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ABSTRACT It is crucial to have a dependable and precise channel model in order to study the properties
of millimeter wave (mmWave) propagation. The Quasi-deterministic (QD) channel model is employed in
this viewpoint, which describes the propagation of mm-Wave as a group of reflected and scattered rays
originating from a complex environmental setup. These rays are assumed to travel in clusters, with each
cluster consisting of a deterministic ray followed by postcursor rays and preceded by precursor rays. The
summation of these rays is the number of multiple path components (MPCs) of each cluster. However,
this comes at the cost of higher computational complexity for the channel model, which can hinder the
simulation’s scalability. To simplify the QD channel model while maintaining accuracy, one option is to
decrease the number of MPCs. In this paper, we present an analysis of path gains (PGs) of specular and
diffused rays to reduce the total number of MPCs. Specifically, we propose two different reduction methods
namely: i) the reduced post rays (RPR) method ii) the removed surfaces post rays (RSPR) method. The
computational performance of the proposed methods is investigated in terms of computational time, and
complexity. Additionally, the accuracy validation compared to the original QD model is evaluated in terms
of PG cumulative distribution function (CDF), signal-to-noise ratio (SNR), and intra-cluster statistics. The
proposed methods’ complexity and accuracy were assessed by examining measured data from indoor and
outdoor environments at 60 GHz and 28 GHz, respectively. Both first and second-order reflection orders
were tested to illustrate the balance between the two variables. The simplified methods suggested can
decrease computational time by approximately 16% and 11% for RSPR and RPR schemes, respectively,
when compared to the original QD.

INDEX TERMS Diffused rays, millimeter wave propagation, multipath components, path gain, quasi-
deterministic channel models, intra-cluster statistics, ray tracer.

I. INTRODUCTION
Millimeter wave (mmWave) participates effectively in the
next cellular network generations (e.g., 5G and 6G) deploy-
ment. This is because, it can increase communication capac-
ity, improve spectrum efficiency, support massive multiple
input multiple output (MIMO) and allow for large Bandwidth
(B.W) allocations which are translated directly to higher data
rate transfer [1]. Moreover, it can provide a carrier frequency

The associate editor coordinating the review of this manuscript and

approving it for publication was Adao Silva .

of up to 71 GHz in the future release of the third Generation
Partnership Project new radio (3GPP NR) [2]. MmWave
technology will play a key role in achieving the desired net-
work performance and communication tasks in both 5G and
6G communication systems [3], [4], [5].

Despite these promising features, mmWave suffers from
several challenges including: huge propagation loss, com-
pared to other communication systems that use low carrier
frequency, resulting in its sensitivity to atmospheric condi-
tions like rain, humidity, and fog. Consequently, the range of
mmWave is limited; it propagates at 200 m [6]. Moreover,
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it is sensitive to blockage, and obstacles such as the human
body, buildings, and vehicles. For propagation measurements
that are conducted in a realistic indoor environment in the
presence of human activity, the channel is blocked for about
1% or 2% of the time for 1 to 5 persons [7]. In addition,
directional beamforming systems can be achieved. The need
for accurate alignment of the transmitter and receiver beams
results in a higher controller overhead for managing mobility
and estimating channels [8]. As a result, the mmWave chan-
nel appears extremely violative to cellular communication
systems. However, these challenges are investigated several
works. In [9], a novel distributed power was proposed to mit-
igate the inter-beam interference directors at sub-6 GHz and
mm-Wave and achieve high throughput using game theory-
based power constraints. A low complexity using quantized
hybrid precoding is used in [10] and [11] to improve energy
efficiency in MIMO transmission.

A. LITERATURE REVIEW
The literature review discusses three primary models for
mmWave channels that vary in their level of complex-
ity, time requirements, and accuracy. The initial analytical
channel model is a basic representation of mmWave prop-
agation features, particularly fading, and employs only one
random variable described by nakagami-m or Rayleigh dis-
tribution [12], [13]. It can be used in combination with
sectorized beamforming for line of sight (loS) transmission.
Despite its simplicity, this model does not accurately address
antenna arrays and beamforming techniques [14]. Analyti-
cal methods are used in various literary works to develop
mmWave channel models. For instance, a 3DUplink Channel
model for mmWave front haul links was presented in [15]
for small cell networks of the future. In [16], a stochastic
channel model based on temporal and spatial statistics was
introduced to generate the channel impulse response (CIR).
Additionally, [17] featured an analytical performance study
of two heterogeneous networks that operate simultaneously
at the same time, space, and frequency domains.

The second is the stochastic spatial channel model (SCM)
in which the channel model is characterized by generating
multiple path components (MPCs) from several random dis-
tributions. The parameters of these distributions are speci-
fied by statistical fits on channel measurements [18]. With
the aid of these parameters, the SCM can address large-
scale fading and fast-fading phenomena [19]. WINNER,
WINNER-II, and NYU models are the most significant
examples of SCM and are also available with open-source
simulators [20], [21].

The third type of channel model is known as the quasi-
deterministic (QD) model. This approach involves using a
ray tracer (RT) to generate multipath components (MPCs)
based on the propagation environment’s geometry [22]. These
MPCs provide information about various channel parameters,
including delay, path gain, angle of arrival (AoA), and angle
of departure (AoD) [23]. Depending on whether the trans-
mission is line-of-sight (LoS) or non-line-of-sight (NLoS),

the MPCs may consist of direct ray components or diffused
ray components resulting from scattering surfaces in the
environment [24].

However, NLoS contributions on single or multiple
bounces e.g., on metal objects are not with diffused rays [25].
The diffused rays are generated by using a stochastic model
and rely on the surface roughness on which rays reflect and
are clustered around the main reflected component [22], [26].

Although the QD channel model provides a reliable and
accurate channel model. Additionally, it is more computa-
tionally complex, especially if the number of reflecting and
scattering surfaces is large for a given scenario [24]. The
complexity of the QD channel model is typically linked to
the quantity of generated MPCs and the number of antennas
at both the transmitter and receiver [27]. Therefore, decreas-
ing either the number of MPCs or antennas can reduce the
complexity of the channel model, as long as accuracy is
maintained with minimal reduction The QD channel model
was simplified in [24] and [28] by focusing only on MPCs
that had a received power exceeding a specific threshold,
which was determined based on the most powerful MPC.
In [27], the SCM channel model was simplified by removing
clusters and sub-paths (i.e., spatial components of the chan-
nel). The effectiveness of these simplified approaches was
assessed using both signal interference to noise ratio (SINR)
and computation time.

B. MOTIVATION AND CONTRIBUTIONS
The QD channel model is effective in providing precise
channel parameter characterization for mmWave technology.
However, its computational complexity limits the scalabil-
ity of the simulator. To address this issue, a simplified QD
mmWave channel model that maintains accuracy is neces-
sary. The proposed solution involves reducing the number of
MPCs to simplify the QD channel model while minimizing
any impact on its accuracy.

The main contributions of this paper are summarized as
follows:

1) We offer an evaluation of the path gains (PG) of specu-
lar and diffused rays in both indoor and outdoor settings
- specifically, a data center and parking lot - at frequen-
cies of 60 GHz and 28 GHz. This analysis pertains to
both first and second reflection orders.

2) This analysis suggests two distinct approaches for
reducing MPCs by eliminating those with the lowest
path gains. The RPR and RSPRmethods are introduced
as the first and second options, respectively. Bothmeth-
ods involve removingMPCswithweaker PGs to reduce
their overall number.

3) The main focus of this study is removing MPCs that
have the weakest path gains, removing surface post
rays and removing the MPCs. The aim was to compare
the effectiveness of these reduction methods to the
QD model in terms of reducing computational time
and complexity, as well as improving channel model
accuracy in areas such as PG CDF, SNR, K-factor,
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power delay decay, delay spread, and angular spread
within clusters.

4) We present a comparison with other simplified chan-
nel models in literature review. Moreover, present a
complexity and model accuracy tradeoff for the two
methods to obtain optimal results for decreasing the
simulation computational time and complexity with
a nominal reduction in QD channel model accuracy
compared to the original QD model.

5) The performance evaluation results demonstrate that
the QD channel model can be simplified via either
RSPR or RPR with a minimal reduction in accuracy.

The rest of the paper is organized as follows. Section II
provides an overview of the mm Wave quasi-deterministic
channel model. In Section III, we offer an analysis of how
to reduce multipath components (MPCs) using path gain
values generated by both specular and diffused rays. We pro-
pose two MPCs reduction methods for indoor environments,
specifically data centers operating at 60 GHz. In Section IV,
we evaluate the effectiveness of these methods using various
metrics such as path gain CDF, DDIR, SNR, and computing
time for the first and second reflection orders. We summarize
the performance evaluation results in Section V and present
our conclusion in Section VI.
Notation: Through this paper, light symbols and bold sym-

bols denote to scalar and random variables, respectively. For
a given random variable X:

1) N (µ, σ 2) denotes Normal distribution with ‘‘µ′′ mean
and variance ‘‘σ 2’’.

2) R(s, σ ) denotes Rician distribution where value of s
and σ are positive. It is generated as X =

√
Y + Z

where Y ∽ N
(
µ, σ 2

)
and Z ∽ N

(
µ, σ 2

)
.

3) L(
(
µ, σ 2

)
denotes Laplacian distribution with mean

and variance equal to µandσ 2, respectively.
4) ε(ε) denotes Exponential distribution with mean and

variance equal to 1
ε
and 1

ε2
, respectively.

II. MMWAVEQUASI-DETERMINISTIC (QD) CHANNEL
MODEL
The QD model utilizes ray tracing to analyze the mmWave
channel, taking into account both direct (D-ray) and reflected
rays based on the transmitter and receiver position and envi-
ronment geometry. However, diffracted rays are disregarded
as they have little impact on mmWave transmission [29].
The direct ray is deterministic (LoS) ray is predictable and
doesn’t produce any scattered elements. The transmitter and
receiver positions are used to determine its characteristics,
such as delay, angle of arrival (AoA), and angle of departure
(AoD) [22]. In terms of path gain (PG0), it’s computed using
the Friis transmission equation in the subsequent way:

PG0 = 20log10(
εc

4π lray
) − µRL (1)

where εc is the carrier frequency wavelength, lray is the D-ray
length from the transmitter to the receiver and µRL is the
mean reflection loss of a given surface.

FIGURE 1. Rough surface reflected ray scattering.

In the case of NLoS transmission, the reflected rays are
considered. They are also named specular rays and have the
strongest path gains, while other rays are produced because
of the scattering of specular rays from surfaces that have
weaker path gains. These rays are clustered around the spec-
ular rays and are named diffuse rays [30]. The path gains of
specular rays for nth reflection order, with (n >1) are given
in equation 2.

PG0 = 20log10(
εc

4π lray
) −

n∑
i=1

RLi,dB (2)

where RLi,dB is the random reflection loss factor given by
the reflecting surface’s material and is defined by Rician
distribution RLi,dB∼ R(sRL,i, σRL,i).

(
sRL,i, σRL,i

)
refers to

the statistics related to the material of the i-th reflector of the
given ray.

Figure 1 illustrates that multiple diffuse rays accompany
each specular ray. Among these diffuse rays, some arrive
before the specular ray and are referred to as precursor
rays (Npre), while others arrive after it and are called postcur-
sor rays (Npost) [31]. The quantity of MPCs within each
cluster can be determined by:

NMPC = R(Npre + 1 + Npost ) (3)

where R is an integer number denotes the reflection order.
The ‘‘1’’ in (3) means that each cluster has only one

specular ray.
The angle of departure (AoD) and angle of arrival (AoA)

in azimuth (AZ) and elevation (EL) of MPCs are given by:

AoDAZ/EL = AoD0 + αAoDAZ/EL (4)

where AoD0 is for the D-ray. αAoDAZ/EL ∽ L
((0, σ 2

αAoDAZ/EL) is the angle spread. The variance
σ 2

αAoDAZ/EL ∽ R(sσ 2
αAoDAZ/EL

, σσ 2
αAoDAZ/EL

) and is obtained
independently for each cluster. The angle of arrival (AoA)
in azimuth (AZ) and elevation (EL) is obtained by using the
same equation in (4).

The intra-cluster parameters are described by a loss
factor (K), power delay decay constant (γ ), delay
spread (ε), power delay constant (S), and angle spread (α).
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FIGURE 2. Visual representation of used scenarios (a) data center, (b) parking Lot.

The K-factor, γ , and ε are randomly generated using
the Rician distribution with ‘‘s’’ mean and variance ‘‘σ ’’
R(s, σ ) [24]. The loss factorK is defined as the ratio between
the cursor strength and precursor/postcursor diffuse compo-
nents and is calculated as:

Kpre/post =
PGcursor∑N

i=1 pre/postPGi
(5)

III. THE PROPOSED MPCS REDUCTION ANALYSIS
Once the weakest path gains are known, the next step is to
determine which MPCs should be removed. This can be done
by calculating the power of the MPCs and then removing the
MPCs with the lowest power. The power of the MPCs can
be calculated by taking the product of the path gain and the
delay spread of the MPCs. The delay spread of the MPCs can
be calculated by taking the difference between the maximum
and minimum delays of the MPCs. After calculating the
power of the MPCs, the weakest MPCs can be identified and
removed. In addition to removing the weakest MPCs, another
approach to reduce the total number of MPCs is to use a
clustering algorithm. Clustering algorithms can be used to
group the MPCs into clusters based on their path gains and
delay spreads. The clusters can then be merged to reduce the
total number of MPCs. This approach can be used to re duce
the total number ofMPCswhile still maintaining the accuracy
of the channel model.

The path gains of precursor and postcursor rays are calcu-
lated as follows:

PGpre,i,dB = PG0,dB − Kpre,dB −

∣∣τ i,pre − τ0
∣∣

γpre

(
10log10e

)
+ (10log10e)Spre (6)

PGpost,i,dB = PG0,dB − Kpost,dB −

∣∣τ i,post − τ0
∣∣

γpost

(
10log10e

)
+ (10log10e)Spost (7)

where:
• i = 1, . . . , . . . , . . . ,Npre/post
• PG0,dBis the path gains of specular rays as mentioned
in (2).

• Kpre/post ∽ R(sKpre/post , σKpre/post ).
• γpre/post ∽ R(sγpre/post , σγpre/post ).
• Spre/post ∽ N (0, σ 2

s,pre/post ) and σ s,pre/post ∽
R(sσs,pre/post , σσs,pre/post ).

• τ0 is the arrival time of the specular ray and is calculated
as follows:

τ0 =
d
c

(8)

where d is the distance between Tx and Rx and c is the
light speed.

• τ i,pre is the inter arrival time of precursor rays and is
given by:

τ i,pre = τ o −

i∑
j=1

1j,pre (9)

• τ i,post is the inter arrival time of postcursor rays and is
given by:

τ i,post = τ o +

i∑
j=1

1j,post (10)

where 1 is the arrival rate and is generated randomly
using exponential distribution ε(εpre) and εpreis defined
by Rician distributionR(sεpre , σεpre ). The arrival time of
postcursor rays is calculated the same as that of precur-
sor rays except that τo is added to the sum of the arrival
rate.

We perform our analysis on a QD channel realization ray
tracer (RT) developed by the national institute of stan-
dards and technology (NIST). It is a three-dimensional
(3D) RT based on a real measurement campaign which
grants a realistic, scalable and flexible channel model [23].
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TABLE 1. Data center NIST material library.

TABLE 2. Parking lot NIST material library.

A computer-aided design (CAD) model of the environment
scenario is used as an input to the RT which extracts the
geometrical features of a given environment from CAD.
These features are represented as several triangles. The
RT selects the permutations of triangles combinations to
generate the specular components. The indoor and out-
door environment scenarios namely, data center and park-
ing Lot, with 60 GHz and 28 GHz carrier frequency are
used.

As shown in Fig. 2a, the data center environment scenario
is constructed based on [30], where the room dimension and
rack heights are 18 m×18 m×2.56 m and 1.96 m and 2 m,
respectively. It is essential to note that this scenario is one of
the 802.11 ay use cases where the transmitter and the receiver
are supposed to be static and are placed on the rack-tops to
have inter-rack connectivity in the case of the Ethernet wired
disconnection. The transmitter and the receiver position on
the rack-tops are at [8.39, 15.4, 2.19] and [7.92, 4.4, 2.19],
respectively.

Any reflected components diffused from the rack sides
because one side is loaded with thick cables and server
equipment and other side meshed doors at other side.
As a result, the rack-sides have higher mean reflection loss
µRL = 15.82 and larger decay constant because of their
extended scattering plane and roughness. The walls and
columns are covered with drywall, so they have the same
reflection loss µRL = 7.35 dB.

Fig. 2b shows the outdoor scenario of parking Lot which
is surrounded by number of buildings. The transmitter is
placed at fixed position with respect to the receiver on a
building with a height of 2.5 m. the receiver is supposed to
be dynamic with 61 different positions. The CAD model for
measurement campaign in [13] is generated by using Open
Street Map (OSM). The mean (s) and variance (σ ) values
for Rician, Normal and exponential distributions are obtained
using the NIST channel measurements [30] and are consid-
ered in material library as shown in Table 1 and 2 for data
center and parking Lot environments, respectively. Based on
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FIGURE 3. Path gains cumulative distribution function for diffuse and specular components (a) data center, (b) parking Lot.

FIGURE 4. Path gains cumulative distribution function of postcursor rays at R=1 (a) data center, (b) parking Lot.

a real channel experiment evidence the number of precursor
rays Npre=3 and the number of postcursor rays Npost=16 for
the first order reflection (R=1). In the second order reflection
(R=2) the Npre/post is doubled.

From (6) and (7) we find that the path gains of diffuse
components are based on parameters like K, γ , τ , and S, and
all these parameters are randomly generated using different
distributions. Consequently, the diffuse component path gains
values are also random and varied each time we calculate
them. So, we use a cumulative distribution function (CDF)
that gives the probability of path gain (PG) will take a value
less than or equal to the PG value. Fig. 3 shows the CDF of
PG for precursor, postcursor, and specular rays in the case of
R=1 and R=2 at data center and parking Lot scenarios. It is
obvious that the weakest PG values always result from the
postcursor rays either for R=1 or R=2. While the strongest
PG values always are caused by the specular rays. In case of
data center, Fig. 3a, at CDF=0.5 when R=1, the PG of the
postcursor rays is less than the precursor and specular rays

by 29 dB and 36 dB, respectively. for R=2 the postcursor
PG reduction amount compared to the precursor and specular
rays are increased to 50 dB, and 66 dB. When parking lot is
considered, Fig. 3b, the PG of post cursor rays, at R=1, is less
than the precursor and specular rays by 13 dB and 27 dB,
respectively. For R=2 the postcursor PG reduction amount
compared to the precursor and specular rays are increased to
39 dB, and 53 dB.

Consequently, the first step to reduce the MPCs numbers
by removing the weakest MPCs is to reduce the MPCs that
are generated due to postcursor rays. There are two methods
to perform this reduction the first method is the reduced post
Rays (RPR), and the second method is removed surfaces post
rays (RSPR).

A. THE REDUCED POST RAYS (RPR) METHOD
As we mentioned in (3), the total number of MPCs that
are generated for each cluster depends on the number of
precursor rays and postcursor rays. For A channel model that
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FIGURE 5. Path gains cumulative distribution function of postcursor rays at R=2 (a) data center, (b) parking Lot.

FIGURE 6. Path gains cumulative distribution function of postcursor rays at each surface of data center scenario (a) data center,
(b) parking Lot.

based on real measurements, the number of postcursor rays
is always greater than the number of precursor rays by nearly
five times [28], [30]. Moreover, the weakest path gains of the
generated MPCs are belonging to the postcursor rays. As a
result, reducing the Npost will help in reducing the number
of MPCs and at the same time keep the total signal strength
at the receiver nearly unchanged. Figs. 4 and 5 demonstrate
the path gains of postcursor rays only at R=1 and R=2,
respectively, in a different number of reduced Npost. This is
intended to determine the optimum reduced Npost that can
achieve the MPCs reduction without losing channel model
accuracy. At data center as shown in Fig. 4a, when CDF
of 0.3 is considered, the PG is nearly −150 dB at Npost =

16, 15 and 14 while −120 dB at Npost = 10 and 11. When
parking Lot is considered, Fig. 4b, the PG is nearly −112 dB
at Npost = 16, 15, and 14 while −104 dB at Npost = 10.
When R=2, as depicted in Fig. 5a (data center scenario),
when CDF of 0.3 is considered, the PG is nearly −200 dB

at Npost = 32 and 30 while it is −155 dB and −170 at
Npost = 20 and 22, respectively. As it is shown in Fig. 5b,
parking Lot scenario, the PG is nearly −200 dB at
Npost = 32 and 30 while it is −137 dB and −121 at Npost =
20 and 22, respectively. It is obvious from Fig. 4 and Fig. 5
that as the reduced Npost increase, the postcursor path gains
increase but also the difference between the real Npost and
the reduced Npost increase, and this will change the channel
model accuracy. Determining which several reduced Npost
will be used in this method to reduce MPCs depends mainly
on the channelmodel accuracy. As it will be demonstrated
in the next section, performance evaluation, the optimum
reduced Npost will be 14 and 30 postcursor rays for R=1 and
R=2, respectively.

B. REMOVED SURFACES POST RAYS (RSPR)METHOD
The postcursor rays are produced subsequent to the specular
ray’s reflection on a surface in the transmission environment
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FIGURE 7. Path gains cumulative distribution function of postcursor rays (a) data center after removing ceiling and floor., (b) parking Lot
after removing left and bottom car.

situation. This approach involves determining the path gains
of the postcursor rays on each surface. The surfaces with the
lowest path gains will be eliminated from the QD channel
model for post rays exclusively, while precursor rays will still
be considered.

As shown in Table 1, only six surfaces participate in gener-
ating postcursor rays namely, ceiling, rack-top, curtain, wall
and column, rack-side, and floor.

Fig. 6 depicts the post rays’ path gains for each surface
at R=1 and R=2 at data center and parking Lot scenarios.
From Fig. 6a, it is obvious that the ceiling and floor surfaces
are responsible for the generation of the weakest path gains in
the QD channel model. When CDF=0.5, the path gains that
are generated at the ceiling and floorequal to −150 dB and
−210 dB for R=1 and R=2.

From Fig. 6b, it is clear that left and bottom top car has the
weakest PG. When CDF=0.5, the path gains that are gener-
ated at bottom and top car equals to −115 dB and −135 dB
for R=1 and R=2, respectively. Therefore, removing these
surfaces from the QD channel model will lead to a great
amount in MPCs reduction without affecting the channel
model accuracy as it will be shown later.

Fig. 7a shows the CDF path gains of the postcursor rays
before and after removing ceiling and floor surfaces at data
center scenario. the post rays’ path gains after removing
surfaces when CDF of 0.5 is considered are increased by
13 dB and 25 dB at R=1 and R=2, respectively. Fig. 7b
shows the CDF PG of the postcursor rays before and after
removing left and bottom top car at parking Lot scenario.
the post rays’ path gains after removing surfaces when CDF
of 0.5 is considered are increased by 13 dB and 15 dB at R=1
and R=2, respectively.

IV. PERFORMANCE EVALUATION RESULTS
This section assesses the effectiveness of the proposed
techniques using two fundamental measures: computational

reduction and accuracy. The computational reduction
achieved by applying the reduction methods is evaluated
based on computational time and complexity. Additionally,
we evaluate the impact of this reduction on the accuracy of
the QD channel model, considering factors such as:

1) path gain CDF: we use this metric instead of the double
directional channel impulse response (DDIR) as the
latter is randomly generated and has a different result
each time the simulator runs.

2) SNR: it is used to show the accuracy level of the QD
channel model at the link layer.

3) Intra-cluster statistics namely, K-factor, power delay
decay, delay spread, and azimuth angular spread.

A. COMPUTATIONAL PERFORMANCE
The MPCs reduction percentage for the RPR and the RSPR
methods. It is defined as:

NMPC−reduction% =
N − N ′

N
X100 (11)

where N ′ is the number of reduced MPCs. It is obvious from
table 2, that the RPR method can achieve a greater MPCs
reduction amount by increasing the number of reduced Npost.
However, this increment in MPC reduction amount affects
the QD channel model accuracy as it will be explained in the
next subsection B. The RSPR method attains a higher MPCs
reduction percentage than that attained by the RPR method
when Npost =14 is considered. Moreover, the reflection order
has a slight impact on the MPCs reduction amount in the
case of RPR and RSPR methods. The steps that illustrate the
proposed simplified methods are shown in algorithm 1.

The main purpose of reducing MPCs is to minimize the
computational time required by the simulator that realizes
the QD channel model and consequently reduces the model
complexity.
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Algorithm 1 Proposed MPCs Reduction Algorithm
1 inputs(PG0,dB, τ0, Npost, material library)
2 Calculate PGpre,dB
3 Calculate PGpost,dB
4 If (PGpost,dB <PGpre,dB)
5 %RSPR Method
6 ForR=1: n %n=number of surfaces
7 Calculate Path gain for each surface in environment

scenario (PGpost,R,dB)
8 If (PGpost,R,dB ==min(PGpost,R,dB(R)))
9 PGpost,dB =sum(PGpost,R,dB(R))- PGpost,R,dB
10 Else
11 End
12 End
13 %RPR Method
14 Fori=1: Npost
15 CalculatePGpost,dB at Npost
16 CalculatePGpost,dB at (Npost-i)
17 0=PGpost,dB at Npost- PGpost,dB at (Npost-i)
18 If (0 ≈zero)
19 PGpost,dB = PGpost,dB at (Npost-i)
20 else
21 End
22 End

TABLE 3. The proposed methods MPC reduction percentage comparison.

According to [32] Computational Time is given by:

T =

[(
2π

AoDAZ
X

π

AoDEL

)
+ (NMPC )

]
Xt (12)

where: AoDAZ, AoDEL, NMPC, and t are the average
azimuth angle of departure, the average elevation angle of
departure, the total number of MPCs, and the average sim-
ulation time for each ray.

It is obvious from Table 3 that utilizing RPR and RSPR
methods succeed in saving the computational time of the QD
channel model simulator. However, the amount of compu-
tational time saving is decreased at higher reflection order
(R=2) in the two proposed methods. The RSPR method
achieves a computational time reduction than that achieved
by the RPR method when Npost =14 is considered.
According to [24], the RT complexity is denoted by:

C = RT R+1 (13)

where T is the number of extracted triangles from CAD and
R is the reflection order. The two proposed methods remove

(N − N ′) rays. This means that for every ray of reflection
order R, none of the (R+1)T operations are performed if
the ray is discarded [24]. Consequently, the computational
complexity in (13) will be:

C = RT R (14)

As a result, the RT complexity is reduced by factor T which
equals 360 triangles for the Data Center scenario.

B. QD CHANNEL MODEL ACCURACY
1) PATH GAIN
Fig. 8 compares the path gain CDF of the QD channel model
in different numbers of post rays. The original QD model
without using RPR is at Npost =16 and 32. The solid lines
and dash lines in Fig. 8 indicate using the RPRmethod at R=1
and R=2, respectively. It is obvious that as the reduced Npost
increase the difference between the QD channel model with
and without utilizing RPR becomes greater. For example,
when CDF 0f 0.3 is considered, at Fig. 8a, the difference is
about 5 dB and 10 dB at Npost=14 and 28, respectively, and
is about 20 dB and 40 dB at Npost=10 and 20, respectively.
At parking Lot scenario, Fig. 8b, the difference is about 2 dB
and 5 dB at Npost=14 and 28, respectively, and is about 6 dB
and 15 dB at Npost=10 and 20, respectively. This means that
the original QD channel model is changed. When Npost =

14 and 28 for R=1 and R=2, respectively, the simplified QD
channel model is closer to the original model and attains an
acceptable MPCs reduction percentage of 10%.

Regarding the RSPR method, it is clear from Fig. 9a that
removing the post rays resulting from the ceiling and floor
surfaces helps in increasing the QD path gains compared to
the path gains of the original QD channel model in case of
data center scenario and when parking Lot is considered,
discarding left and bottom car increases the original QD
PG. However, this leads to a greater difference between the
original QD and RSPR compared to the RPR method. When
the CDF>0.5 is considered, this difference becomes smaller.

2) SNR
The channel matrix between transmitter and receiver is given
by:

Htx,rx =

N∑
n=1

√
PGNej(−2πτmfc)a∗

rx(AOAn)aHtx (AODn) (15)

where fc is the carrier frequency which equals to 60GHz
and 28 GHz at data center and parking Lot scenarios, respec-
tively, a∗

rx(AOAn), a
H
tx (AODn) are the angle array response

at receiver and transmitter, respectively. a∗ is the conjugate
operator and aH is the Hermitian operator. Denote received
signal power and noise power by Ptxand Pn, respectively. The
SNR after optimal beamforming is given as by:

SNR =
PtxHtx,rx

Pn
(16)

Fig. 10 and Fig. 11 depict the effect of applying RPR and
RSPR methods on the SNR of the QD channel model at
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FIGURE 8. Path gains cumulative distribution function of QD channel model at RPR method a) data center, (b) parking Lot.

FIGURE 9. Path gains cumulative distribution function of QD channel model at RSPR method a) data center, (b) parking Lot.

FIGURE 10. Signal to noise ratio cumulative distribution function at R=1 a) data center, (b) parking Lot.
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FIGURE 11. Signal to noise ratio cumulative distribution function at R=2 a) data center, (b) parking Lot.

FIGURE 12. Intra cluster K-factor cumulative distribution function a) data center, (b) parking Lot.

FIGURE 13. Intra cluster power delay decay cumulative distribution function a) data center, (b) parking Lot.
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FIGURE 14. Intra cluster delay spread cumulative distribution function a) data center, (b) parking Lot.

FIGURE 15. Intra cluster angular spread cumulative distribution function of data center (a) Azimuth AoD, (b) Azimuth AoA.

R=1 and R=2, respectively, when data center and parking
Lot scenarios are considered. The transmitted power (Ptx is
assumed to be 30 dBm as in [24]. It is obvious that using
the two simplification methods changes the QD SNR per-
formance but with minimal change. For R=1, as shown in
Fig. 10a, when data center scenario is used, utilizing the RPR
method with Npost=14, the QD SNR is the same as that of
the original QD while with Npost=10, the SNR difference
becomes 2 dB at CDF=0.5. In the case of the RSPR method,
the QD SNR is slightly changed from the original QD. When
parking Lot is mentioned, the RPR method with Npost=14,
the QD SNR is nearly the same as that of the original QD
but with Npost=10, the SNR difference becomes 1 dB at
CDF=0.5. In the case of the RSPR, the QD SNR is changed
from the original QD by 2 dB.

For R=2, as shown in Fig. 11a, the QD SNR of RSPR
and RPR with Npost=28 performances are the same and are
slightly different from the original QD when Npost=22.

For parking Lot, Fig. 11b, the QD SNR of RPR with
performances is nearly the same as the of original QD. And
it is slightly different from the original QD by 1 dB, when
RSPR method is used.

3) INTRA-CLUSTER STATISTICS
It is particularly important, after reducing the multipath,
to make sure that the intra-cluster statistics are not changed.
Fig. 12 to 15 depict the comparison between the intra-cluster
statistics of K-factor, power delay decay, delay spread, and
azimuth angular spread, respectively, before and after the
multipath reduction methods when data center and parking
Lot scenarios are applied. The number of reflections has
an impact on intra-cluster statistics. However, the accuracy
performance of intra-cluster statistics at second reflection
order is attained as in first reflection order. So, the presented
intra-cluster statistics in this paper are investigated at first
order reflection.
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FIGURE 16. Intra cluster angular spread cumulative distribution function of parking lot (a) Azimuth AoD, (b) Azimuth AoA.

TABLE 4. Comparison for different simplified mmwave channel model methods.

TABLE 5. RPR and RSPR tradeoff comparison.

Fig. 12 to 15 it is depicted that removing the weakest
paths using the RPR method keeps all intra-cluster statis-
tics consistent. However, utilizing the RSPR method had
a lower agreement with the original QD channel model
because there are two whole entire surfaces which are com-
pletely removed. As a result, the cluster statistics will change.
When CDF=0.5 the RSPR differs by 1 dB and 2 dB in the
case of intra-cluster K-factor and power delay decay as in
Fig. 12a and 13a, respectively. In Fig. 12b and 13b, the RSPR
method show higher agreement with the original QD as there
is one surface that is neglected from the environment.

On other hand, RSPR has a good agreement in case of delay
and azimuth angular spread at both data center and parking
Lot scenarios as shown in Fig. 15 and Fig. 16. This is because
the cluster numbers are not changed when the RPR method
is applied and are reduced when RSPR is applied, and the
cluster numbers have no correlation with delay and angular
spread and have a weak correlation with K-factor and power
decay [33].

V. COMPLEXITY AND ACCURACY TRADE OFF
COMPARISON
We present in table 4, a comparison for computational time,
and accuracy comparison for the proposed simplified meth-
ods and the simplified methods in literature, namely, sim-
plified SCM 3GPP [27] method and simplified ray tracer
(RT) method [24]. In SCM 3GPP method, the simplification
is attained by reducing the number of clusters and spatial
components of the channel. In simplified RT method, the
weakest MPCs is discarded based on how low their path
gain is compared to the strongest MPC. Table 5 shows
the comparison between the proposed methods and other
methods in terms of computational reduction percentage and
accuracy performance. The results of the proposed methods
in table 4 are at the first order of reflection (R=1) and at
Npost=14 in case of RPR method. Compared to simplified
SCM 3GPP method, the proposed methods achieve higher
computational time reduction by 4% and 0.5% in case of
RSPR and RPR, respectively. The proposed methods attain
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higher reduction amount of computational time by 5% and
2% at RSPR and RPR, respectively. The accuracy of sim-
plified SCM 3GPP method was evaluated in terms of SNR,
level crossing frequency (LCF), average fading band width
(AFBW), and mean singular value ratio of channel (MSVR)
and was evaluated in terms of SNR and throughput in case
of simplified RT method and was evaluated in terms of SNR
and intra-cluster statistics in case of proposed methods. All
methods show consistent accuracy compared to the baseline
model before simplification.

For the purpose of using RT efficiently, the comparison
between RPR and RSPR methodsis summarized in Table 5
compared to original QD model. It is obvious that the
RSPR outperformance the RPR, only in computational time
reduction and total MPCs reduction amount when N=14
and N=28 at first and second reflection order, respectively.
However, this is attained at the price of a slight change
in intra-cluster statistics, namely K-factor and power delay
decay. The RPR can be updated to achieve more com-
putational time reduction than RSPR by using a number
of post rays less than 14 and 28 at the first and second
order of reflection. Nevertheless, this would cost a mini-
mum change in SNR. The intra-cluster statistics delay spread
and angular spread of RPR and RSPR have total agree-
ment with the statistics of the original QD model. Moreover,
the complexity reduction amount in the two methods is the
same.

VI. CONCLUSION
Developing an accurate and scalable simulator for simplified
mmWave QD channel models is essential for future wireless
communication. In this paper, we proposed two methods for
reducing the generated MPCs by removing the MPCs with
the weakest path gains. The first method is RSPR which
discards the reflected surfaces that introduce the weakest path
gains. The second method is RPR which reduces the number
of post rays as it was the cause of the weakest path gains.
We evaluated the impact of these methods on computational
reduction and on channel model accuracy. The analysis and
evaluation were applied to real measurement data of indoor
environment data center scenario at 60 GHz and outdoor
parking lot environment scenario at 28 GHz. Based on the
performance evaluation results, it was found that the sim-
plified reduction methods proposed have achieved an ideal
trade-off between the reduction in computational time and
the accuracy of the QD channel model across different reflec-
tion orders. The proposed methods’ accuracy and complexity
were evaluated using measured data obtained from indoor
and outdoor environments operating at 60 GHz and 28 GHz,
respectively. The balance between the two variables was
demonstrated by testing both first and second-order reflec-
tion orders. The simplified methods proposed were found
to reduce computational time by around 16% and 11% for
RSPR and RPR schemes, respectively, when compared to the
original QD.

REFERENCES
[1] H. Zhang, Y. Zhang, J. Cosmas, and N. Jawad, ‘‘MmWave indoor chan-

nel measurement campaign for 5G new radio indoor broadcasting,’’
IEEE Trans. Broadcast., vol. 68, no. 2, pp. 331–344, Jun. 2022, doi:
10.1109/TBC.2021.3131864.

[2] S. H. R. Naqvi, P. H. Ho, and L. Peng, ‘‘5G NR mmWave indoor coverage
with massive antenna system,’’ J. Commun. Netw., vol. 23, no. 1, pp. 1–11,
Feb. 2021, doi: 10.23919/JCN.2020.000031.

[3] M. E. Diago-Mosquera, A. Aragon-Zavala, and M. Rodriguez, ‘‘Towards
practical path loss predictions in indoor corridors considering 5G
mmWave three-dimensional measurements,’’ IEEE Antennas Wire-
less Propag. Lett., vol. 21, no. 10, pp. 2055–2059, Oct. 2022, doi:
10.1109/LAWP.2022.3190324.

[4] C. X. Wang, J. Huang, H. Wang, X. Gao, X. You, and Y. Hao,
‘‘6G wireless channel measurements and models: Trends and challenges,’’
IEEE Veh. Technol. Mag., vol. 15, no. 4, pp. 22–32, Dec. 2020, doi:
10.1109/MVT.2020.3018436.

[5] W. Hong, Z. H. Jiang, C. Yu, D. Hou, H. Wang, C. Guo, Y. L. Hu Kuai,
Y. Yu, Z. Jiang, Z. Chen, J. Chen, Z. Yu, J. Zhai, N. Zhang, L. Tian,
F. Wu, G. Yang, Z.-C. Hao, and J. Y. Zhou, ‘‘The role of millimeter-wave
technologies in 5G/6Gwireless communications,’’ IEEE J. Microw., vol. 1,
no. 1, pp. 101–122, Jan. 2021, doi: 10.1109/JMW.2020.3035541.

[6] A. V. Lopez, A. Chervyakov, G. Chance, S. Verma, and Y. Tang, ‘‘Opportu-
nities and challenges of mmWave NR,’’ IEEE Wireless Commun., vol. 26,
no. 2, pp. 4–6, Apr. 2019, doi: 10.1109/MWC.2019.8700132.

[7] S. Niknam, B. Natarajan, and R. Barazideh, ‘‘Interference analysis
for finite-area 5G mmWave networks considering blockage
effect,’’ IEEE Access, vol. 6, pp. 23470–23479, 2018, doi:
10.1109/ACCESS.2018.2829621.

[8] L. Zhu, S. Wang, and J. Zhu, ‘‘Adaptive beamforming design
for millimeter-wave line-of-sight MIMO channel,’’ IEEE
Commun. Lett., vol. 23, no. 11, pp. 2095–2098, Nov. 2019, doi:
10.1109/lcomm.2019.2936379.

[9] Q. Abdullah et al., ‘‘Maximising system throughput in wireless powered
sub-6 GHz and millimetre-wave 5G heterogeneous networks,’’ Telkom-
nika, vol. 18, no. 3, p. 1185, Jun. 2020, doi: 10.12928/telkomnika.

[10] A. Salh, L. Audah, Q. Abdullah, O. Aydogdu, M. A. Alhartomi,
S. H. Alsamhi, F. A. Almalki, and N. S. M. Shah, ‘‘Low computational
complexity for optimizing energy efficiency in mm-wave hybrid precod-
ing system for 5G,’’ IEEE Access, vol. 10, pp. 4714–4727, 2022, doi:
10.1109/ACCESS.2021.3139338.

[11] A. Salh, L. Audah, N. S. Mohd Shah, and S. Anuar Hamzah, ‘‘Energy-
efficient power allocation with hybrid beamforming for millimetre-wave
5G massive MIMO system,’’ Wireless Pers. Commun., vol. 115, no. 1,
pp. 43–59, Jun. 2020, doi: 10.1007/s11277-020-07559-w.

[12] J. Park, S.-L. Kim, and J. Zander, ‘‘Tractable resource management with
uplink decoupled millimeter-wave overlay in ultra-dense cellular net-
works,’’ IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4362–4379,
Jun. 2016, doi: 10.1109/TWC.2016.2540626.

[13] J. G. Andrews, T. Bai, M. Kulkarni, A. Alkhateeb, A. Gupta, and
R. W. Heath, ‘‘Modeling and analyzing millimeter wave cellular sys-
tems,’’ IEEE Trans. Commun., vol. 65, no. 1, pp. 403–430, Jan. 2017, doi:
10.1109/TCOMM.2016.2618794.

[14] P. Ferrand, M. Amara, S. Valentin, and M. Guillaud, ‘‘Trends and
challenges in wireless channel modeling for evolving radio access,’’
IEEE Commun. Mag., vol. 54, no. 7, pp. 93–99, Jul. 2016, doi:
10.1109/MCOM.2016.7509384.

[15] M. T. Dabiri and M. Hasna, ‘‘3D uplink channel modeling of UAV-
based mmWave fronthaul links for future small cell networks,’’ IEEE
Trans. Veh. Technol., vol. 72, no. 2, pp. 1400–1413, Feb. 2023, doi:
10.1109/TVT.2022.3209988.

[16] S. Zeb, A. Mahmood, S. A. Hassan, M. Gidlund, and M. Guizani, ‘‘Analy-
sis of beyond 5G integrated communication and ranging services under
indoor 3-D mmWave stochastic channels,’’ IEEE Trans. Ind. Informat.,
vol. 18, no. 10, pp. 7128–7138, Oct. 2022, doi: 10.1109/TII.2022.3146166.

[17] J. Ghosh, H. Haci, N. Kumar, K. A. Al-Utaibi, S. M. Sait, and C. So-In,
‘‘A novel channel model and optimal power control schemes for mobile
mmWave two-tier networks,’’ IEEE Access, vol. 10, pp. 54445–54458,
2022, doi: 10.1109/ACCESS.2022.3176320.

[18] S. Sun, G. R. MacCartney, and T. S. Rappaport, ‘‘A novel millimeter-wave
channel simulator and applications for 5G wireless communications,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), Paris, France, May 2017, pp. 1–7.

34542 VOLUME 11, 2023

http://dx.doi.org/10.1109/TBC.2021.3131864
http://dx.doi.org/10.23919/JCN.2020.000031
http://dx.doi.org/10.1109/LAWP.2022.3190324
http://dx.doi.org/10.1109/MVT.2020.3018436
http://dx.doi.org/10.1109/JMW.2020.3035541
http://dx.doi.org/10.1109/MWC.2019.8700132
http://dx.doi.org/10.1109/ACCESS.2018.2829621
http://dx.doi.org/10.1109/lcomm.2019.2936379
http://dx.doi.org/10.12928/telkomnika
http://dx.doi.org/10.1109/ACCESS.2021.3139338
http://dx.doi.org/10.1007/s11277-020-07559-w
http://dx.doi.org/10.1109/TWC.2016.2540626
http://dx.doi.org/10.1109/TCOMM.2016.2618794
http://dx.doi.org/10.1109/MCOM.2016.7509384
http://dx.doi.org/10.1109/TVT.2022.3209988
http://dx.doi.org/10.1109/TII.2022.3146166
http://dx.doi.org/10.1109/ACCESS.2022.3176320


R. A. Roshdy et al.: Methods for Simplifying QD mmWave Channel Models

[19] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport,
and E. Erkip, ‘‘Millimeter wave channel modeling and cellular capacity
evaluation,’’ IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179,
Jun. 2014, doi: 10.1109/JSAC.2014.2328154.

[20] I. Winner, ‘‘WINNER II channel models,’’ Inf. Soc. Technol., Finland,
Tech. Rep. IST-4-027756, 2007.

[21] J. Meinilä, P. Kyösti, T. Jämsä, and L. Hentilä, ‘‘WINNER II channel mod-
els,’’ in Radio Technologies and Concepts for IMT-Advanced. Chichester,
U.K.: Wiley, 2009, pp. 39–92.

[22] T. Zugno, M. Polese, N. Patriciello, B. Bojović, S. Lagen, and M. Zorzi,
‘‘Implementation of a spatial channel model for NS-3,’’ in Proc. Workshop
NS-3, New York, NY, USA, 2020, pp. 49–56.

[23] M. Lecci, M. Polese, C. Lai, J. Wang, C. Gentile, N. Golmie, andM. Zorzi,
‘‘Quasi-deterministic channel model for mmWaves: Mathematical formal-
ization and validation,’’ in Proc. IEEE Global Commun. Conf. (GLOBE-
COM), Taiwan, Dec. 2020, pp. 1–6.

[24] C. Lai, R. Sun, C. Gentile, P. B. Papazian, J. Wang, and J. Senic, ‘‘Method-
ology for multipath-component tracking in millimeter-wave channel mod-
eling,’’ IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1826–1836,
Mar. 2019, doi: 10.1109/TAP.2018.2888686.

[25] V. Degli-Esposti, ‘‘A diffuse scattering model for urban propagation pre-
diction,’’ IEEE Trans. Antennas Propag., vol. 49, no. 7, pp. 1111–1113,
Jul. 2001, doi: 10.1109/8.933491.

[26] R. Charbonnier, C. Lai, and T. Tenoux, ‘‘Calibration of ray-tracingwith dif-
fuse scattering against 28-GHz directional urban channel measurements,’’
IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 14264–14276, Dec. 2020,
doi: 10.1109/TVT.2020.3038620.

[27] M. Lecci, P. Testolina, M. Polese, M. Giordani, and M. Zorzi, ‘‘Accuracy
versus complexity for mmWave ray-tracing: A full stack perspective,’’
IEEE Trans.Wireless Commun., vol. 20, no. 12, pp. 7826–7841, Dec. 2021,
doi: 10.1109/TWC.2021.3088349.

[28] P. Testolina, M. Lecci, M. Polese, M. Giordani, and M. Zorzi, ‘‘Scalable
and accurate modeling of the millimeter wave channel,’’ in Proc. Int.
Conf. Comput., Netw. Commun. (ICNC), Big Island, HI, USA, Feb. 2020,
pp. 969–974.

[29] M. Lecci, P. Testolina, M. Giordani, M. Polese, T. Ropitault, C. Gentile,
N. Varshney, A. Bodi, and M. Zorzi, ‘‘Simplified ray tracing for the
millimeter wave channel: A performance evaluation,’’ in Proc. Inf. Theory
Appl. Workshop (ITA), San Diego, CA, USA, Feb. 2020, pp. 1–6.

[30] J. Senic, C. Gentile, P. B. Papazian, K. A. Remley, and J.-K. Choi, ‘‘Anal-
ysis of E-band path loss and propagation mechanisms in the indoor envi-
ronment,’’ IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6562–6573,
Dec. 2017, doi: 10.1109/TAP.2017.2722876.

[31] C. Gentile, P. B. Papazian, R. Sun, J. Senic, and J. Wang, ‘‘Quasi-
deterministic channel model parameters for a data center at 60 GHz,’’ IEEE
Antennas Wireless Propag. Lett., vol. 17, no. 5, pp. 808–812, May 2018,
doi: 10.1109/LAWP.2018.2817066.

[32] A. Maltsev, A. Pudeyev, I. Karls, I. Bolotin, G. Morozov, R. Weiler,
M. Peter, and W. Keusgen, ‘‘Quasi-deterministic approach to mmWave
channel modeling in a non-stationary environment,’’ in Proc. IEEE Globe-
com Workshops (GC Wkshps), Austin, TX, USA, Dec. 2014, pp. 966–971.

[33] F. Hossain, T. Geok, T. Rahman,M. Hindia, K. Dimyati, S. Ahmed, C. Tso,
and N. Abd Rahman, ‘‘An efficient 3-D ray tracing method: Prediction of
indoor radio propagation at 28 GHz in 5G network,’’ Electronics, vol. 8,
no. 3, p. 286, Mar. 2019, doi: 10.3390/electronics8030286.

[34] Y. Chen, Y. Li, C. Han, Z. Yu, and G. Wang, ‘‘Channel measurement and
ray-tracing-statistical hybrid modeling for low-terahertz indoor communi-
cations,’’ IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 8163–8176,
Dec. 2021, doi: 10.1109/TWC.2021.3090781.

RADWA A. ROSHDY received the B.Sc., M.Sc.,
and Ph.D. degrees from the Department of
Electronics and Communications Engineering,
Zagazig University, Zagazig, Egypt, in 2008,
2014, and 2020, respectively. She is currently an
Assistant Professor with the Department of Elec-
trical and Computer Engineering, Higher Techno-
logical Institute, 10th of Ramadan City. She was
a peer reviewer of SCI journals and a confer-
ence reviewer and organizer. Her research interests

include channel estimation, reconfigurable intelligent surfaces, channelmod-
eling, wireless communications, and the Internet of Things.

MOSTAFA H. DAHSHAN received the B.Sc.
degree in computer engineering from Cairo Uni-
versity, Egypt, in 1999, and the M.Sc. degree in
telecommunication systems and the Ph.D. degree
in electrical and computer engineering from The
University of Oklahoma, USA, in 2002 and 2006,
respectively. He is currently an Assistant Profes-
sor of computer engineering with the College of
Computer and Information Sciences, King Saud
University, Saudi Arabia. His research interests

include network security, wireless sensor networks, the Internet of Things,
and network optimization problems.

SALMAN A. ALQAHTANI (Member, IEEE) is
currently a Full Professor with the Department
of Computer Engineering, College of Computer
and Information Sciences, King Saud University,
Riyadh, Saudi Arabia. He is also a Senior Con-
sultant in computer communications, integrated
solutions, and digital forensics for few devel-
opment companies and government sectors in
Saudi Arabia. His main research interests include
radio resource management (RRM) for wireless

and cellular networks, such as 4G, 5G, the IoT, Industry 4.0, LTE, LTE
advanced, Femtocell, cognitive radio, and cyber sovereignty, with a focus
on call admission control (CAC), packet scheduling, radio resource sharing,
quality-of-service (QoS) guarantees for data services, performance evalua-
tion of packet-switched networks, system models, simulations and integra-
tion of heterogeneous wireless networks, and digital forensics.

AHMED EMAM received the B.Sc. degree from
Ain Shams University, Cairo, Egypt, the M.Sc.
degree from Menoufia University, Menoufia,
Egypt, and the Ph.D. degree from the Depart-
ment of Computer Science and Computer Engi-
neering, Speed Engineering School, University of
Louisville, Louisville, KY, USA, in Summer 2001.
From 2001 to 2021, he is currently a Professor of
information systems at the College of Computer
and Information Systems, King Saud University,

where he teaches database systems, data mining, and big data analytics. From
2022, he is currently the Dean of computer science and engineering collage,
King Salman International university, Egypt.

HOSSAM M. KASEM received the Ph.D. degree
from the Egypt–Japan University of Science
and Technology (E-JUST), Egypt, in 2015.
From 2015 to 2017, he was an Assistant Professor
with the Faculty of Engineering, Tanta University,
Egypt. From 2017 to 2019, he has been a Post-
Doctoral Fellow with the Research Institute for
Future Media Computing, Shenzhen University,
China. Since 2019, he is currently an Associate
Professor at electronics and electrical commu-

nications, faculty of engineering, Tanta university. His research interests
include deep-learning applications in digital multimedia analysis, wireless
communication, and signal-processing applications in multimedia.

MOHAMMED A. SALEM (Member, IEEE)
received the B.Sc. degree from the Department
of Electrical Engineering, Faculty of Engineering,
Higher Technological Institute, Egypt, in 2008,
and the M.Sc. and Ph.D. degrees from the
Department of Electronics and Electrical Com-
munications Engineering, Faculty of Engineering,
Al-Azhar University, Egypt, in 2014 and 2020,
respectively. He is a peer reviewer in many confer-
ences and SCI journals related to IEEE, Elsevier,

and Springer publishers. His current research interests include IEEE 802.11-
based wireless communications, the Internet of Things (IoT), 5G and beyond
communication systems, medium access control, channel estimation, vehic-
ular communications, and reconfigurable intelligent surface. He is a program
committee member of many conferences.

VOLUME 11, 2023 34543

http://dx.doi.org/10.1109/JSAC.2014.2328154
http://dx.doi.org/10.1109/TAP.2018.2888686
http://dx.doi.org/10.1109/8.933491
http://dx.doi.org/10.1109/TVT.2020.3038620
http://dx.doi.org/10.1109/TWC.2021.3088349
http://dx.doi.org/10.1109/TAP.2017.2722876
http://dx.doi.org/10.1109/LAWP.2018.2817066
http://dx.doi.org/10.3390/electronics8030286
http://dx.doi.org/10.1109/TWC.2021.3090781

