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ABSTRACT Single-channel speech enhancement based on short-time spectral amplitude (STSA) estimation
often uses the unmodified phase spectrum for speech re-synthesis, thereby introducing undesired artifacts to
the enhanced speech. Using discrete Cosine transform (DCT) instead of discrete Fourier transform (DFT)
reduces the effects of such issues because the consequences of using noisy DCT polarities for speech
re-synthesis are less severe than using the noisy DFT phases. Although DFT-based STSA estimators have
been adequately studied in the past, such estimators have not sufficiently been developed for the DCT
domain. This study aims to demonstrate the superiority of DCT representation in STSA estimation-based
speech enhancement. To achieve this, we first derive the DCT-based STSA estimator which minimizes the
mean squared error (MSE) of the log-spectral amplitudes (LSA). We then propose a novel DCT polarity
estimator to be used in combinationwith the STSA estimator. The clean speechDCT coefficients aremodeled
by a Gaussian or a Laplace density and the noise DCT coefficients are modeled by a Gaussian density.
To assess the enhanced speech, objective and subjective quality measures are employed. Results show that
the new estimators performed better and are widely preferred by listeners over the corresponding DFT-
based estimators. Moreover, the proposed STSA estimators can be expressed in the closed-form, whereas
the DFT-based estimator with super-Gaussian speech prior has no closed-form solutions.

INDEX TERMS Discrete Cosine transform (DCT), minimummean-square error (MMSE) estimator, speech
enhancement, perceptual distortion measure, polarity estimation.

I. INTRODUCTION
Speech communication devices including hearing aids,
cochlear implants, and mobile communication are required
to function robustly in adverse noisy environments. Ambi-
ent addictive noise can corrupt speech signals, leading to
degraded device performance and listener fatigue. Hence, it is
crucial to perform speech enhancement to improve the qual-
ity, and preferably the intelligibility of the noisy speech [1].
When the noisy speech alone is accessible (i.e., single-
channel), most speech enhancement systems use DFT, which
has readily available STSA estimators [2]. Many of these
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estimators enhance only the short-time1 spectral amplitudes
(STSA), while the noisy spectral phase is left unmodified,
i.e., [3], [4], [5], [6]. This is justified by the assumption
that phase is perceptually unimportant [7] and the MMSE
estimator of the original phase is the noisy phase [3].

Although DFT-based STSA estimators have been well
developed in the past, they suffer from two major limita-
tions. First, using the noisy phase for speech re-synthesis
(reconstruction) introduces an upper bound on the maximum
improvement in speech quality [8]. Because the spectral
phase in fact contributes to the perceived speech quality

1In this paper the short-timemodifier is impliedwhen referring to theDFT,
DCT, and their corresponding spectra unless otherwise stated.
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especially for low SNRs [9], [10], [11]. It has been shown that
using noisy phase for speech re-synthesis does not degrade
the perceived speech quality as long as the level of phase
distortion is below a certain threshold, i.e., Just-Noticeable-
Difference (JND) [8]; above the JND, some roughness is
perceivable by the listener [8], [12]. Consequently, having
a high JND in noise distortion (or corresponding to a low
SNR) is a very desirable feature for speech enhancement
applications. The JND of perception in DFT phase distor-
tion is roughly 5-6 dB in instantaneous spectral signal-to-
noise ratio (ISNR) [8], [13]. Below 5-6 dB ISNR, DFT-based
STSA estimators can no longer effectively improve speech
quality due to perceivable phase distortion. Second, DFT-
based STSA estimators derived under super-Gaussian speech
prior are sub-optimal solutions due to inaccurate assump-
tions. Especially, the following assumptions are commonly
invoked to significantly simplify the derivation of DFT-based
MMSE STSA estimators (Table 1): (1) the real and imaginary
parts of the speech DFT coefficients are independent; (2) the
speech STSA and phases are independent and their join pdf
satisfies p(|X |, θX ) = p(|X |)p(θX ); and (3) the speech phase
is uniformly distributed. These assumptions are true for com-
plex Gaussian random variables (R.V.) [14], however, it is
not the case with the complex super-Gaussian distributions
such as Laplace distribution that are used for modeling the
speech DFT coefficients. For example, the real and imaginary
parts of complex Laplace R.V. are not independent according
to measured histograms presented in [15] and [5]. Further-
more, the analyses of the joint pdf of the speech STSA and
phases p(|X |, θX ) as well as the pdf of p(θX ) illustrate the
Laplace amplitude depends on the phase, i.e., p(|X |, θX ) ̸=

p(|X |)p(θX ), and the density of p(θX ) is clearly not uniform
but oscillates near the value of 1/2π [16]. Nonetheless,
despite all those efforts to simplify the derivation, DFT-based
estimators derived under super-Gaussian speech prior [5],
[6], [16], [17] have no closed-form solutions and require
numerical approximations due to the induced mathematical
complexity.

We propose that the aforementioned limitations related to
the conventional DFT-based STSA estimators can be allevi-
ated by using DCT instead of DFT and thereby improving the
perceived speech quality. Three main reasons are as follows.
First, the approximation of the clean DCT polarity spectrum
(PoS) by its noisy counterpart can be considered superior,
with a significantly lower JND (in SNR) when compared
to DFT-based methods. As demonstrated in [13], the JND
in the DCT PoS is 0 dB in ISNR, which are about 5-6
dB lower than the threshold in the DFT phase spectrum
(PhS). This means when the ISNR is above 0 dB, leaving the
DCT polarity unmodified has no effect on perceived speech
quality; however, an accurate DFT phase estimation might
be required to achieve the same improvement in perceived
speech quality. This advantage was further proved through
subjective listening tests and the average of the scores given
by the listeners, termed as the mean subjective preference (%)

score, was used as an indicator for the perceived speech qual-
ity [19]. Explicitly, for all tested noise conditions, using noisy
PoS for speech reconstruction achieved a higher preference
score than using the noisy PhS (Fig. 1). This suggests that the
PoS is more capable of conserving speech quality than the
PhS for the same level of distortion. Second, since the DCT
coefficient is real, the polarity component only depends on
the individual DCT coefficient, and thus the potential issue
caused by assumption (1) does not apply (Table 1). More
importantly, it is sufficient to specify only the density for
the speech DCT coefficient, i.e., it is not necessary to find
the distribution of the DCT STSA nor the DCT polarity. The
advantages are that the DCT MMSE STSA estimators can
be derived directly from the density of speech coefficient
without making the independence assumption of the speech
STSA and its polarity part. Consequently, the potential issues
caused by assumptions (2) and (3) can be essentially avoided.
Lastly, the real component of DCT is mathematically easy to
calculate and thus, the DCT-based STSA estimators can be
elegantly reduced to closed-form solutions.

Since the consequences of using noisy DCT polari-
ties for speech re-synthesis are less severe than using the
noisy DFT phases, adopting DCT representations in STSA
estimation-based speech enhancement can potentially lead
to higher speech quality. It is important to note that, DFT-
based estimators cannot simply be carried over to the DCT
domain as DCT is a real-valued transform and DFT is com-
plex. In this regard, DCT-based MMSE spectral amplitude
(STSA) estimators were developed in [19] by minimizing
the MSE between the original STSA and its estimator. To be
used in conjunction with the DCT-based STSA estimators,
an optimal MMSE estimator of the DCT noise power was
also derived. It has been shown when the enhanced DCT
spectral amplitudes combined with the noisy polarity spec-
trum, the resulting speech achieved significantly better per-
ceived quality than the ones obtained by the DFT-based
approaches.

While the distortion measure previously used in [19] leads
to good results, it is not themost perceptuallymeaningful one.
Studies show that the human auditory performs a logarithmic
compression of the STSA [20], and thus the distortion mea-
sure which is based on the MSE of log-spectral amplitude
(LSA) is more perceptually relevant than that of the STSA.
Initially, Ephraim and Malah proposed the LSA estimator
[4] which minimizes the log-domain MSE. Motivated by
the central limit theorem, the complex Gaussian model was
used for both DFT clean speech and noise components. Later
studies show that while noise components can be appro-
priately modeled by Gaussian distributions, clean speech
components in the decorrelated domains are more accurately
described by super-Gaussian distributions such as Laplacian
(double-sided Exponential) [18], [21], [22]. Thus, employing
a super-Gaussian speech prior instead of the Gaussian can
improve the performance of MMSE STSA estimators [18],
[22], [23], [24]. In particular, Hendriks et al. [6] derived an
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TABLE 1. Common assumptions or approximations used for deriving DFT-based MMSE STSA estimators as compared to the proposed DCT-based
approach.

FIGURE 1. Mean preference scores (with standard error bars) for four stimuli types at (a) −5 dB, (b) 0 dB, and (c) 5 dB Segmental SNR (SegSNR) [19]. The
polarity-only (PO) [or phase-only (PhO)] stimuli was generated by adding a controlled level of distortion into the DCT polarity spectrum (or the DFT phase
spectrum) while keeping its spectral amplitudes fixed from the clean input. Thus the effects on the perceived speech quality result from the changes in
the polarity spectrum or phase spectrum only. The distortion was added with respect to the SegSNR. We also include clean speech and noisy
(unprocessed) speech as the upper bound and lower bound of the preference, respectively.

MMSE LSA estimator under the assumption that the clean
speech DFT amplitudes follow a one-sided chi distribution.
To exploit the phase information, [25] recently combined the
phase compensation technique with a perceptually weighted
β-order STSA estimator. For this method, the noisy speech
signal is first framed and transformed into the DFT domain.
The phase compensation function is then used to estimate
the clean phase spectrum and the perceptually weighted
β-order STSA estimator is used to enhance the magnitude
spectrum. The modified speech is obtained by combining
the estimated magnitude and phase spectra (refer to [25],
Fig. 1 and Sec. IV). Although [25] improves speech quality
in terms of objective quality metrics, it is unclear whether the
improvement stems from a more reliable a prior SNR esti-
mate or from the estimator itself because [25] used a different
a prior SNR estimator for their approach when comparing to
other methods. To date, perceptually-motivated STSA esti-
mators have been concentrated in the DFT domain, to the
authors’ best knowledge, none has been developed in the
DCT domain.

This paper aims to combine the advantages of using a
real transform like DCT with perceptually-motivated distor-
tion measure in enhancing noisy speech. To achieve this,
the DCT-based MMSE LSA estimators are derived based
on super-Gaussian speech prior and Gaussian noise prior.
The proposed estimators can be expressed in closed form
without making any approximations. Furthermore, we derive
a novel polarity estimator (PoE) to be used in combina-
tion with the STSA estimator. Accordingly, the effect of
using PoE on perceived speech quality is examined. The
performance of our new estimators is compared to the
DCT STSA estimator derived in [19], some of the well
known DFT-based LSA estimators, e.g., [4] and [6], as well
as the State-Of-The-Art (SOTA) DFT-based phase-aware
system, e.g., [25].

This article is organized as follows. In Sections II and
III we derive the DCT-based MMSE log-STSA estimators
and polarity estimator, respectively. Section IV presents the
objective and subjective experimental results, while a conclu-
sion follows in Section V.
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II. DERIVATION OF DCT MMSE LOG-SPECTRAL
AMPLITUDE ESTIMATORS
A. SIGNAL MODEL AND NOTATION
Let the observed noisy speech of the ith frame be

yi(n) = xi(n) + di(n), 0 ⩽ n ⩽ N − 1 (1)

where xi(n), yi(n), di(n), and N are the clean speech,
noisy speech, additive noise, and the length of the obser-
vation interval in discrete-time, respectively. Let Y (i, k) ≜
φY (i, k)|Y (i, k)|, X (i, k), D(i, k) denote the k th DCT spectral
coefficients of the noisy speech, the clean speech, and the
noise, respectively. We assume that X (i, k) and D(i, k) are
statistically independent with zero means. For better read-
ability, the frame index i and the frequency index k are
subsequently omitted, and a single-DCT coefficient at a given
time-frequency instant is considered.We denote the modulus,
|Y |, and signs of the DCT spectral coefficients, φY = sgn(Y ),
as the Absolute Spectrum (AS) and Polarity Spectrum (PoS)
of theDCT spectral coefficientsY , respectively (and similarly
with X and D). Equation (1) can be represented in the DCT
domain as:

φY |Y | = φX |X | + φD|D| (2)

Our task is to obtain the estimator |X̂ |, which minimizes the
following distortion measure [4]:

E
[(
log|X | − log|X̂ |

)2] (3)

where E [·] denotes the expectation operator. We use capital
letters and their corresponding lowercase letters to denote the
random variable and its realization, respectively, and a hat
symbol to denote its estimate, i.e.,|X̂ |. From [4, eq. 3], the
MMSE LSA estimator equals:

|X̂ | = argmin
|X̂ |

E
[(
log|X | − log|X̂ |

)2]
= exp {E [ln |X | | Y ]} (4)

and it is independent of the basis chosen for the log in (3).
The evaluation of E [ln |X ||Y ] can be obtained if we use the
moment-generating function of ln |X | give Y as demonstrated
in [4]

E [ln |X ||Y ] =
d
dt
E
{
et(ln |X |)

| Y
}∣∣∣
t=0

=
d
dt
E
[
|X |

t
| Y
]∣∣∣
t=0

. (5)

Therefore, our task now is to compute E
[
|X |

t
| Y
]
and then

attain E
[
ln |X ||Y

]
by using (5). With the assumption that the

DCT spectral coefficients are statistically independent, the
conditional expectation E

[
|X |

t
| Y
]
is given by:

E
[
|X |

t
| Y
]

=

∫
∞

−∞

|x|tp(x|Y ) dx

=

∫
∞

−∞
|x|tp(Y |x)p(x) dx∫

∞

−∞
p(Y |x)p(x) dx

(6)

As discussed earlier, we assume a Gaussian distribution for
the noise coefficients:

p(D) =
1

√
2πσD

exp

(
−
D2

2σ 2
D

)
(7)

where p(·) denotes the probability density function (PDF) and
σ 2
D denotes the variance of the noise spectral coefficients.

As given by (2), the noisy coefficient Y is the sum of two
independent random variables, which implies that the condi-
tional PDF of Y given X is

p(Y |X ) =
1

√
2πσD

exp

[
−(Y − X )2

2σ 2
D

]
(8)

We employed either Gaussian or Laplacian speech prior to
attaining the LSA estimator:
1. Motivated by the central limit theorem, the complex

Gaussian PDF was used in the fundamental paper by
Ephraim and Malah [4], and the real version is defined
as in [26] and [19]

p(X ) =
1

√
2πσX

exp

(
−
X2

2σ 2
X

)
(9)

2. The suitability of the Laplacian PDF has been validated
by fitting the PDFs to the empirical data. As demon-
strated in [21] and [18], the Laplacian PDF provides a
better fit to the empirical data than the Gaussian PDF,
and it is defined as in [26] and [19]

p(X ) =
1

√
2σX

exp

(
−

√
2 |X |

σX

)
(10)

where σX and σ 2
X are the standard deviation and variance of

the clean DCT coefficients, respectively.
Note that in statistical approaches to speech enhancement,

the optimal solution can be described as a gain function
multiplied by the noisy DCT STSA:

|X̂ | ≜ G(·, ·)|Y | (11)

Since the noisy PoS is the best estimate of the original PoS
under the constrained MMSE criterion as proposed in [13],
we can combine the enhanced AS, |X̂ |, with the noisy PoS,
φY , to get the final estimate of the spectral component [Fig. 6
(a)]

X̂ ∼= φY |X̂ | (12)

Alternatively, we can use the proposed PoE, φ̂X , to replace
the noisy PoS for reconstruction [Fig. 6 (b)]

X̂ ∼= φ̂X |X̂ | (13)

B. THE MMSE LSA ESTIMATOR FOR GAUSSIAN SPEECH
PRIOR
For the Gaussian speech prior, the derivation of the MMSE
LSA estimator of the DCT clean speech spectral amplitudes
is comparable with [4]. Upon substituting (8), (9), into (6),
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and using relations [27, eq. 3.462.1, 9.240, 9.212.1, 8.335.1],
we obtain:

E
[
|X |

t
| Y
]

=
1

√
π
(2λ)

t
2 0

(
t
2

+
1
2

)
8

(
−
t
2
,
1
2
; −

v
2

)
(14)

where 0 (z) denotes the gamma function [27, Th.8.310.1]
and 8(·) denotes the confluent hypergeometric function of
the first kind [i.e., 1F1(α; β; z)], which is defined as in [27,
eq. 9.210.1]

8(α, β; z) = 1F1(α; β; z) =

∞∑
n=0

(α)n
(β)n

·
zn

n!
(15)

where (α)n is the Pochhammer symbol [28, eq. 6.1.22]

(α)n ≜
0(α + n)

0(α)
= α(α + 1) · · · (α + n− 1), (16)

and (α)0 ≜ 1. λ satisfies the following relation

1
λ

=
1

σ 2
X

+
1

σ 2
D

. (17)

Using the product rule of differentiation, the derivative of (14)
with respect to t [which is needed for (5)] leads to

d
dt
E
[
|X |

t
| Y
]∣∣∣
t=0

=

[
d(2λ)

t
2

dt

∣∣∣
t=0

]
+

 1
√

π

d0
(
t
2 +

1
2

)
dt

∣∣∣
t=0


+

d8
(
−

t
2 ,

1
2 ; −

v
2

)
dt

∣∣∣
t=0

 (18)

The derivative of (2λ)
t
2 at t = 0 is given by

d
dt
(2λ)

t
2

∣∣∣
t=0

=
1
2
ln(2λ) (19)

The derivative of 0
(
t
2 +

1
2

)
can be obtained by utilizing the

Psi (Digamma) function, which is defined by [28, eq. 6.3.1]

9(z) =
d
dz

[ln0(z)] =
0′(z)
0(z)

(20)

Rearrange (20) and use the expression given in [28, eq. 6.3.3]
we attain

d
dt

0

(
t
2

+
1
2

)∣∣∣
t=0

=
1
2
(−C − 2 ln 2)

√
π (21)

where C is the Euler’s constant. Finally, to find the derivative
of 8

(
−

t
2 ,

1
2 , −

v
2

)
at t = 0, we use [29, eq.38a] and find

d8
(
−

t
2 ,

1
2 ; −

v
2

)
dt

∣∣∣
t=0

=

( v
2

)
2F2

[
1, 1;

3
2
, 2;

(
−
v
2

)]
(22)

where 2F2
[
1, 1; 3

2 , 2;
(
−
v
2

)]
is the generalized hypergeo-

metric function which is defined by means of a hypergeo-
metric series [27, eq. 9.14.1]

pFq(α1, α2, . . . , αp; β1, β2, . . . , βq; z)

=

∞∑
n=0

(α1)n(α2)n · · · (αp)n
(β1)n(β2)n · · · (βq)n

·
zn

n!
(23)

Nevertheless, the computation of the hypergeometric func-
tion for a wide dynamic range is not trivial, and numer-
ical problems may result when the arguments are large.
To improve numerical stability, we use the expressions [27,
eq. 7.512.12, 9.212.1, 9.212.2, 9.215.1] and rewrite (22) in
terms of the definite integral of combinations of exponential
and algebraic functions

d8
(
−

t
2 ,

1
2 ; −

v
2

)
dt

∣∣∣
t=0

=
v
4

∫ 1

0
(1 − x)−

1
2

[
e(−

v
2 )x − 1(
−
v
2

)
x

]
dx

(24)

Now, by using (19), (21), and (24) we obtain from (18)

d
dt
E
[
|X |

t
| Y
]∣∣∣
t=0

=
1
2

(ln λ − ln 2 − C)

+
v
4

∫ 1

0
(1 − x)−

1
2

[
e(−

v
2 )x − 1(
−
v
2

)
x

]
dx

(25)

On substituting (25) into (5) and using (4), (17), we get the
desired amplitude estimator

|X̂ | =

√(
ξ

1 + ξ

)
1

2 exp(C) γ
exp

[ v
4
I(−

v
2
)
]

|Y |

≜ GN−LSA(ξ, γ ) |Y | (26)

where C = 0.57721566490 . . . is the Euler’s constant [27,
eq. 8.367.1], I(·) designates the definite integral

I(z) ≜
∫ 1

0
(1 − x)−

1
2

(
ez·x − 1
z · x

)
dx (27)

and v is defined by

v ≜
ξ

1 + ξ
γ ; ξ ≜

σ 2
X

σ 2
D

; γ ≜
|Y |

2

σ 2
D

(28)

The terms ξ and γ are referred to as the a priori and a
posteriori signal-to-noise ratio (SNR), respectively [3]. Note
that the maximum-likelihood (ML) estimate of the a priori
SNR, i.e., ξ̂ml = γ − 1 can be interpreted as an instantaneous
SNR estimator of the spectral component while ξ acts as a
long term estimator of the SNR.

C. THE MMSE LSA ESTIMATOR FOR LAPLACIAN SPEECH
PRIOR
In [6], Hendriks et al. proposed a DFT-based LSA estima-
tor which assumes chi-distributed speech amplitudes. How-
ever, a closed-form solution is not obtainable and numerical
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approximation is instead required due to the induced mathe-
matical complexity. In contrast, we show that the DCT-based
LSA estimator for Laplacian speech prior can be expressed in
the closed-from. The derivation is analogous to the Gaussian
case given in section II-B and the derivation given in [4].

To facilitate the development, we designate the following
shorthand notations:

A =
σD

σX
+

|y|
√
2 σD

=
1

√
ξ

+

√
γ

2
(29a)

B =
σD

σX
−

|y|
√
2 σD

=
1

√
ξ

−

√
γ

2
(29b)

M =
1

√
π

[
erfc (A) + e−2

√
2γ
ξ erfc (B)

]−1

(29c)

Substituting (8) and (10) into (6) and using [27,
eq. 3.322.2, 3.462.1, 9.240], we find

E
[
|X |

t
| Y
]

= M
{
[P1(A) − P2(A)]

+ e−2
√

2γ
ξ [P1(B) − P2(B)]

}
(30)

d
dt
E
[
|X |

t
| Y
]∣∣∣
t=0

= M
{[

dP1(A)
dt

−
dP2(A)

dt

]
+ e−2

√
2γ
ξ

[
dP1(B)

dt
−

dP2(B)
dt

]}
(31)

where

P1(z) = σ tD 2
t
2 0(

t
2

+
1
2
)8

(
−
t
2
,
1
2
; −z2

)
(32)

P2(z) = 2z σ tD 2
t
2 0(

t
2

+ 1)8
(
1 − t
2

,
3
2
; −z2

)
(33)

It is easily shown that the derivative of P1(z) over t yields,
with the help of (21) and (24)

dP1(z)
dt

∣∣∣
t=0

=
√

π

[
ln σD −

C
2

−
ln 2
2

+
z2

2
I(−z2)

]
(34)

where I(·) is defined by (27) and C is the Euler’s constant
[27, eq. 8.367.1]. Similarly, we differentiate each part for
dP2(z)/ dt [see (35)], as shown at the bottom of the next page.
It is known [27, eq. 9.236.1, 9.212.1] that

8

(
1
2
,
3
2
; −z2

)
=

√
π erf (z)
2z

(36)

8 (α, β; z) = ez8 (β − α, β; −z) (37)

By using (37) and [29, eq. 19, 20a], we obtain the derivative
of 8

(
1−t
2 , 3

2 ; −z2
)
at t = 0

d8
(
1−t
2 , 3

2 ; −z2
)

dt

∣∣∣
t=0

= e−z
2

d8
(
t
2 + 1, 3

2 ; z
2
)

dt

∣∣∣
t=0


= e−z

2
×1

2
z2(
3
2

) ∞∑
r=0

(1)r(
5
2

)
r

(z2)r

r ! 2F2

[
1, 1; 2,

(
5
2

+ r
)

; z2
]

(38)

A numerically useful integral representation for (38) can
be obtained by employing the integral representation for

2F2
[
1, 1; 2,

(
5
2 + r

)
; z2
]
(see [27, eq. 7.512.12]):

2F2

[
1, 1; 2,

(
5
2

+ r
)

; z2
]

=
3
2

(
5
2

)
r(

3
2

)
r

∫ 1

0
(1 − x)r+

1
2 8(1, 2; z2x) dx (39)

with this representation the series of (38) becomes:

d8
(
1−t
2 , 3

2 ; −z2
)

dt

∣∣∣
t=0

= e−z
2
×

{
z2

2

∫ 1

0
(1 − x)

1
2 8

[
1,

3
2
; z2(1 − x)

]
×8(1, 2; z2x) dx

}
(40)

Using the relations (36), (37), and the one corresponding to
8(1, 2, z2x) [27, eq. 9.212.1, 9.212.2, 9.215.1]

8(1, 2, z2x) =
e(z

2x)
− 1

z2x
(41)

we get, after some algebra,

d8
(
1−t
2 , 3

2 ; −z2
)

dt

∣∣∣
t=0

=
z
4

√
π

∫ 1

0
erf (z

√
1 − x)

[
e−z

2x−1

−z2x

]
dx (42)

Combining (21), (36), (42), and (35), we arrive at

dP2(z)
dt

∣∣∣
t=0

=
√

π

{
erfc (z)

(
ln σD +

ln 2
2

−
C
2

)
+
z2

2

∫ 1

0
erf
(
z
√
1 − x

)[e−z2x − 1
−z2x

]
dx
}
(43)
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Now, by using (34) and (43), we obtain (44), as shown at the
bottom of the page, from (31), where G(·) is defined by:

G(z) ≜ z2
{
I(−z2) −

∫ 1

0
erf
(
z
√
1 − x

)[e−z2x − 1
−z2x

]
dx
}

− ln(4) (45)

where I(·) is defined by (27) and erf(·) denotes the error
function [27, eq. 8.250.1]. On substituting (44) into (5) and
using (4), we get the desired amplitude estimator

|X̂ | =

√
2

exp(C) γ
exp

[(
1
2

)

×

G
(

1
√

ξ
+

√
γ
2

)
+ e−2

√
2γ
ξ G

(
1

√
ξ

−

√
γ
2

)
erfc

(
1

√
ξ

+

√
γ
2

)
+ e−2

√
2γ
ξ erfc

(
1

√
ξ

−

√
γ
2

)] |Y |

≜ GL−LSA(ξ, γ ) |Y | (46)

where erfc(·) denotes the complementary error function [27,
eq. 8.250.4].

D. GAIN CHARACTERISTICS OF THE PROPOSED MMSE
LSA ESTIMATORS
It can be seen that the similarities in behavior between
the respective gain curves of GN−LSA (26), and those of
the Ephraim and Malah solution [4], denoted as GEM−LSA
(Fig. 2). However, GN−LSA always maintains a higher atten-
uation than the one which results from GEM−LSA (Fig. 3).
On the other hand, the equivalent of GL−LSA (46) in the
DFT domain, denoted as GSG−LSA [6], has no closed-form
solutions, and numerical approximation has resorted. It also
appears thatGSG−LSA providesmarkedly less attenuation than
the other estimators when the instantaneous SNR (ISNR) is
high and ξ is low (Fig. 2). In such acoustic conditions, the
amplitude of the noise component is likely to be higher than
the one of the speech component, and therefore, applying
GSG−LSA to the noisy observation may yield a higher level
of residual noise in the resultant speech. Notably, while
GSG−LSA offers the least attenuation, GL−LSA provides the

highest attenuation when the acoustic conditions are unde-
sirable (e.g., ξ = −15 or ξ = −5 dB) and ISNR is low
(Fig. 3). It impliesGL−LSA may offer better performance than
GSG−LSA in terms of noise suppression, especially for unde-
sirable acoustic conditions. Moreover, when ISNR is large,
estimators with super-Gaussian speech prior, i.e., GL−LSA
and GSG−LSA, provide less attenuation than those ones with
Gaussian speech prior, i.e.,GN−LSA orGEM−LSA (Fig. 3). This
is because super-Gaussian distributions are leptokurtic (e.g.,
heavy-tailed) distributions, in which high observed noisy
amplitudes (i.e., high ISNRs) are considered more likely to
contain clean speech components than in the Gaussian model
[15]. Thus, these estimators with super-Gaussian prior jus-
tifiably gain more success in recovering the speech spectral
peaks and thereby reduce the amount of the perceived speech
distortion.

Fig. 4 shows the gain curves of the new estimators along
with the corresponding gain curves which result from the
MMSE STSA estimators derived in [19]. The behavior of
these gain curves is similar to the new gain curves. However,
the new gain function [which results from (26) or (46)] always
gives a lower gain than the corresponding one which results
from the estimator of [19]. These lower gain values imply the
new estimators may reduce the residual noise level further
than those estimators in [19], particularly in regions of low
ISNR values.

III. DERIVATION OF POLARITY ESTIMATOR (PoE)
Our goal is to derive an explicit relationship between the
noisy polarity 8Y and the clean polarity 8X giving the input
parameters, i.e., the instantaneous (spectral) SNR ξI [30] and
the instantaneous a posteriori SNR γI [31]:

ξI ≜
|X |

2

|D|2
(47)

cγI ≜
|Y |

2

|D|2
(48)

To achieve this, we obtain from (2)

8Y

8X

|Y |

|D|
=

|X |

|D|
+

8D

8X
(49)

dP2(z)
dt

∣∣∣
t=0

= 2z
{[

d σ tD

dt

∣∣∣
t=0

× 8

(
1
2
,
3
2
; −z2

)]
+

[
d 2

t
2

dt

∣∣∣
t=0

× 8

(
1
2
,
3
2
; −z2

)]

+

d0
(
t
2 +

1
2

)
dt

∣∣∣
t=0

× 8

(
1
2
,
3
2
; −z2

)+

d8
(
1−t
2 , 3

2 ; −z2
)

dt

∣∣∣
t=0

} (35)

d
dt
E
[
|X |

t
| Y
]∣∣∣
t=0

=

(
ln σD +

ln 2
2

−
C
2

)
+
M
2

{
G (A) + e−2

√
2γ
ξ G (B)

}
=

(
ln |Y | +

1
2
ln

2
γ

−
C
2

)
+
M
2

{
G (A) + e−2

√
2γ
ξ G (B)

}
(44)
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FIGURE 2. Gain curves plotted against the a priori SNR ξ and the
instantaneous SNR γ − 1 for the MMSE LSA estimators. (a) GN−LSA
defined by (26), (b) GL−LSA defined by (46), (c) the respective Ephraim
and Malah solution, GEM−LSA, as seen in [4, (30)], and (d) GSG−LSA with
v = 0.3 and L = 15000, as seen in [6].

FIGURE 3. Gain curves comparison for the proposed MMSE LSA
estimators for (a) ξ = −15 dB, (b) ξ = −5 dB, (c) ξ = 5 dB, and
(d) ξ = 15 dB. The solid and solid-dotted lines correspond to GN−DCT and
GL−DCT defined by (26) and (46), respectively. The corresponding curves
for the Ephraim and Malah solution [4] GN−DFT (complex Gaussian prior),
and the Hendriks et al. solution [6] GSG−DFT (with super-Gaussian prior,
v = 0.3 and L = 15000), are indicated with dashed and dash-dotted lines
respectively for reference.

We next consider four different cases:
• Case 1: 8X = 8Y , and 8X = 8D

In this case, (49) becomes |Y |

|D|
=

|X |

|D|
+1, hence, |Y |

|D|
⩾ 1.

• Case 2: 8X = 8Y , and 8X = −8D

In this case, (49) becomes |Y |

|D|
=

|X |

|D|
− 1. Since |Y |

|D|
⩾ 0,

implying that |X |

|D|
⩾ 1

• Case 3: 8X = −8Y , and 8X = 8D

In this case, (49) becomes−
|Y |

|D|
=

|X |

|D|
+1. Since−

|Y |

|D|
⩽

0 contradicts |X |

|D|
+ 1 ⩾ 1, and hence no solution exits.

FIGURE 4. Gain curves comparison. (a) Gaussian speech prior: solid line,
GN−DCT (26); dashed line, the corresponding gain curves which result
from the MMSE STSA estimator ( [19], formula (15)). (b) Laplacian speech
prior: solid-dotted line, GL−DCT (46); dash-dotted line, the corresponding
curves which result from MMSE STSA estimator ( [19], formula (22)).

• Case 4: 8X = −8Y , and 8X = −8D

In this case, (49) becomes−
|Y |

|D|
=

|X |

|D|
−1, which implies

|X |

|D|
< 1

ConsolidatingCase 1 toCase 4, we obtain that |Y |

|D|
=

√
γI ⩾

1 and |X |

|D|
=

√
ξI ⩾ 1 are sufficient conditions for 8X = 8Y ;

However, for 8X = −8Y , if and only if
√

ξI < 1 holds
(Algorithm 1).

Algorithm 1 Polarity Estimation

1 if
√

γI ⩾ 1 then
2 8X = 8Y ;
3 else
4 if

√
ξI ⩾ 1 then

5 8X = 8Y ;
6 else
7 8X = −8Y ;

Due to the deterministic nature of the algorithm, when
oracle information is given, meaning |X | and |D| in (47)
are known as a prior, perfect recovery of the clean polarity
is guaranteed (Fig. 5, dashed-line). In practice, estimates of
|X | and |D| are used, and hence the accuracy of the algo-
rithm might be strongly affected by the reliability of these
estimates. In fact, the dominant influence on the accuracy
appears to be the reliability of the noise estimate. Experiment
results show that when speech STSA estimate [obtained by
using (46)] and oracle noise estimate (51) were used, the
accuracy dropped slightly from 100% to around 95%. How-
ever, when both parameters were blind-estimated, accuracy
declines significantly (Fig. 5, dotted line). In the experiment,
we find γ̂I using γ̂I ≈ |Y |

2/σ̂ 2
D, where σ̂ 2

D is the noise
variance estimate and can be attained using the estimator
given in [19]. We then find ξ̂I using ξ̂I ≈ |X̂ |

2/σ̂ 2
D, which

requires estimates of speech STSA |X̂ | and σ̂ 2
D as parameters.

The proposed algorithm can be efficiently implemented using
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FIGURE 5. The effect of parameter estimation on the accuracy of the
polarity estimator. Dashed line: oracle information was given, meaning
|X | and |D| in (47) were known as prior, yielding an accuracy of %100.
Solid line: clean STSA estimate |X̂ | from (46) and oracle noise estimate
from (51) were used. Dotted line: both |X | and |D| were blind-estimated,
where noise estimate was obtained from the estimator given in [19].
Results were averaged over seven noise types (white noise, pink noise,
speech noise, voice babble noise, F-16 noise, car factory noise, and car
Volvo-340 noise).

matrix operations. AMatlab pseudocode for computing φ̂X is
given in Appendix A.
Given that the performance of the polarity estimator might

be strongly affected by the noise estimation, in the next
section we examine the effect of polarity estimation on the
perceived quality of an enhanced speech signal.

IV. IMPLEMENTATION AND PERFORMANCE
EVALUATION
In this section, we evaluate the performance of proposed
estimators on enhancing noisy speech. In order to draw a
complete and accurate conclusion, it requires to test under
all of the noise conditions, existing methods, and simulation
conditions. As we intend these results to be illustrative rather
than exhaustive, we limit our simulation conditions to spe-
cific noise types (stationary and non-stationary), and typical
speech enhancement framework setups.

A. SPEECH CORPUS
For the evaluation of our approach, we used 40 gender-
balanced utterances from the TSP speech database [32]. TSP
corpus contains over 1400 utterances, belonging to 24 speak-
ers (12 male and 12 female). These recordings were filtered
with a linear phase, low-pass FIR filter, and down-sampled
to 16 kHz. Corresponding noisy stimuli were generated by
degrading the clean stimuli with 7 kinds of additive noise.
Theywere white noise, pink noise, speech noise, voice babble
noise, F-16 noise, car factory noise, and car Volvo-340 noise
from the RSG-10 database [33], the last five being real-world
non-stationary noise types. After combination with the clean
speech utterances from above, 40 × 7 = 280 noisy speech

utterances were obtained. Each evaluation was repeated for 0,
5, 10, and 15 dB SNR conditions, respectively.

B. EXPERIMENT SETUP
For the sake of a fair performance evaluation, all the
comparative STSA estimators use the same or equivalent
basic setup, meaning that the analysis-modification-synthesis
(AMS) setup, the a prior SNR estimation, and the noise
PSD estimation (see Section IV-D) are equal for all methods.
The experiment parameters are not optimized for any of the
presented methods. They are based on heuristic knowledge
and are widely accepted in literature.

The noisy corpus is processed through theAMS framework
to obtain the estimate x̂(n) of the underlying clean speech
signal x(n) (Fig. 6). At the analysis stage, the original signal
is segmented into 32ms frames (512 samples length), each
with an overlap of 75%.2 The 512-point DCT is then applied
to decompose the framed noisy speech into its spectral com-
ponents. At the modification stage, a gain function as given
in (26) or (46) is applied to each component independently.
To study the effects of polarity modification on the enhanced
speech, either the noisy polarity [Fig. 6 (a)] or the estimate of
the clean polarity [Fig. 6 (b)] is used for reconstruction. The
enhanced spectral components are then synthesized bymeans
of inverse transform and overlap adding [34]. The Hamming
window [35] is employed for both analysis and synthesis.
Similar procedures were carried out when implementing the
DFT-based methods with DCT and DFT the only difference
and all other factors being equivalent.

The gain value can be obtained by exact calculation
or by using look-up tables indexed by ξ and γ values.
However, these values are in general not known a priori,
they have to be estimated from the noisy observations as
well. We employ an MMSE-based noise power estimator,
described first in [37] for DFT and the modified version
in [19] for DCT, to determine the variance of the noise
samples. A ‘‘decision-directed’’ (DD) approach [3] is used to
estimate the a priori SNR of the speech samples on a frame-
to-frame basis:

ξ̂ (i) = max
{
αn

|X̂ (i− 1)|2

σ̂ 2
D(i− 1)

+ (1 − αn) max [γ (i) − 1 , 0 ] , ξmin

}
(50)

where |X̂ (i−1)| and σ̂ 2
D(i−1) are the estimates of the spectral

amplitude and the noise variance in the past frame, respec-
tively. The max{·} operator denotes the maximum function
to ensure the positiveness of the estimator, while αn = 0.98
(as determined by simulations and informal listening tests
in [3]) is the smoothing factor and ξmin = −25 dB is the SNR
floor value for eliminating low-level musical noise [38]. In all

2In speech processing, a window duration between 20-40 ms is typically
used, so that the properties of the signal do not change appreciably, and the
windows must overlap by 75% to avoid aliasing [36].
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FIGURE 6. Block diagrams of the analysis-modification-synthesis (AMS) procedure used in the experiments. (a) The conventional single-channel speech
enhancement procedure, where the modified DCT Absolute Spectrum (AS) and the noisy Polarity Spectrum (PoS) are used for reconstruction.
(b) Alternatively, both the AS and PoS are modified and used for reconstruction. The DCT representation of the noisy signal is given by φY |Y |. The
estimates of clean AS and PoS are denoted by |X̂ | and φ̂X , respectively.

experiments, the gain value was limited to 0.1, for perceptual
reasons [18].

The Matlab software, version R2019b, was used for the
experiments. The audio examples, along with the completed
scripts for implementing the new estimators, as well as further
experimentation and comparison with other methods, are
available online at [39].

C. OBJECTIVE QUALITY AND INTELLIGIBILITY MEASURES
The performance was quantified in terms of (i) the average
Segmental SNR (SegSNR) [40], which is a local SNR com-
puted over short segments; (ii) wideband perceptual evalu-
ation of speech quality (PESQ) [41], which is an objective
score for assessing speech quality in wideband telecommu-
nication networks; (iii) the short-time objective intelligibility
(STOI) improvements [42], which has been shown to highly
correlate with the intelligibility scores obtained through lis-
tening tests, and (iv) the phase deviation (PD) [43], which is
a distortion metric between the noisy phase and clean phase.
For SegSNR, PESQ, and STOI, we report the improvement
(or gain) over the noisy input instead of the absolute values.

It should be noted that SegSNR and PESQ are conventional
instrumental measures where the focus is on the spectral
amplitude distortion, and hence no phase distortion is taken

into account. In particular, it was reported that PESQ might
overestimate the quality for methods using phase modifica-
tion, where spurious harmonics are introduced leading to a
buzzy quality [44]. In contrast, PD penalizes these harmo-
nization artifacts by predicting a worse quality (note that the
lower the PD score the better the estimated quality).

D. ORACLE AND BLIND NOISE PSD ESTIMATES
To examine the influence of noise estimation accuracy on
the performance of the proposed estimators, we first run a
set of experiments using an oracle noise estimator, which is
computed as:

σ̂ 2
D = |D|

2 (51)

where |D|
2 is the periodogram of the noise signal. The above

noise estimator was used to isolate the effect of a noise
estimation algorithm. We run the second set of experiments
using the noise estimator proposed in [19] and [37] for
the DCT-based algorithms and the DFT-based algorithms,
respectively.

E. SUBJECTIVE TESTING PROCEDURE
Subjective evaluation was carried out through a series of blind
AB listening tests to obtain an accurate estimate of the per-
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ceived speech quality. The AB listening test has been widely
used for speech enhancement applications, e.g., [45], [46],
and [47], and its procedure has been described in Appendix B.
Two utterances from the test set are used as the clean speech
stimuli: sentence 3 from list 33, as uttered by male speaker
MF, and sentence 4 from list 53, as uttered by female speaker
FI. To produce the noisy speech stimuli, speech, and F-16
noise were mixed with the clean speech stimuli from speaker
MF and FI, respectively, at an SNR level of 5 dB. The
enhanced speech stimuli for each of the speech enhancement
methods were produced from the noisy speech stimuli. For
each utterance, all possible stimuli pair combinations were
presented to the listener. A total of five English-speaking
listeners (with normal hearing capability) participated. The
average of the scores given by the listeners, termed as mean
subjective preference (%) score, was used as an indicator for
the perceived speech quality.

All procedures of listening tests were performed under
the approval of Griffith University Human Research Ethics:
database protocol number 2018/671.

F. SPECIFICATIONS OF COMPETITIVE METHODS
For benchmarking, we included the following algorithms in
our evaluation (Table 2). To examine the effectiveness of the
polarity estimator (PoE), we either combine the enhanced
absolute spectrum with the noisy polarity spectrum (cases
N-LSA and L-LSA) or combine the blind-estimated polarity
spectrum (cases N-PoE and L-PoE) for speech reconstruc-
tion (Fig. 6). We also use the oracle polarity spectrum esti-
mate (cases N-PoE-O and L-PoE-O) to set the upper bound
on the maximum improvements achievable for the polarity
estimation. Specifically, methods (1)-(3) are DFT-based algo-
rithms while the rest are DCT-based; methods (1)-(2), (4)-(6)
modify the STSA only and left the noisy polarity (or phase)
intact; while the rest modify both of the STSA and spectral
polarity (or phase).

By using super-Gaussian prior, the complexity of SG-
LSA and L-LSA are much higher than those ones based on
Gaussian prior and thereby require higher computation costs.
To circumvent this issue, the gain values of SG-LSA and
L-LSAwere computedwith high precision [48] and tabulated
in look-up tables. During run-time, these tables use a pair of
ξ and γ values as the index to retrieve the corresponding gain
values.

G. RESULTS
The objective results were first averaged across all the utter-
ances for a compact and general comparison (Fig. 7). For
illustrative purposes, we also present the results for F-16,
speech, and white noises separately (Fig. 10) under the
fully blind experiment setup. Multiple comparison statis-
tical tests were conducted according to Tukey’s honestly
significant difference (HSD) test [50] to assess significant
differences between algorithms. Differences between scores
were deemed significant if the obtained p value (level of
significance) was smaller than 0.05.

TABLE 2. Specifications of the competitive methods.

1) OBJECTIVE RESULTS WITH THE ORACLE NOISE
ESTIMATOR
With the oracle noise estimator (Fig. 7, left column), it shows
L-PoE-O yields the highest PESQ, STOI, and SegSNR gains,
as well as the lowest phase distortion (PD). When compared
to the upper-bound performance achieved by L-PoE-O, there
is only a marginal decrease in perceived quality for L-PoE,
which yields the second highest score for all metrics. The
difference in performances between L-PoE-O and L-PoE
was not found to be statistically significant. This is due to
the dominant influence of noise estimate on the accuracy of
the PoE. With the oracle noise estimator, the accuracy has
only slightly dropped to around 95% (Fig. 5, solid line), and
therebymost of the clean polarity information has been recov-
ered. Similar observations can be made between N-PoE-O
and N-PoE with the Gaussian speech prior.

It also shows that the new estimators in conjunction with
the PoE, e.g., L-PoE and N-PoE, scored significantly higher
than those in conjunction with the noisy PoS, e.g., L-LSA
and N-LSA, across most conditions. This is the result of
the PoE being able to retrieve clean polarity information,
which contributes to the improvement of speech quality. This
effect is particularly noticeable for low SNR conditions. For
instance, as the SNR decreases from 5 to 0 dB, the differ-
ences between the L-PoE and L-LSA in terms of PD, STOI,
and SegSNR score have increased from 0.10 to 0.16, 1.61%
to 3.25% and 1.14 dB to 1.41 dB, respectively. A similar
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FIGURE 7. Performance comparison among various estimators (Sec. IV-F) tested using the oracle noise estimator (left column) and blind
noise estimation given the noisy speech (right column). Results are shown in terms of PESQ, STOI, Segmental SNR improvements, and
Phase deviation (PD) score. Results are averaged over seven noise types (white noise, pink noise, speech noise, voice babble noise, F-16
noise, car factory noise, and car Volvo-340 noise). The decision-directed approach [3] was used for the a priori SNR estimation.

trend can be seen between N-PoE and N-LSA. Further-
more, L-PoE (or N-PoE) on average achieved a 0.4 higher
PESQ score than L-LSA (or N-LSA), for all tested SNR
conditions.

Regarding the speech priors, we note that estimators with
Laplacian prior, e.g., L-PoE and L-LSA, generally per-
formed better than those with Gaussian prior, e.g.,N-PoE and
N-LSA. Notably, the former group performed significantly
better in terms of SegSNR (i.e., residual noise level) and STOI
(0 dB and 5 dB) than the latter. This is probably a result of
lower gain, particularly in regions of low ISNR values, which
results in lower residual noise level; and higher gain at high
ISNR values, which reduces the amount of speech distortion

(Fig. 3, solid-dotted line). However, in terms of PESQ, STOI
(10 dB and 15 dB), and PD scores, there was no statistically
significant difference between the two groups.

It is interesting to see that L-STSA obtained slightly
higher objective scores thanL-LSA. This is probably because
L-STSA offers less attenuation at low ISNRs [Fig. 4 (b),
dashed-dotted line], which preserves a fewmore speech spec-
tral components, at the expense of a larger number of spurious
spectral peaks. Nevertheless, these spurious peaks contribute
more to the musical character of the residual noise rather than
to the perceived speech quality, as indicated by the listening
tests (see Sec. IV-G4). On the other hand, L-LSA suppresses
some of the weaker spectral components, but at the same
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FIGURE 8. Results obtained from comparative statistical analysis of (a) PESQ, (b) STOI, (c) SegSNR gains, and (d) Phase deviation for the full blind
scenario (Table 3). Multiple-paired comparisons (Tukey’s HSD) were conducted to assess significant differences between algorithms. Differences between
scores were deemed significant if the obtained p value (level of significance) was smaller than 0.05. The means and the comparison intervals are
represented by the circles and the bars, respectively. The algorithm with the highest score averaged across all noise conditions is highlighted in blue. The
red bar indicates the statistically significant difference between the algorithm with the highest score and the denoted algorithm. Algorithms that do not
have significantly different scores appear in grey.

time, the fewer spurious spectral peaks reduce the amount of
speech distortion [Fig. 4 (b), solid-dotted line]. However, the
differences in performance were not statistically significant.

More importantly, it can be seen that the DCT-based algo-
rithms, e.g., L-PoE, L-LSA, and N-LSA, generally score
higher than their DFT-based counterparts, e.g., β-PC, SG-
LSA, and EM-LSA, for all SNRs (except at 10-15 dB,
where N-LSA obtained the lowest SegSNR gains). This is
mainly because PoS has a higher JND of perception in
noise distortion and preserves speech quality better than the
PhS (Fig. 1).

2) OBJECTIVE RESULTS WITH THE NOMINATED NOISE
ESTIMATOR
Experiment results for the blind case are reported in Table 3
with 95% confidence intervals. With the nominated noise

estimator (Fig. 7, right column), N-PoE-O yields the highest
PESQ and PD gains (except at 10 dB SNR, where L-PoE-O
gives the best PD score). While L-PoE-O yields the high-
est STOI and SegSNR gains (except at 15 dB SNR, where
L-STSA gives the highest SegSNR gain). The statistical anal-
ysis results (Fig. 8) show that incorporating accurate polarity
estimation in the STSA estimator, e.g., L-PoE-O, can poten-
tially improve the performance significantly. We also notice
L-PoE no longer significantly improves the speech qual-
ity when compared to the upper-bound performance given
by L-PoE-O. This is because the accuracy of the PoE has
declined to around 60% (Fig. 5, dotted line). Similar obser-
vations can be made for N-PoE-O and N-PoE with Gaussian
speech prior.

Despite the massive decline of PoE accuracy, L-PoE has
slightly higher PESQ, STOI, and SegSNR gains than L-LSA
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FIGURE 9. Results obtained from comparative statistical analysis of (a) PESQ, (b) STOI, (c) SegSNR gains, and (d) Phase deviation for the full blind
scenario (Table 3). Note that estimators with oracle polarity estimation (i.e., L-PoE-O and N-PoE-O) are excluded from the statistical test. Multiple-paired
comparisons (Tukey’s HSD) were conducted to assess significant differences between algorithms. Differences between scores were deemed significant if
the obtained p value (level of significance) was smaller than 0.05. The means and the comparison intervals are represented by the circles and the bars,
respectively. The algorithm with the highest score averaged across all noise conditions is highlighted in blue. The red bar indicates the statistically
significant difference between the algorithm with the highest score and the denoted algorithm. Algorithms that do not have significantly different scores
appear in grey.

for all tested SNRs (except at 15 dB SNR, L-LSA has higher
PESQ gain, see Table 3). Results obtained from comparative
statistical analysis show there were no statistically signif-
icant improvements between L-PoE and L-LSA in terms
of these objective measures (Fig. 9a-9c). Nevertheless, L-
PoE consistently attained significantly better PD scores than
L-LSA (Fig. 9d), which predicts improvement in speech
intelligibility. Similar observations can be made for N-PoE
and N-LSA with Gaussian speech prior. This result signi-
fies that using the PoE to replace the noisy PoS for recon-
struction is still beneficial, given that the accuracy of the
PoE is above 60%. Considering the recent advances in noise
estimation, the accuracy of the PoE can be improved by
utilizing a more accurate noise estimator such as [51]. Con-
sequently, the performance gap between the oracle case, e.g.,

L-PoE-O, and the blind case, e.g., L-PoE, can be effectively
reduced.

Compared to the phase-aware STSA estimator β-PC [25],
the proposed method L-PoE, utilizing Laplacian prior and
blind polarity estimate, leads to an average improvement of
up to 0.18 in PESQ and 1.05 dB in SegSNR for perceived
speech quality, as well as 2.32% in STOI and 0.04 in PD
scores for speech intelligibility (over 4 SNR conditions and
7 noise types, Table 3). Figure 9 shows β-PC performed
significantly worse than the proposed methods, e.g., L-PoE
and L-LSA. This was surprising at first, but a close analysis
indicated that β-PCwas sensitive to the accuracy of the phase
estimate. Furthermore, in [25] the β-PC algorithm used a
more advanced a prior estimator, and hence, the experimental
results reported in [25] do not necessarily represent a fair
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FIGURE 10. Performance comparison in terms of PESQ, STOI, Segmental SNR improvements, and Phase deviation (PD) score, between various
estimators. Results are illustrated for three noise types: F-16 noise (left column), speech noise (middle column), and white noise (right column). The
nominated MMSE noise estimator introduced in [19] and [37] was used for the DCT-based methods and DFT-based methods, respectively. The
decision-directed approach [3] was used for the a priori SNR estimation.

performance comparison. Similar to the oracle case, in the
blind case the DCT-based algorithms performed consistently
better than the DFT-based algorithms in terms of overall
quality, across all conditions (except at 15 dB N-LSA and N-
PoE obtained the lowest SegSNR gains). Figure 9 also shows
that there was no single best algorithm, but rather that several
algorithms performed equally well across all conditions.

For illustrative purposes, we also present the results for the
F-16, the speech, and the white noise separately (Fig. 10).
We observe that the SegSNR gains were higher for the white
noise because the non-stationary F-16 and the speech noise
(average long-term speech spectrum) are harder to track by
the noise estimation algorithm. Speech background noise is
a particularly tough condition for speech enhancement since
it exhibits characteristics similar to the target speech. For
the speech noise, the PESQ gains (at 10 and 15 dB) were
generally lower, and the PD scores (at 0 dB and 5 dB) were
generally higher than those obtained for the other two noises.
Furthermore, the majority of the algorithms provided higher
STOI gains for the F-16 noise than for the other two noises.
Finally, for the F-16 and the white noise, L-PoE (N-PoE)
obtained higher PESQ gains than L-LSA (N-LSA) at all
SNR levels and the improvement was significant at 10 dB

SNR; whereas for the speech noise, it was the opposite at
5 and 15 dB. In this case, there was no statistically significant
difference between L-PoE (N-PoE) and L-LSA (N-LSA)
across all SNR conditions.

3) SPECTROGRAM ANALYSIS
The enhanced speech spectrograms produced by various
speech enhancement algorithms are also analyzed (Fig. 11
and 12). Notably, the proposed estimators incorporating ora-
cle polarity information restore the lower frequency regions
of speech onsets very well [pictured in (k)-(l) in Fig. 11 and
12]. The speech onsets (i.e., transients, highlighted by the
dashed circles) are known to have the highest contribution
to speech intelligibility [44]. This impact on speech intelligi-
bility of the reconstructed speech signal has been captured
by the instrumental measures as well (Fig. 10). Moreover,
DCT-based estimators are able to reduce more residual noise
with a less or equal amount of speech distortion than their
DFT-based counterparts. For instance, L-LSA can preserve
the formant peaks better in low-frequency bands than SG-
LSA (highlighted by the solid circles in Fig. 11). As a
result, the DCT-based estimators give better perceived speech
quality since the speech components with weak energies are
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FIGURE 11. Spectrograms of (a) the clean sentence, (b) the sentence corrupted by speech noise at 5 dB, and (c)-(I) the enhanced speech
produced by the corresponding speech enhancement algorithm (see Section IV-F). The sentence ‘We need grain to keep our mules
healthy.’ (utterance MF33_03), was taken from the TSP speech database [32]. The nominated MMSE noise estimator introduced in [19]
and [37] was used for the DCT-based methods and the DFT-based methods, respectively. The decision-directed approach [3] was used for
the a priori SNR estimation.

retained and yield a smaller amount of speech distortion.
Therefore, speech intelligibility is improved (predicted by the
STOI and PD scores in Fig. 10). Note that Fig. 11 and 12
are representative images for most utterances, which show
similar characteristics.

4) SUBJECTIVE TEST RESULTS
Finally, the subjective test results for two non-stationary noise
conditions (i.e., speech noise and F-16 noise) are reported in
Fig. 13 and 14. The human listening tests can reliably quan-
tify the character of speech quality, or estimate the speech
quality achievable by an algorithm. It reveals that L-PoE-
O and N-PoE-O were widely preferred by the listeners over
other methods, apart from the clean speech. The enhanced
speech obtained by L-PoE-O and N-PoE-O suffers much
less residual noise, while no difference in the speech itself
was noticed.

L-PoE, utilizing the Laplacian prior and blind polarity esti-
mate, is found to be the next most preferred method, followed
by N-PoE, N-LSA, and L-LSA. Although the PESQ, STOI,
and SegSNR scores of L-PoE and L-LSA are very similar,
it was reported that L-PoE appears to have less residual noise
and speech distortion than L-LSA. This result further high-
lights the effect of polarity estimation on the perceived speech
quality. The utterance modified by β-PC, which utilize the
phase compensation technique, were much less preferred by
the listeners than those enhanced by the proposed methods.
The listeners also reported that the phase-aware enhanced
speech suffers from some reverberations, resulting in garbled
noise. These artifacts can be predicated as a degraded per-
ceived speech quality (e.g., PESQ and SegSNR) or intelli-
gibility score (e.g., STOI and PD) as seen in Fig. 10. The
listening test results show that incorporating an erroneous
phase estimate can strongly influence the performance of
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FIGURE 12. Spectrograms of (a) the clean sentence, (b) the sentence corrupted by non-stationary F-16 noise at 5 dB, and (c)-(I)
the enhanced speech produced by the corresponding speech enhancement algorithm (see Section IV-F). Note that the
perceivable differences between the various estimators are generally small since the maximum suppression was limited to
0.1 for all methods. The sentence ‘The bank pressed for payment of the debt.’ (utterance FI53_04), was taken from the TSP
speech database [32]. The nominated MMSE noise estimator introduced in [19] and [37] was used for the DCT-based methods
and the DFT-based methods, respectively. The decision-directed approach [3] was used for the a priori SNR estimation.

FIGURE 13. The mean subjective preference score (%) comparison for
each speech enhancement method. The male utterance (MF33_03)
corrupted with 5 dB speech noise (averaged long-term speech spectrum)
was used for the subjective tests. The error bars indicated the standard
deviation of the scores.

phase-aware estimators; however, a much less accurate polar-
ity estimate doesn’t lead to a noticeable decrease in perceived
quality and can potentially improve speech intelligibility.

FIGURE 14. The mean subjective preference score (%) comparison for
each speech enhancement method. The female utterance (FI53_04)
corrupted with 5 dB non-stationary F-16 noise was used for the subjective
tests. The error bars indicated the standard deviation of the scores.

Another interesting comparison is that of L-STSA and
L-LSA. We found that the enhanced speech obtained by both
estimators sounds very similar, with the exception that with
the first estimator, the residual noise sounds a little more
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TABLE 3. Performance comparison, in terms of PESQ, STOI, SegSNR, and
PD improvements (lower the PD score the better-estimated quality),
between various estimators tested using the nominated a priori SNR and
MMSE noise estimators. These scores are averaged over all noise types
for the fully blind scenario and reported with 95% confidence intervals.
For each SNR and metric, the best performance is highlighted by boldface
letters.

musical (less uniform). The L-LSA results in lower residual
noise levels than L-STSA, although the latter is slightly
more successful in recovering the weaker speech spectral
components. Note that the perceivable differences between
the various estimators are generally small since the maximum
suppression was limited to 0.1 for all methods.

V. CONCLUSION
In this article, we demonstrate the advantage of DCT rep-
resentation and derive STSA estimators which minimize the
mean-square error of the log-spectra. A novel polarity estima-
tor (PoE) is also derived to assess the usefulness of polarity
estimation for improved speech enhancement. Along with
the proposed STSA estimator, the PoE has been incorpo-
rated into the speech enhancement system at the speech re-

synthesis (reconstruction) stage. When the PoE is used to
replace the noisy polarity spectrum (PoS), it shows consistent
improvement in perceived speech quality and intelligibility.
For comparison purposes, we also include the oracle sce-
nario, where the oracle clean polarity spectrum is used for
reconstruction together with the enhanced absolute spectrum.
Our objective and subjective results show that accurate PoS
estimates have the potential to significantly improve speech
enhancement performance. This outcome highlights the use-
fulness of clean polarity information in signal reconstruction
and is interpreted as the upper-bound performance for the
polarity spectrum estimation.

Our results also show that the dominant influence on the
performance of the PoE is the reliability of the noise estimate
and thus, with an accurate noise estimator, the PoS can be
sufficiently recovered. When the oracle noise information
and blind-estimated STSA are used, the PoE recovers around
95% of clean PoS. Moreover, when the accuracy drops to
around 60%, using the PoE does not lead to a noticeable
decrease in perceived quality and potentially improves speech
intelligibility, as indicated by listening tests. Comparing the
outcome of oracle experiments to those of blind experiments,
we observe that using the oracle noise estimator results in
considerable improvements relative to the blind case. Thus,
we believe the proposed algorithms can still benefit from
more precise noise estimates.

The proposed methods demonstrate superior performance
in enhancing noisy speech, compared with their counter-
parts based on the DFT. This should be attributed to the
fact that the DCT polarity spectrum has a higher JND of
perception in noise distortion and preserves speech quality
better than the DFT phase spectrum. Compared to the state-
of-the-art DFT-based phase-aware system [25], the proposed
method utilizing Laplacian prior and PoE, leads to an average
improvement of up to 0.18 in PESQ and 1.05 dB in SegSNR
for perceived speech quality, as well as 2.32% in STOI and
0.04 in PD scores for speech intelligibility in a blind speech

Algorithm 2 Matlab Implementation for Computing
8̂X Given 8Y , ξ̂I , and γ̂I

Input: Noisy polarity spectrogram 8Y ∈ RL×N ;
ξ̂I ∈ RL×N ; γ̂I ∈ RL×N

Output: Clean polarity spectrogram estimate
8̂X ∈ RL×N

1 Function PoE(8Y , ξ̂I , γ̂I)
2 8̂X = 8Y ;
3 gamma_logic = sqrt(γ̂I ) > 1;
4 xi_logic = sqrt

(̂
ξI
)

> 1;
5 step_1 = gamma_logic == false;
6 step_2 = step_1 & xi_logic;
7 step_3 = gamma_logic | step_2;
8 8̂X (∼step_3) = 8̂X (∼step_3)∗(−1);
9 return 8̂X
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enhancement setup. Our subjective results confirmed better
performance in quality and intelligibility.

The possibilities for incorporating the additional clean
polarity information are many. We have used independently
obtained STSA and PoS estimates for speech reconstruc-
tion. Therefore, the proposed estimators do not comprise
any polarity information in their derivation. Future work
will be towards incorporating polarity information in STSA
estimation and developing a more precise DCT-based noise
estimator to exploit the full potential of DCT-based STSA
estimation.

APPENDIX A
MATLAB PREUDOCODE for IMPLEMENTING the
POLARITY ESTIMATOR
See Algorithm 2.

APPENDIX B
SUBJECTIVE TESTING PROCEDURE
In this appendix, we describe the procedure used to obtain the
subjective quality scores in Fig. 13 and 14. These tests were
done in the form of AB listening tests [52], in which listeners
were asked to select a preferred stimulus for each stimuli pair.
The listeners were presented with three labeled options after
listening to each stimuli pair. The first and second options
were used to indicate a preference for the corresponding
stimulus, while the third option was used to indicate that the
stimuli sounded the same. Pair-wise scoring was employed,
with a score of +1 awarded to the preferred version and +0
to the other. For a similar preference response, both were
awarded a score of +0.5. The participants were allowed to
re-listen to stimuli if required. Five English speakers partici-
pated in all the subjective experiments. In the main listening
tests, one clean stimulus was always paired with a modified
stimulus. Each stimuli pair occurred twice in the playlist as
the order of the stimuli pair was switched. This avoided any
bias associated with listening order. In each test, stimuli pairs
were played back to the participants in randomized order.

Two utterances (one from a male speaker and one from a
female speaker) from the test set described in Sec. IV-A were
used. Each utterance was modified as described in Sec. IV-E
for the required SNR. Thus, a total of 132 modified utter-
ances were generated for the subjective test, and since each
stimuli pair was also played in reverse order, each participant
scored 264 stimuli pairs. Each listening test is conducted in
a separate session, in a quiet room using closed circumaural
headphones at a comfortable listening level.
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