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ABSTRACT A limit cycle is a cyclic path of oscillation on which the states of a nonlinear system settle.
A considerable number of practical systems such as robots, converters, and heartbeat require generating
the sustainable oscillatory behaviours. The objective is to design a controller to generate limit cycle with
specific behaviours. In this paper, a novel fuzzy control (FC) strategy is introduced to create the limit-cycle
for nonlinear complex dynamics with unknown uncertainties. The suggested controller benefits from new
interval type-3 fuzzy logic, allowing the control synthesis to improve the quality of closed-loop response and
robust performance. The adaptively learned backstepping controller based on FC is employed to analyze the
convergence and robustness. Various simulations are proposed to ensure the efficiency of the fuzzy-based
control law and adaption rules.

INDEX TERMS Fuzzy logic, type-3 fuzzy control, limit cycle, machine learning, control.

I. INTRODUCTION
For applicationswhere the goal is to create oscillatingmotion,
the limit cycle is a very useful characteristic. Finding a cycle
is usually very difficult. LCs can be stable, unstable, or semi-
stable. Semi-stable limit cycles are cycles that are stable for
initial values inside the region enclosed by the limit cycle and
unstable for other regions [1].

In general, generating limit cycle (LC) needs analysis
of invariant sets rather than equilibrium points, thereby the
Lyapunov concepts should be revised to handle the prob-
lem. In nonlinear systems, a nonlinear control law such as
backstepping policy is required to be designed such that
trajectories of a system converge to the desired LC. More-
over, generating stable oscillations based on LC controller
may subject to external perturbations. Therefore, the robust-
ness of a system needs to be investigated. In the litera-
ture, a few number of papers explored the self-sustained
LC design procedure. For instance, a harmonic oscillator
was designed for nonlinear systems based on a backstep-
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ping procedure in [2], resulting in generating appropriate
self-sustained LC. Authors in [3] investigated the LC design
for elastic joint robots for regulating of the proposed energy
function for the system. The LC synthesis with tracking
problem was studied for systems exposed to uncertainties
and disturbances [4]. Authors in [5] designed a sliding
mode controller for the LC with dead-zone nonlinearity.
The design procedure was also developed for time-delay
systems [6] using concept of positive limit sets. Moreover,
synthesizing stable LC has been investigated for discrete-
time dynamics and in versus disturbances [7], [8]. The LC
control problem was studied by describing function method
and reducing the changes in LC amplitude and frequency [9].
The generation of the LC with matched/unmatched uncer-
tainties was analyzed in [10]. Resorting to a port-hamiltonian
model-based controller by Hamiltonian function, the LC was
designed in [11].

On the other hand, robust control techniques were used for
the stabilization of systems with uncertainties. For example,
super twisting sliding mode controller in [12] to deal with
external disturbances, robust MPC [13] for bounded distur-
bances, robust MPC to tackle parametric uncertainties [14],
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robustH∞ control in [15], have all been suggested in the past
couple of years.

Furthermore, the fuzzy logic systems have been suggested
in the literature widely to analyze and identify complexities
of the model for nonlinear systems. For instance, The concept
of fuzzy control has been also developed by using fuzzy
logic systems for systems without exact model and detailed
information of uncertainties and disturbances [16], [17]. Note
that there exists a significant number of papers in this field.
For instance, fractional order fuzzy control [18], type-2 (T2)
fuzzy with event-triggered mechanisms [19], non-singleton
type 2 fuzzy [20], and fuzzy output feedback for strict sys-
tems [21] have been proposed. Moreover, a tracking problem
of a mobile-robot was studied by a T2-FC as a torque con-
trol and genetic algorithms in [22]. A number of techniques
were utilized to develop the fuzzy based controllers [23]
in terms of reducing error signals. For tuning fuzzy logic
systems, authors in [24] suggested Ant Colony optimization
algorithms and then applied the fuzzy control to the mobile-
robot system. The interval T2-FCwas employed for a pH neu-
tralization experimental setup in [25]. The suggested fuzzy
logic system then extended based on optimization techniques
such as bang-big optimization in [26]. Recently, interval
type 3 fuzzy controllers have been employed for stabilization
with unknown dynamics [27], [28]. This approach is able to
increase the estimation accuracy, leading to robust perfor-
mance against unknown uncertainties without any informa-
tion of the upper bound or interval of variations [29], [30].
Based on type-3 fuzzy controls, uncertainties of systems
with a wider range of variations and higher values can be
analyzed [31], [32], [33].

Based on the literature review, the issue of LC synthesis of
nonlinear systems with unknown uncertainties is of utmost
importance and a fuzzy logic system can be used to tackle
the problem, resulting in creating the appropriate LC for a
wide range of physical plants with unknown uncertainties.
The aim is that the trajectories converge to the desired LC
and remaining in a boundary layer in the presence of uncer-
tainties. First, the LC control is proposed for the considered
second-order system, and then the stability of generated LC
is analyzed by a Lyapunov approach. A novel interval fuzzy-
based adaptive backstepping controller is also employed such
that appropriate stable oscillations are generated in the gen-
eral form. Since the system is exposed to unknown uncer-
tainties, the FC is used to estimate them. It is noticeable that
the advanced interval type 3 fuzzy-based control policy is
responsible for the approximation of uncertain dynamics and
disturbances, resulting in high accuracy and the rapid speed
of the convergence of error signals to zero and simultaneously
state trajectories to the limit cycle. As far as the authors
know, this matter has not been fully address yet, and the
design method of this paper outperform previous papers since
they all required exact model information of the system.
To conclude, the main contributions and difficulties are listed
as bellow:

• The FC is designed based on error signals to ensure
the robustness of a wide range of nonlinear systems
exposed to external disturbances/uncertainties without
having information about their variations. To construct
the type 3 fuzzy logic systems, it is important to opti-
mize the training parameters based on adaptive rules and
devise membership functions in a way that the degree of
freedom increases. Previous methods dealt with the LC
generations did not benefit from type 3 FLS. Although
improving the quality of approximation brings complex-
ities in designing the FC, havingmore degree of freedom
in the choice of parameters leads to better approximation
ability and more flexibility in terms encountering model
uncertainties. Therefore, the method of this paper is
more useful in practice when the variations of uncertain-
ties are high and impossible to predict or measure.

• The reference trajectories converges to the desired cyclic
path in a fast time due to the adaptive mechanism
employed in the structure of the control law.

• Lyapunov scheme is used to analyze the stability of
trajectories required to converge to the cyclic path which
in turn the robust stability is guaranteed in the under the
uncertainties.

II. PROBLEM FORMULATION

ẏ1 = y2
ẏ2 = f2(y1, y2) + g2(y1, y2)y3 + F2(y)
...

ẏn = fn(y) + gn(y) y3 + Fn(y) + u (1)

where y = [y1, y2, . . . , yn]T is the state variable, f (.)/g(.)
are nonlinearities while F(.) is an unknown function to be
approximated and u denotes controller. The objective is to
produce a LC in the existence of unknown an unknown
function and with predefined amplitude and frequency (see
Figs. 1- 2). As a result, the trajectories should converge to the
prescribed LC with following property

L = {y ∈ D ⊆ Rn
|ψ (y1, y2) = r2} (2)

where ψ (y1, y2) is a differentiable function and r > 0 is a
positive constant.
Definition 1: ẏ = f (y) (y ∈ D ⊆ Rn) with L ⊆ D is a

closed invariant set, if there exists a V (y) such that

• V (y) = 0 on the set L.
• V (y) > 0 in some neighbourhood of L, excluding L.
• V̇ (y) < 0 in D, except L.

Then, L is an exponentially stable positive LC.

III. TYPE-3 FUZZY CONTROL
In this section we illustrate the structure of type-3 fuzzy
control as depicted in Fig. 3.
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FIGURE 1. General diagram.

FIGURE 2. General diagram.

FIGURE 3. Structure of type-3 fuzzy control.

1) The inputs are y1(t), . . . , yn(t). 2) For all inputs, the
upper/lower memberships are obtained as:
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−
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3) The r − th rule is:

Rule#r : If y1is mr1,āk and y2 is m
r
2,āk

and y3 is mr3,āk Then ŷ ∈

[
y
r
, ȳr
]

(7)

where, mr1,āk , m
r
2,āk

and mr3,āk are r-th MF for y1, y2 and y3.
The firings are:

υrāk = σ
mj11,āk

(y1) σmj22,āk
(y2) σmj33,āk

(y3) (8)

υrak
= σ

mj11,ak
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(y3) (9)
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4) The output ŷ is given as [30]:

ŷ = yTµ (12)

where, y and µ are:

y =

[
y
1
, . . . , y

M
, ȳ1, . . . , ȳM

]T
(13)

µ =

[
µ
1
, . . . , µ

M
, µ̄1, . . . , µ̄M

]T
(14)

where,M is rule numbers, and µ
r
and µ̄r are:

µ̄r =

na∑
k=1

āk
ῡrāk

M∑
r=1

(
ῡrāk

+υrāk

)
na∑
k=1

(
āk + ak

)

+

na∑
j=1

ak
ῡrak

M∑
r=1

(
ῡrak

+υrak

)
na∑
k=1

(
āk + ak

) , r = 1, . . . ,M (15)

µ
r

=

na∑
k=1

āk
υrāk

M∑
r=1

(
ῡrāk

+υrāk

)
na∑
k=1

(
āk + ak

)

+

na∑
j=1

ak
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M∑
r=1

(
ῡrak

+υrak

)
na∑
k=1

(
āk + ak

) , r = 1, . . . ,M (16)

IV. MAIN RESULTS
The LC synthesis is partitioned as follows. First, consider the
following nonlinear system

ẏ1 = y2
ẏ2 = f2(y1, y2) + g2(y1, y2)y3 + F2(y) (17)

where F2(y) is assumed to have the form of F2(y) =

W T
2 82(y) in which W2 is a weight vector and 82(y) will be
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computed via the IT3FLS. Furthermore, y3 acts as a virtual
signal and is designed as follows

y3 = ϕ3(y1, y2)

=
1

g2(y1, y2)

(
−f2(y1, y2)
−kdξ (y1, y2)

(
ψ(y1, y2) − r2

)
− η(y1, y2)

−

(
∂ψ

∂y2

(
ψ(y1, y2)−r2

))[ 1

2a22
θ̂28

T
2 (y)82(y)+

1
2

])
(18)

Now the following Lyapunov function targets the LC

V2 =
1
2

(
ψ(y1, y2) − r2

)2
+

1
2r2

θ̃22 (19)

where r2, a2 are positive scalars considered as design param-
eters and θ̃2 = θ2 − θ̂2 denotes the estimation error of the
unknown parameter θ2. It can be deduced that V2 = 0 holds
for y ∈ L and the Lyapunov is positive definite. Indeed,
for the second-order system y1 = x2, y2 = F(y1, y2) +

G(y1, y2)u(t) where F(0, 0) = 0,G(y1, y2) ̸= 0, and u(t) =

ν(y1, y2) denotes the control signal such that the defined
LC of the structures 𭟋 = y ∈ R2, ψ(y1, y2) = r2 is
produced in y1 − y2 plane of the control system. As an
example, periodic solutions for y1(t) = A sin(ωt) and y2(t) =

Aω cos(ωt) are equivalent to the generation of the LC 𭟋 =

y ∈ R2, ω2y21 + y22 = (Aω)2 in the y1 − y2 plane. The deriva-
tive of V2 is:

V̇2 =

(
∂ψ

∂y1

(
ψ(y1, y2) − r2

))
ẏ1

+

(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))
ẏ2 −

1
r2
θ̃2

˙̂
θ2

=

(
∂ψ

∂y1

(
ψ(y1, y2) − r2

))
y2

+

(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))
[f2 − f2

− kdξ (y1, y2)
(
ψ(y1, y2) − r2

)
− η(y1, y2)

−

(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))
·

(
1

2a22
θ̂28

T
2 (y)82(y) +

1
2

)
+F2(y)

−
1
r2
θ̃2

˙̂
θ2 (20)

Based on the system model, one has

V̇2 =

(
∂ψ

∂y1

(
ψ(y1, y2) − r2

))
y2

−

(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))
kdξ (y1, y2)

−

(
∂ψ

∂y2
η(y1, y2)

(
ψ(y1, y2) − r2

))

−



(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))2

·

(
1

2a22
θ̂28

T
2 (y)82(y) +

1
2

)
·
∂ψ

∂y2

(
ψ(y1, y2) − r2

)
F2(y)


−

1
r2
θ̃2

˙̂
θ2 (21)

Now in order to deal with the uncertainties, it is assumed
that

F2(y) = W ∗T
2 82(y) + δ2(y); |δ2(y) | ≤ ε2 (22)

where W ∗

2 = arg min
W2

sup
y∈�y

|F2(y) − W ∗T
2 82(y) | denotes the

ideal weights to be determined and δ2(y) is the approximation
error. By doing some calculations, we have

∂ψ

∂y2

(
ψ(y1, y2) − r2

)
F2(y)

≤

∣∣∣∣ ∂ψ∂y2
(
ψ(y1, y2) − r2

)∣∣∣∣ (∥∥W ∗

2

∥∥ ∥82(y)∥ + ε2
)

≤
1

2a22

(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))2

θ28
T
2 (y)82(y)

+
a22
2

+
1
2

(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))2

+
ε22

2
(23)

in which θ2 = ∥W ∗

2 ∥
2. Moreover, one has

V̇2 ≤ −kdξ2(y1, y2)
(
ψ(y1, y2) − r2

)2
+
a22
2

+
ε22

2

+
1
r2
θ̃2


r2
2a22

(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))2

8T
2 (y)82(y)

−

.

θ̂
2


(24)

The adaptive law ˙̂
θ2 is as follows

˙̂
θ2 =

r2
2a22

(
∂ψ

∂y2

(
ψ(y1, y2) − r2

))2

8T
2 (y) 82(y) − δ2θ̂2

(25)

By considering the adaptation law in the upper bound
of V̇2, the following results are acquired

V̇2 ≤ −kdξ2(y1, y2)
(
ψ(y1, y2) − r2

)2
+
a22
2

+
ε22

2
+

1
r2
δ2θ̃2θ̂2 (26)

Since the upper bound of ˜̇V2 is continuous and positive with
respect to the LC, the domain of attraction for the LC can be
considered as 6 = {y : V2 ≤ c} which is an invariant set,
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meaning that for y0 ∈ 6 trajectories remain within the set as
y ∈ 6. . By defining z3 = y3 − ϕ3, one has

ẏ1 = y2
ẏ2 = f2(y1, y2) + g2(y1, y2)ϕ3 + g2(y1, y2)z3 + F2(y)

ż3 = f3(y1, y2, y3) + g3(y1, y2, y3)y4 + F3(y) − ϕ̇3 (27)

Now the Lyapunov function is modified as

V3 =
1
2

(
ψ − r2

)2
+

1
2r2

θ̃22 +
1
2r3

θ̃23 +
1
2
z23 (28)

Taking the time derivative of (28) results in

V̇3 =
∂V2
∂y1

ẏ1 +
∂V2
∂y2

ẏ2 −
1
r3
θ̃3

˙̂
θ3 + z3ż3

≤
˜̇V2 +

∂V2
∂y2

g2z3 −
1
r3
θ̃3

˙̂
θ3 + z3 [f3 + g3y4 + F3 − ϕ̇3]

(29)

Similar to the previous step, one has

F3(y) = W ∗T
3 83(y) + δ3(y); |δ3(y) | ≤ ε3 (30)

with W ∗

3 as ideal weights and δ3(y) as the approximation
error. Furthermore, it is straightforward to acquire the follow-
ing inequalities

z3F3 ≤ |z3|
(
∥W ∗

3 ∥∥83(y) ∥ + ε3
)

≤
1

2a23
z23θ38

T
3 (y) 83(y) +

a23
2

+
z23
2

+
ε23

2
(31)

which results in

V̇3 ≤
˜̇V2 +

∂V2
∂z2

g2z3 −
1
r3
θ̃3

˙̂
θ3 + z3 [f3 + g3y4 − ϕ̇3]

+
1

2a23
z23θ38

T
3 (y) 83(y) +

a23
2

+
z23
2

+
ε23

2
(32)

Consider the virtual input as

y4 = ϕ4

=
1
g3

−f3 + ϕ̇3 − c3z3

−
1

2a23
z3θ̂38T

3 (y)83(y) −
∂V2
∂y2

g2

 (33)

Then, the following holds

V̇3 ≤
˙̃V 2

+
1

2a23
z23θ38

T
3 (y)83(y) +

a23
2

+
z23
2

+
ε23

2

−
1
r3
θ̃3

˙̂
θ3 − c3z23

≤
˙̃V 2 +

a23
2

+
z23
2

+
ε23

2

− c3z23 +
1
r3
θ̃3

(
1

2a23
z238

T
3 (y)83(y) −

˙̂
θ3

)
(34)

As a result, the adaptation policy is as follows

˙̂
θ3 =

r3
2a23

z238
T
3 (y) 83(y) − δ3θ̂3 (35)

Considering (54), the upper bound of V̇3 in (53) is
acquired as

V̇3 ≤
˜̇V2 +

a23
2

+
z23
2

+
ε23

2
+

1
r3
δ3θ̃3θ̂3 − c3z23 =

˜̇V3 (36)

By defining z4 = y4 − ϕ4 it can be deduced that

ẏ1 = y2
ẏ2 = f2(y1, y2) + g2(y1, y2)ϕ3

+ g2(y1, y2)z3 + F2(y)

ż3 = f3(y1, y2, y3) + g3(y1, y2, y3)ϕ4
+F3(y) + g3(y1, y2, y3)z4

ż4 = f4(y1, y2, y3, y4) + g4(y1, y2, y3, y4)y5
+F4(y) − ϕ̇4 (37)

We reform the Lyapunov candidate as follows

V4 = V3 +
1
2r4

θ̃24 +
1
2
z24 (38)

Taking the time derivative of V4 gives rise to

V̇4 =
∂V3
∂y1

ẏ1 +
∂V3
∂y2

ẏ2 +
∂V3
∂z3

ż3 −
1
r4
θ̃4

˙̂
θ4 + z4ż4 (39)

Similar to the previous steps, one has

V̇4 ≤
˙̃V 3 +

∂V3
∂z3

g3z4 −
1
r4
θ̃4

.

θ̂
4

+ z4 [f4 + g4y5 + F5 − ϕ̇4]

(40)

Next, the following inequality is achieved

z4F4 ≤ |z4|
(
∥W ∗

4 ∥∥84(y) ∥ + ε4
)

≤
1

2a24
z24θ48

T
4 (y) 84(y) +

a24
2

+
z24
2

+
ε24

2
(41)

Therefore, it can be deduced that

V̇4 ≤
˜̇V3 +

∂V3
∂z3

g3z4 −
1
r4
θ̃4

˙̂
θ4 + z4 [f4 + g4y5 − ϕ̇4]

+
1

2a24
z24θ48

T
4 (y) 84(y) +

a24
2

+
z24
2

+
ε24

2
(42)

Now by designing a virtual input as

y5 = ϕ5

=
1
g4

−f4 + ϕ̇4 − c4z4

−
1

2a24
z4θ̂48T

4 (X4)84(X4) −
∂V3
∂z3

g3

 (43)

and the adaptive law as

˙̂
θ4 =

r4
2a24

z248
T
4 (y) 84(y) − δ4θ̂4 (44)

leads to

V̇4 ≤
˜̇V3 +

a24
2

+
z24
2

+
ε24

2
+

1
r4
δ4θ̃4θ̂4 − c4z24 (45)
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As a result we can partition the synthesis into two parts. First,
for q = 2, we have

uq =
1

g2(y1, y2)

(
−f2(y1, y2)

− kdξ (y1, y2)
(
ψ(y1, y2) − r2

)
− η(y1, y2)

−

(
∂ψ

∂y2

(
ψ(y1, y2)−r2

))[ 1

2a22
θ̂28

T
2 (y)82(y)+

1
2

])
(46)

with the Lyapunov function as

V2 =
1
2

(
ψ(y1, y2) − r2

)2
+

1
2r2

θ̃22 (47)

Second, for q ≥ 3, it can be deduced that

uq =
1
gq

− fq + ϕ̇q − cqzq

−
1
2a2q

zqθ̂q8T
q (y)8q(y) −

∂Vq−1

∂zq−1
gq−1 (48)

And the Lyapunov for the n-th step as follows

Vn =
1
2

(
ψ(y1, y2) − r2

)2
+

1
2

n∑
j=3

z2j +
1
2

n∑
j=2

1
2rj
θ̃2j (49)

By applying the control signal to the system we have

V̇n ≤ −kdξ2(y1, y2)
(
ψ(y1, y2) − r2

)2
+

n∑
j=2

(
δj

2rj
θ2j +

1
2
ε2j +

1
2
α2j

)
(50)

This inequality satisfies that ensures that trajectories remain
bounded, ensuring that closed-loop trajectories converge to
the neighbourhood of the determined LC. By developing the
approximation quality of unknown functions, the trajectories
converge quickly and accurately to the LC.

V. CALCULATION REDUCTION
Lemma 1: The Levent’s first order differentiator has the

following equations

α̇0(t) = −L0|α0(t) − ϕ(t)|
1
2 sign(α0(t) − ϕ(t) ) + α1(t)

α̇1(t) = −L1sign(α0(t) − ϕ(t) ) (51)

where ϕ(t) and α0(t), α1(t) denotes input and outputs of the
differentiator and also L0,L1 are positive constants.
Since the computation of ϕ̇i is an unsurmountable problem

in practice, in this section we modify the synthesis such that
the calculation load is reduced. To tackle this issue and based
on the Lemma 1 with α2,0 = ϕ3(t) , α2,1 = ϕ̇3(t), µ2 =

α2,1 − ϕ̇3(t), |µ2| ≤ µ̄2, the virtual input is designed as

y4 = ϕ4

=
1
g3

−f3 + α2,1 − c3z3

−
1

2a23
z3θ̂38T

3 (y)83(y) −
∂V2
∂y2

g2

 (52)

Therefore the following inequality holds

V̇3 ≤
˙̃V 2 +

1

2a23
z23θ38

T
3 (y)83(y)

+
a23
2

+
z23
2

+
ε23

2
−

1
r3
θ̃3

˙̂
θ3 − c3z23

+ z3
(
α2,1 − ϕ̇3

)
≤

˙̃V 2 +
a23
2

+
z23
2

+
ε23

2
− c3z23 + |z3|µ̄2

+
1
r3
θ̃3

(
1

2a23
z238

T
3 (y)83(y) −

˙̂
θ3

)
(53)

And the adaptation policy is obtained as

˙̂
θ3 =

r3
2a23

z238
T
3 (y) 83(y) − δ3θ̂3 (54)

Considering (54), the upper bound of V̇3 in (53) is acquired
as

V̇3 ≤
˙̃V 2 +

a23
2

+
z23
2

+
ε23

2

+
1
r3
δ3θ̃3θ̂3 − c3z23 + |z3|µ̄2

=
˙̃V 3 + |z3|µ̄2 (55)

Now by considering z4 = y4 − ϕ4, one has

ẏ1 = y2
ẏ2 = f2(y1, y2) + g2(y1, y2)ϕ3 + g2(y1, y2)z3

+F2(y)

ż3 = f3(y1, y2, y3) + g3(y1, y2, y3)ϕ4
+F3(y) + g3(y1, y2, y3)z4

ż4 = f4(y1, y2, y3, y4) + g4(y1, y2, y3, y4)y5
+F4(y) − ϕ̇4 (56)

Moreover, the Lyapunov function is employed as

V4 = V3 +
1
2r4

θ̃24 +
1
2
z24 (57)

The time derivative of V4 is acquired as

V̇4 =
∂V3
∂y1

ẏ1 +
∂V3
∂y2

ẏ2 +
∂V3
∂z3

ż3 −
1
r4
θ̃4

˙̂
θ4 + z4ż4 (58)

Similar to the previous steps, it can be achieved that

V̇4 ≤
˙̃V 3 +

∂V3
∂z3

g3z4 −
1
r4
θ̃4

.

θ̂
4

+ z4 [f4 + g4y5 + F5 − ϕ̇4] (59)

Furthermore, we have

z4F4 ≤ |z4|
(
∥W ∗

4 ∥∥84(y) ∥ + ε4
)

≤
1

2a24
z24θ48

T
4 (y) 84(y) +

a24
2

+
z24
2

+
ε24

2
(60)
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which leads to

V̇4 ≤
˜̇V3 +

∂V3
∂z3

g3z4 −
1
r4
θ̃4

˙̂
θ4 + z4 [f4 + g4y5 − ϕ̇4]

+
1

2a24
z24θ48

T
4 (y) 84(y) +

a24
2

+
z24
2

+
ε24

2
(61)

Based on a virtual input as follows

y5 = ϕ5

=
1
g4

·

−f4 + α3,1 − c4z4

−
1

2a24
z4θ̂48T

4 (X4)84(X4) −
∂V3
∂z3

g3

 (62)

and the adaptive law as

˙̂
θ4 =

r4
2a24

z248
T
4 (y) 84(y) − δ4θ̂4 (63)

one has

V̇4 ≤
˜̇V3 +

a24
2

+
z24
2

+
ε24

2
+

1
r4
δ4θ̃4θ̂4 − c4z24 + |z4|µ̄3

(64)

To conclude, the synthesis can be defined in the framework
of the two parts. First, for q = 2, one has

uq =
1

g2(y1, y2)

·

−f2(y1, y2) − kdξ (y1, y2)
(
γ (y1, y2) − r2

)
−η(y1, y2) −

[
∂γ

∂y2

(
γ (y1, y2) − r2

)]

·

 1

2a22
θ̂28

T
2 (y)82(y) +

1
2

 (65)

with the Lyapunov function as

V2 =
1
2

(
γ (y1, y2) − r2

)2
+

1
2r2

θ̃22 (66)

Second, for q ≥ 3, it can be deduced that

uq =
1
gq

·

−fq + αn−1,1 − cqzq

−
1
2a2q

zqθ̂q8T
q (y)8q(y) −

∂Vq−1

∂zq−1
gq−1

 (67)

And the Lyapunov for the n-th step as follows

Vn =
1
2

(
γ (y1, y2) − r2

)2
+

1
2

n∑
j=3

z2j +
1
2

n∑
j=2

1
2rj
θ̃2j (68)

Moreover, implementing the control signal for the system
gives rise to

V̇n ≤ −kdξ2(y1, y2)
(
γ (y1, y2) − r2

)2
+

n∑
j=2

(
δj

2rj
θ2j +

1
2
ε2j +

1
2
α2j

)
+

n−1∑
j=2

|zj+1|µ̄j (69)

FIGURE 4. The convergence efficiency of generated LC.

FIGURE 5. The trajectory of y1.

FIGURE 6. The trajectory of y2.

VI. SIMULATION RESULTS
Example 1: Consider the model of the single-link flexible

joint robot system as follows:

ẏ1 = y2
ẏ2 = sin y1 − 7.5 y1 + y3 + F2(t, y)
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FIGURE 7. The trajectory of y3.

FIGURE 8. The trajectory of y4.

FIGURE 9. The of y1 with 70% loss of effectiveness.

ẏ3 = y4
ẏ4 = y3 + 225y1 + 15 u+ F4(t, y) (70)

where F2(t, y)/F4(t, y) are unknown functions. The aim is to
generate a LC of the form L = {y ∈ D ⊆ R2y21 + y22 = 1} in
the y1 − y2 plane. By the introduced method, the stable LC is
designed and demonstrated in Fig. 4. Moreover, trajectories
and adaption parameters are portrayed in Figs. 5–8. From
simulations it is confirmed that closed-loop signals in the
presence of unknown functions converge to an appropriate

FIGURE 10. The trajectory of y2 with 70% loss of effectiveness.

FIGURE 11. The trajectory of y3 with 70% loss of effectiveness.

FIGURE 12. The trajectory of y4 with 70% loss of effectiveness.

LC, resulting in creating oscillatory behaviours in the state
trajectories. Furthermore, simulations show that the effects of
uncertainties are mitigated, resulting in desirable responses.
Now consider the following dynamic

ẏ1 = y2
ẏ2 = φ2 sin y1 − 7.5 y1 + y3 + F2(t, y)

ẏ3 = y4
ẏ4 = φ4y3 + 225y1 + 15 u+ F4(t, y) (71)
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FIGURE 13. The trajectory of y1 with 80% loss of effectiveness.

FIGURE 14. The trajectory of y2 with 80% loss of effectiveness.

FIGURE 15. The trajectory of y3 with 80% loss of effectiveness.

To compare the results with conventional method of [10] in
our simulations we consider

φ2 ∈ [−20, 20],

φ4 ∈ [−20, 20],

F2(t, y) = (sin(t + π/4)) + tanh(y2),

F4(t, y) = (sin(t + π/3)) + tanh(y4) (72)

and Fig. 5 verifies the priority of the approach of this paper.
It is obvious that the conventional method fails to acquire
the convergence in the presence of considered values for

FIGURE 16. The trajectory of y4 with 80% loss of effectiveness.

FIGURE 17. The trajectory of y1 in the presence of noise.

FIGURE 18. The trajectory of y2 in the presence of noise.

F2(t, y)/F4(t, y) while the control method of this paper tack-
les uncertainties and trajectories converge to the desired LC.
To explore the effectiveness of the T3 compared to T2
proposed in [34], we conduct simulations for the unknown
external disturbances

φ2 ∈ [−40, 40],

φ4 ∈ [−40, 40],

F2(t) = 2(sin(t + π/4)) + 2 tanh(y2),

F4(t) = 2(sin(t + π/3)) + 2 tanh(y4) (73)
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FIGURE 19. The trajectory of y3 in the presence of noise.

FIGURE 20. The trajectory of y4 in the presence of noise.

FIGURE 21. The convergence of trajectories to the generated LC with 70%
loss of effectiveness.

It is noticeable that the method of method of [10] is not able
to tackle uncertainties with such range of variations. It can be
seen from Fig. 6 that the T3 FLS used in the control method of
this paper is able to tackle uncertainties. From the comparison
analysis, trajectories of the controlled system suggested by
this paper well converge to LC and the can be seen that
the convergence rate is appropriate. Moreover, the transient
response is more smooth, verifying that the suggested control
method enhanced the transient response and convergence

FIGURE 22. The convergence of trajectories to the generated LC with 80%
loss of effectiveness.

FIGURE 23. The convergence of trajectories to the generated LC in the
presence of noise.

speed remarkably. Moreover, the accuracy of the proposed
scheme is much higher than employing T2 fuzzy logic system
proposed in. It is noticeable that previous methods require
specific bound for φ2/φ4 while the method of this paper
approximate uncertainties due to the terms φ2 sin y1/φ4y3 and
F2(t, y)/F4(t, y) by advanced fuzzy logic systems.

To illustrate the usefulness of the proposed approach
against faulty control signal and additive white Gaussian
noise, two scenarios are simulated. First it is shown that
in Figs. 9–16, the suggested method is able to cope with
70% and 80% loss of effectiveness, corroborating the fault-
tolerant capability of the suggested method. Then, the effect
of noise is analyzed and demonstrated in Figs. 17–20
while the stable LC is designed and demonstrated in
Figs. 21–23. From simulations, despite the inappropriate
effects of fault which deteriorate the efficiency of the actuator,
the T3-based FC benefited from the adaptive structure of
modern T3 FLS, compensates loss of effectiveness and the
improves the robustness.

VII. CONCLUSION
This paper dealt with the design of the LC for nonlin-
ear systems with uncertainties. Based on a advanced fuzzy
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logic theorem, the synthesize improved, resulting in oscilla-
tory behaviours of trajectories. Moreover, the backstepping
technique was employed. From simulations it is confirmed
that trajectories in the presence of unknown functions con-
verge to the desired LC, resulting in creating oscillatory
behaviours in the state trajectories. Furthermore, simulations
show that the effects of uncertainties are mitigated, result-
ing in desirable responses of the closed-loop system. Future
work will be imposing the constraints on the control signals
and considering actuator saturations. This constraint is a
physical challenging issue required further attention. Another
improvement is developing an algorithm to determine the
value of design parameters in an optimized way.
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