounts of data. Proxy model is a
mathematical or physical model used to build a digital twin
that simplifies real-world physical processes or phenom-
ena and describes these processes or phenomena with a set
of equations or rules. Proxy models can help researchers
model and analyze the real world to quickly and accurately
predict behavior and outcomes in different situations. Twin
data are data associated with digital twin models, including
data used to build and train digital twin models, data used
to validate and test the models, and data used to monitor
and update the models. Digital twin framework for com-
ponent maintenance and operation management is shown
in Figure 1.

The framework is based on the physical entity and its
3D model of equipment components, combined with emerg-
ing technologies such as intelligent sensors and machine
learning, and utilizes proxy models to construct multi-
dimensional virtual models of geometry, physics, behav-
ior, and rules. The digital twin maintenance model and the
physical component entity interact with each other in real-
time, and the data is classified and stored on the twin data
platform. By analyzing the data, the operating status of
the equipment components can be diagnosed and predicted.
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FIGURE 1. Digital twin framework for component maintenance and operation management.

State prediction is an important means of keeping equip-
ment components in good operating range. Proxy models
are widely used in state prediction and can be used for fault
diagnosis, performance optimization, and improving system
robustness [23]. By learning known monitoring and simu-
lation data, future states of equipment components can be
predicted.

Based on the information contained in the twin mainte-
nance model, the framework realizes the diagnosis of equip-
ment component faults and equipment prediction driven by
proxy model algorithms. Relevant maintenance strategies are
specified according to actual situations to achieve intelligent
maintenance of equipment and ensure that equipment com-
ponents are in a healthy state [24], [25]. The proposed frame-
work can improve the informatization level of equipment
maintenance, solve various defects of traditional operation
and maintenance, and achieve cost reduction and efficiency
improvement.

III. ESTABLISHMENT OF DIGITAL TWIN MODEL
A. CONSTRUCTION OF VIRTUAL MODEL
I-beam is a common structural steel that can be used in
the construction of bridges and overpasses, as well as in
the manufacturing of machinery and equipment. Considering
the significant impact of the state of I-beams on overall
equipment operation under different working conditions, this
study focuses on the construction method of its digital twin
model, in order to better achieve the full life cycle energy
efficiency evaluation of the equipment [26]. According to the
characteristics of I-beams, this study divides the digital twin
model of I-beams into four steps: geometric model, physical
model, behavioral model, and rule model [27].

FIGURE 2. Finite element mesh division of I-beam steel.

The geometric model is used to describe the geometric
characteristics of I-beams. Software such as SolidWorks and
3D Max can be used to draw the geometric model of the
object [6]. The geometric model of the I-beam is drawn
based on parameters such as flange height, leg width, and
web thickness. The physical model mainly adds physical
attributes to the geometric model, such as stress, modal,
and deformation, through various simulations. Based on the
geometric model, finite element analysis meshes are divided
as shown in Figure 2; the generated mesh finally results in
65,212 nodes and 14,350 elements. The behavioral model
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FIGURE 3. Stress distribution under working condition.

is built based on the physical model, and the behavioral
information is obtained from the MES system. According to
actual parameter information, the behavioral model of the
response process is constructed. For the I-beam model, the
actual working conditions mainly focus on the stress of each
part after bearing a certain load. Based on this, the Ansys
tool is used to add corresponding process constraints for
simulation, and the analysis results are shown in Figure 3.
Based on historical data and prior knowledge, the rule model
of the component object is constructed to reflect the true rules
of the operation state of the I-beam model.

B. TWIN DATA OF I-BEAM STEEL
Twin data is the driving force behind digital twins and
requires the collection, storage, and analysis of data to be
completed under certain requirements. The twin data of
I-beam steel is divided into six parts: physical entity-related
data, virtual model-related data, proxy model data, fusion
data, connection data, and domain knowledge data, as shown
in Figure 4. In certain specific usage environments, the phys-
ical entity data of I-beam steel cannot be collected, and
during simulation, accuracy cannot be guaranteed due to the
interference of uncertain factors. Therefore, it is necessary
to combine real-time monitoring data and simulation data
to complement each other. To meet the real-time and timely
requirements of digital twin services, a real-time transmission
channel for the data of each part of the digital twin body needs
to be established. Installing full-range sensors and wireless
transmission devices for physical equipment I-beam steel can
realize reliable and stable data collection. Real-time interac-
tion between the real world and the virtual world data can be
achieve between engineering software for virtual models and
digital twin service platforms.

As the system runs, data and information continuously
accumulate during the equipment usage process. Data fusion

FIGURE 4. Composition of digital twin data.

is a cyclic process of accumulation, updating, and improve-
ment. By constructing iterative rules and mechanisms, new
data and new strengths can be absorbed based on the original
data to ensure that the result of data fusion remains advanced
and more informative. Through the synchronous operation
and interaction of the physical I-beam steel entity and the
virtual model, functions such as state awareness and fault
diagnosis for the physical I-beam steel entity can be achieved
through the comparison of physical and simulation states,
fusion analysis of physical and simulation data, and virtual
model validation.

C. INTERACTIVE CONNECTIVITY
The connection between physical steel and virtual model:
Physical equipment equipped with a series of sensors and
wireless transmission devices, such as Bluetooth, WiFi, NFC
protocols, sends the monitoring data collected by strain
gauges and pressure sensors to the receiving platform for
storage, thus achieving accurate mapping of the digital twin
model to the physical steel entity.

Exchange of digital twin data: Steel twin data comes
from physical entities, twin models, environmental parame-
ters, historical experience, and other fused data. Due to the
different representations of data from different sources and
different collection sequences, it is difficult to share fused
data. Therefore, it is necessary to break the information silos
and achieve twin data exchange and sharing. Steel twin data
is usually stored using databases and cloud services, and
physical steel data is uploaded and twin data is called using
protocols such as ZigBee, 5G, and Socket.

External service interaction: Due to the increasing user
demand and pursuit of high-quality efficient services, the
single-purpose functions and attributes of digital twin ser-
vices are limited [28]. Therefore, it is necessary to establish
interaction-related mechanisms to achieve the interaction and
connection of digital twin services, including intelligent oper-
ation and maintenance, health management, decision opti-
mization, and other service interactions.
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TABLE 1. 5mm mesh solution results.

TABLE 2. 12mm mesh solution results.

IV. THE REAL-TIME STATE PERCEPTION DRIVEN BY
PROXY MODELS
A. MODELS INTEGRATION
Model integration refers to combining several different
models together to obtain more accurate and robust pre-
diction results. In practical applications, model integra-
tion is a very important technique in the field of machine
learning because a single model often cannot solve all
problems, and model integration can improve the over-
all prediction by exploiting the advantages of different
models.

The effectiveness of model integration depends on the
diversity among the integrated models. Diversity can be
achieved by using different algorithms, different features,
different hyperparameters, etc. Diversity can improve the
predictive power of a model, but it can also increase the
variability between models, leading to an increase in model
complexity.

B. KNN ALGORITHM
The KNN algorithm (K-Nearest Neighbor Algorithm) is a
basic classification and regression method, which is a non-
parametric machine learning algorithm. The basic idea of
the KNN algorithm is to classify or regress new data points
based on the distance between samples, that is, to classify the
new data point into the category of the k nearest known data
points. The implementation steps of the KNN algorithm are
as follows:

(1) Determine the value of k, that is, select k nearest
neighbors;

(2) Calculate the distance between the new data point and
the known data points;

(3) Take the k nearest known data points as neighbors of
the new data point;

(4) Classify or regress the new data point based on the
categories of the k neighbors.

In classification problems, the predicted result is usually
the category with the most frequent occurrence among the
neighbors, that is, the voting method. In regression problems,
the predicted result is usually the average value of the target
values among the neighbors. The advantages of the KNN
algorithm are that it is simple, easy to understand, easy to
implement, and suitable for multi-classification problems and
high-dimensional data.When processing the deformation and
equivalent stress of the I-beam under different working condi-
tions using the finite element software ANSYS, the different
meshing forms determine the speed of calculation and the
accuracy of the solution. However, the digital twin model has
the characteristics of real-time interaction and iterative feed-
back. To meet the relevant requirements, the solution results
with a meshing cell size of 5mm are exported, as shown in
Table 1, and the node coordinates with a meshing cell size of
12mm are exported. The KNN algorithm is used to obtain the
solution results, as shown in Table 2, and is used to input the
RBF proxy model.

C. RBF PROXY MODEL
The RBF (Radial Basis Function) proxy model has good
nonlinear approximation and generalization capabilities, and
can perform well even with small datasets. It is widely used
in areas such as function approximation, classification, and
regression. RBF neural networks are artificial neural net-
works that use radial basis functions as activation functions,
and their output is a linear combination of the input radial
basis functions and weight coefficients. The radial function
ϕ(x) satisfies the condition that for a fixed point c, it is
equal for all equidistant x around the point c, it satisfies
ϕ(x) = ϕ (∥x− c∥), that is, the function values are the same
for points that are equally spaced around a fixed point c.
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FIGURE 5. Schematic diagram of RBF neural network.

There are many common radial functions, and the more
common Gaussian functions used in this study are:

ϕµ,σ (x) =
1

√
2π

exp(−
(x − µ)2

2σ 2 ) (2)

The principles of the RBF neural network are illustrated in
Figure 5. In this figure, the input layer Xj(j = 1, 2, 3, . . . , n,
where n represents the number of sample points) is a vector
of design variables corresponding to the j-th sample point.
The hidden layer Cj(j = 1, 2, 3, . . . , h, where h represents
the number of hidden layer nodes) is a vector of radial basis
functions corresponding to the j-th sample point. The weight
vector wj (j = 1, 2, 3, . . . , h) corresponds to the j-th sample
point. The output layer Y is a vector of target functions
obtained by adding the radial basis functions with weights
in the hidden layer.

The activation function of the RBF neural network can be
expressed as:

R(xj − ci) = e
∥ xj − ci ∥

2

2σ 2 (3)

The formula is composed of the following terms:
Xj—-the j-th input sample;
Ci—-the center of the i-th node;
σ—-the width parameter, which controls the radial range

of the node.
From the RBF neural network structure, the network output

can be obtained as follows:

yi =

∑h

i=1
wije

∥ xj − ci ∥
2

2σ 2 (4)

In the equation (4), wij represents the weight of the basis
function.

The establishment process of RBF proxy model generally
includes the following steps:

(1) Data collection: collect data for modeling, including
input variables and corresponding output variables.

(2) Selection of basis functions: choose a suitable set of
basis functions, usually Gaussian functions.

(3) Calculation of distances: calculate the distances
between each input vector and other vectors.

(4) Construction of proxy model: use the values of basis
functions to construct the proxy model, and determine the
coefficients of the basis functions through optimization meth-
ods such as least squares.

When obtaining simulation data of I-shaped steel in finite
element analysis software, the force surface of I-shaped steel
is divided into 6 impression surfaces, and RBF proxymodel is
trained to export data. Each node establishes a proxy model,
that is, 4411 proxy models are built, to obtain 6 working
conditions of force states on each impression surface of
the node. The deformation and equivalent stress of other
positions of I-shaped steel are calculated using interpola-
tion. The use of proxy model greatly shortens the calcula-
tion process in simulation analysis, which is an important
guarantee for realizing the characteristics of digital twins,
such as real-time monitoring, even iteration, and virtual-real
interaction.

D. VISUALIZATION
As a widely used real-time 3D authoring platform, Unity3D
has a large community of developers and is applied in mul-
tiple fields, including digital twins in the industry. With
Unity, model data, sensor data, or point cloud data can be
transmitted and rendered in real-time. After adding physical
characteristics and behavior logic, not only can simple and
abstract models and data be processed into photo-realistic
real-time rendering effects, but also can be interacted on mul-
tiple platforms in the form of AR/VR/MR, realizing digital
twins.

Currently, the traditional way to achieve digital twins using
Unity is through communication between the data service and
Unity, as shown in Figure 6. First, smart sensors are installed
on the manufacturing equipment, and the monitoring data is
uploaded in real-time by the sensors. Secondly, there needs
to be a receiving service, which can be a simple backend
service that receives the data uploaded by the sensors. Next,
Unity obtains the data in real-time from the server through
the socket method. Finally, using the real-time obtained data,
Unity drives the mapped virtual device (which is currently
manually modeled) in real-time.

The data transmission between Unity and PyCharm relies
on Socket communication, which is a node for bidirectional
communication between processes on different hosts, consti-
tuting the programming interface for a single host and the
entire network.When data needs to be sent, the corresponding
application process segments the data to fit transmission at the
network layer. When a packet is received from the network
layer, it is confirmed and lost packets are set for timeout
retransmission. On the server-side (PyCharm), a local IP
address of 127.0.0.1 is created, then bound with Bind, and the
listening is started with a maximum connection of 5, waiting
for the connection and data reception from the client-side
(Unity). The server reads the position of the six points of
the I-beam five times per second, calculates the stress results
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FIGURE 6. Implementation process of Unity digital twins.

FIGURE 7. Visualization interface.

in real-time using the RBF proxy model according to the
stress conditions, and visualizes the stress results in the Unity
interface, as shown in Figure 7.

V. CONCLUSION
This article introduces the application of digital twin technol-
ogy in the diagnosis and health management of key equip-
ment components, as well as the fusion mechanism of digital
twin technology and proxy models, achieving intelligent pre-
diction of component operating status.

Based on the characteristics of virtual interaction and real-
time feedback of digital twin technology, a digital twin frame-
work for device key component operation and maintenance
is proposed, providing new ideas for the practical applica-
tion of digital twin in intelligent operation and maintenance

processes. In the process of combining digital twin technol-
ogy with proxy model algorithms, the article first proposes
the process of building a digital twin model, realizing the
integration and visualization of monitoring and simulation
data. Then, the proxy model algorithm is applied to analyze
and predict the stress status of component operation and
maintenance. Based on digital twin technology and proxy
models, a new solution is provided for the development of
intelligent operation and maintenance systems and for the
application of digital twin technology.

In summary, the application of digital twin technology and
machine learning algorithms is an effective way to achieve
fault diagnosis and operation status monitoring of key equip-
ment components. However, the application of digital twin
technology is still in the exploration stage and has certain
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limitations. The focus of the follow-up research work is to
establish more accurate digital twin models, which are an
important basis for state sensing and prediction. By improv-
ing the modeling approach, data quality and model structure,
the prediction accuracy and practicality of digital twinmodels
can be improved. The application of digital twins in intelli-
gent operation and maintenance still has great potential for
development. Therefore, the method proposed in this study
is only at the theoretical level, and in future work, it will be
attempted to apply it to actual projects.
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