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ABSTRACT The power sector bears significant responsibility for achieving carbon neutrality. Low-carbon,
high-flexibility generation technologies are pivotal in the generation mix of the foreseeable future. In this
paper, a mixed-integer operation model of combined-cycle gas-turbine generators is developed, featuring a
new mode-based modeling of post-combustion carbon capture plants. The model is applied to a day-ahead
adaptive robust unit commitment problem considering wind power uncertainties. Numerical results from a
case study on amodified 39-bus benchmark system demonstrate the correctness and practicality of themodel.
Compared to the linear model widely adopted in the literature, the proposed mode-based model achieves a
4.91% wider operating range in the net electric power output. Besides, the initial solvent ratio is identified
as a non-negligible parameter for the short-term operation of carbon capture plants, whose optimal setting
leads to a wider operating range in the net electric power output of up to 21.96%.

INDEX TERMS Adaptive robust optimization, carbon capture plant, CCUS, unit commitment.

NOMENCLATURE
Acronyms:

ARO Adapative robust optimization
C&CG Column & constraint generation
CCGT Combined-cycle gas turbine
CCP Carbon capture plant
CCSP Chance-constrained stochastic programming
DRO Distributionally robust optimization
ED Economic dispatch
MR Maximum regeneration
PTDF Power transfer distribution factor
RO Robust optimization
RPL Regular part-load
SP Stochastic programming

The associate editor coordinating the review of this manuscript and

approving it for publication was Ragab A. El-Sehiemy .

SS Solvent storage
UC Unit commitment

Parameters:

Ŕ generator maximum ramp-up power (MW/hour)
1W dn wind power forecast error lower bound (MW)
1W up wind power forecast error upper bound (MW)
R̀ generator maximum ramp-down power

(MW/hour)
f power transmission line capacity (MW)
m solvent storage tank capacity (103 kg)
P generator maximum output power (MW)
P generator minimum output power (MW)
Ŵ wind power scenario (MW)
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amr
0 constant term in the net power output deviation

model of the CCGT-CCP under MR mode (MW)
arpl0 constant term in the net power output model of the

CCGT-CCP under RPL mode (MW)
asol,mr
0 constant term in the inbound solvent flow

model of the CCP under MR mode (103 kg)
asol,ss0 constant term in the outbound solvent flow

model of the CCP under SS mode (103 kg)
ass0 constant term in the net power output deviation

model of the CCGT-CCP under SS mode (MW)
amr
1 coefficient in the net power output deviation

model of the CCGT-CCP under MR mode
(MW/percentage)

arpl1 coefficient in the net power output model of the
CCGT-CCP under RPL mode (MW/percentage)

asol,mr
1 coefficient in the inbound solvent flow

model of the CCP under MR mode
(103 kg/percentage)

asol,ss1 coefficient in the outbound solvent flow
model of the CCP under SS mode
(103 kg/percentage)

ass1 coefficient in the net power output deviation
model of the CCGT-CCP under SS mode
(MW/percentage)

Bd weighted sum of PTDF of bus loads
Bw weighted sum of PTDF of wind farms
cfuel generator operation variable cost ($ 100/MW)
cls load shedding penalty cost ($ 100/MW)
con generator operation fixed cost ($ 100)
csu generator start-up cost ($ 100/MW)
cwc wind curtailment penalty cost ($ 100/MW)
D system load forecast (MW)
hgen PTDF of generators
M the uncertainty budget
m0 initial solvent mass in the storage tank (103 kg)
V off generator minimum off periods
V on generator minimum on periods
W wind power forecast (MW)

Sets:

G the index set of dispatchable generators
GCCP the index set of CCGT-CCPs
Gcoal the index set of coal-fired generators
GGT the index set of GT generators
L the index set of transmission lines
T the index set of dispatch periods
U the uncertainty set

Decision Variables:

pe electric power outputs; continuous
pls shedded load power; continuous
pwc curtailed wind power; continuous
s auxiliary variables for start-up indicator
udn wind forecast error lower bound indicator
uup wind forecast error upper bound indicator

v commitment state indicator
x output level of CCGT in percentage; continuous
y SS mode indicator
z MR mode indicator
2 the value function of the recourse problem

I. INTRODUCTION
The latest IPCC assessment report predicts that global warm-
ing of 1.5◦C would likely be exceeded in the near term
(before 2040) if a very high greenhouse gas emission remains
the status quo [1]. Coaction among key sectors such as energy,
industry, transport, and agriculture is decisive to climate
change mitigation and adaptation. Deep decarbonization of
the power sector bears significant responsibility for achieving
carbon neutrality. Extremely high or even 100% renewable
energy power systems is one solution to decarbonization [2].
However, the feasibility of such systems correlates primar-
ily to the abundance and geographical distribution of nat-
ural resources [3]. For instance, a recent comprehensive
review of the development of renewable energy sources in
Egypt indicates that the current integration level has already
challenged the power grid [4]. Therefore, utilizing a diver-
sity of low-carbon generation technologies, such as biomass
power generation or fossil fuel generation plants with carbon
captures, could be more attractive from an economic perspec-
tive [5]. A bibliometric analysis of recent reports on carbon
capture and storage project investment and planning can be
found in [6].

In research on the operation of bulk power systems, genera-
tors with carbon capture plants (CCPs) have drawn increasing
attention. Reference [7] considered CCPs in a single-period
robust environmental economic dispatch (ED) problem,
addressing a trade-off between the power system’s operation
cost and carbon emission. In [8], [9], and [10], multi-period
ED problems were studied, considering CCPs as contributors
to system flexibility and other flexibility sources such as
demand response and battery-based energy storage systems.
Uncertainties about renewable energy were tackled with
stochastic programming and robust interval optimization.
Besides, [10] reported results under a carbon-trading market
setting where the power system is operated in a distributed
manner. Given that natural gas is a cleaner primary energy
source compared to coal, [11] and [12] considered CCPs
in electricity-gas co-optimization problems. Reference [11]
demonstrated the benefits of a carbon-cycle nexus which
consists of fossil-fuel generators with CCPs and power-
to-gas equipment, especially its contribution to decreasing
wind power curtailment. Reference [12] proposed a chanced-
constrained stochastic programming model to balance the
risk of system power mismatch and the costs from CCPs and
demand response.

Studies on the operation of integrated energy systems
give rising prominence to CCPs as well. In [13], [14],
[15], [16], and [17], the carbon-cycle nexus was integrated
into multi-period ED problems. The nexus includes new
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technologies such as supercritical carbon-cycle systems and
waste incineration. For uncertainties, chance-constrained
stochastic programming and data-driven robust optimization
are used. For moderately large-scale systems, electricity-gas
co-optimization problems are also interesting. In [18],
a multi-period unit commitment (UC) model was proposed
to quantify the potential synergy of CCPs, demand response,
and electric vehicles. Fuzzy chance-constrained stochastic
programming was adopted to treat uncertainties.

The operational models of CCPs in the above-motioned
literature were uniformly based on or simplifications of the
work of Chen and co-authors as in [19]. However, different
models of CCPs highlighting several interesting aspects of
operation problems were proposed in a handful of papers.
[20] offered a multi-layer decision support framework, aim-
ing at year-long revenue maximization of the generation
enterprise. The bottom-level dynamic model of the CCPs
was navigated by the middle-level model-predictive control
scheme, which was further embedded into the top-level eco-
nomic optimization model. Price signals of both electricity
and carbon tradingwere directly fed into the top level. Neither
other Gen-Cos nor the transmission system was considered.
In [21], neural networks were used to fit the static model
of CCPs. The multi-input multi-output model maps internal
variables to external variables of the operation of the CCPs,
resulting in a black-box correlation model. Albeit giving a
panoramic view of the operational details, the model was set
to support equipment installation and phase-out decisions.
The scheduling problem was considered in a succinct form.
In [22], the modeling methodology was similar to that in [19],
though the emphasis was monetary. It’s noteworthy that the
model also took into account variations in coal quality. Unit
commitment without transmission constraints was used as the
base problem.

A systemic characterization of the related pieces of litera-
ture is summarized in Table 1. Surprisingly, [19] stands out
as the predominant source of the modeling of CCPs in power
system operations research. 13 out of 16 papers adopted the
original or a simplified model as in [19]. As will be shown in
Section II, the model in [19] is coarse yet basically correct,
let alone the absence of empirical evidence supporting the
model’s correctness. Additionally, solvent storage in CCPs
is ignored in most papers. Integrating solvent storages in
CCPs will greatly widen the operating range of the net power
output, which benefits power systems’ flexibility from the
generation side. Finally, uncertainties about renewable ener-
gies will only be more prominent in deep decarbonization.
Proper treatment of uncertainties in power system operation
problems is necessary.

This work aims to contribute to the above discourse, focus-
ing on the operational modeling of CCPs for short-term
operation scheduling of power systems under uncertainties.
Specifically,
• A new mode-based model of CCPs is proposed. The
modeling builds upon new empirical evidence in [23] on
the optimal operation of CCPs. The model follows a new

set of operation modes of CCPs. The net power outputs
of the combined-cycle gas turbine (CCGT) under each
operation mode of CCPs are described by mixed-integer
affine expressions.

• An adaptive robust day-ahead UC model is devel-
oped considering the mixed-integer CCGT-CCP model.
Uncertainties from wind powers are modeled using the
box set with cardinal constraint (uncertainty budget).
The problem is solved by the duality-based column &
constraints generation decomposition method.

• The storage tank’s initial solvent ratio is identified as
a meaningful operation parameter in short-term power
system operation problems. Justification is based on
numerical results from a case study.

The rest of this paper is outlined as follows. Section II
presents the proposed mode-based model of CCPs and
the mixed-integer operational model of the CCGT-CCPs.
Section III briefs the mathematical formulation of the adap-
tive robust UC problem and the column & constraint gener-
ation decomposition method. The configuration of the case
study is given in Section IV. Numerical results and discussion
are delivered in Section V. Section VI concludes the paper
and directs to future works.

II. A MIXED-INTEGER OPERATIONAL MODEL OF THE
CCGT-CCP
This Section introduces the proposed mixed-integer opera-
tional model of the CCGT-CCP after a quick examination of
the workflow of the CCP and a concise survey of the line of
work on the operational modeling of CCPs for power system
operation problems.

A. THE OPERATION WORKFLOW OF CCPs
Figure 1 depicts a typical carbon capture plant with solvent
storage. Flue gas from the main boiler is first fed into the
bottom of the absorber. It will confront the showering-down
lean solvent along the way up. A large percentage of the
CO2 in the flue gas will be absorbed into the lean solvent
during the process. The lean solvent becomes ‘rich’ after
being loaded with CO2 and will be pumped into the stripper.
The rich solvent unloads the captured CO2 in the stripper.
The unleashed CO2 expands to the top while the regenerated
lean solvent falls to the bottom. The lean solvent will then be
recirculated back to the top of the absorber to continue the
loop.

It is self-evident that the circulation of the solvent should
keep up with the flow rate of the flue gas if a fixed per-
centage of carbon capture (usually called the capture rate) is
targeted. Consequently, the flow rate of the lean solvent and
the rich solvent are bonded. As the stripper, more precisely
the reboiler, is heated by the medium-/low-pressure steam
extracted from the main boiler, the electricity generation
suffers from a fixed loss (usually called the energy penalty).
Such inflexibility is undesirable in the evolving generation
mix comprising excessive intermittent and fluctuant energy
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TABLE 1. Systematic characterization of related literature.

FIGURE 1. Operation workflow of a typical carbon capture plant with solvent storages [24].

sources such as wind and solar power. Enhancing CCPs’
flexibility holds both technical and economic value.

B. COMMENTS ON KEY REFERENCES
To the best of the authors’ knowledge, the concept of flex-
ible operation of the CCPs was first proposed in [25] by
Lucquiaud and colleagues. CCP with solvent storage was
shown to be beneficial to the flexibility of the host generation
plant. The paper documented a key observation that with
solvent storage, solvent regeneration could be temporally
decoupled from the host plant’s main boiler, which is the
heat source of both electricity generation and carbon capture.
The decoupling enables the operator to adjust the intensity
of solvent regeneration, hence the net electric power output
of the generator, in response to electricity price signals. The

modeling counted detailed thermo-dynamics. However, the
overall focus of the work is on plant-wise operation.

In [19], Chen and co-authors introduced the operation of
CCPs to the power systems operation research community.
Post-combustion capture plants with aqueous solvent storage
were regarded as the most mature technology. A mathemat-
ical model of the operations of CCPs was established by
employing a set of external variables. Internal workings were
masked by the efficiency parameter. Despite its suitability
for power systems operation problems, the model fails to
appreciate the flexibility of the reboiler. It attributes altered
energy penalties entirely to variants in the quantity of flue
gas that needs to be processed, either due to a changed
output level of the main boiler or the percentage of flue
gas that the CCP bypasses. Besides, the model was devel-
oped assuming all internal mechanisms of CCPs are roughly
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linear, yet no validating evidence was provided to support the
premise.

In [26], Martens and co-authors proposed a mixed-integer
model of CCPs for UC problems. The model distinguished
the ‘off’ state and the ‘standby’ state of CCPs. The former
refers to a complete halt of the whole system, with no heat
consumption from the main boiler. The latter refers to a
minimum heat consumption that is just enough to keep the
CCP on but impossible to perform carbon capture. The model
also accounted for the start-up state of CCPs. It acts as a
necessary transition from the ‘off’ state to the ‘standby’ or
the ‘on’ state. It may also better estimate the carbon emission
during the state transition. Although themodel is intuitive and
resembles the UC model of generators, its rationality bears
the burden of proof. Note that a typical dispatch period in
UC is 1 hour. It is questionable why the cold reboiler would
need such a long time to heat up, given its designed thermal
capacity is only a fraction of the main boiler. As every state
asks for its corresponding binary variable whose quantity has
a considerable influence on the performance and scalability
of the model, the necessity of the off state begs further
examination.

What is also worth mentioning is that all the host gener-
ation plants considered in the works mentioned above are
coal-fired thermal plants. CCGTs might be more favorable
over coal-fired thermal plants from several aspects, such
as efficiency, flexibility, and carbon emission intensity. The
relevance of CCGTs in future generation mix potentially
overshadows that of coal-fire thermal plants.

In contrast, the work of Spitz and co-authors in [23] distin-
guishes itself from [19], [25], and [26] in the following three
aspects:
• The study was conducted using state-of-the-art commer-
cial simulation software. The power cycle and the carbon
capture process are modeled in gPROMS, and the gas-
turbine model is provided by Thermoflow GT Master.
Both models are dynamic.

• The adopted control strategy on the CCP was clarified.
The reasoning behind the adoption was also documented
based on a comparison of common control strategies in
the literature and a clear statement of the authors’ design
intent.

• Internal operation variables such as stripper pressure
were optimized to achieve the lowest energy penalty.
The resulting characterization of external operation vari-
ables can be directly used by steady-state models such as
day-ahead UC and ED problems.

Accordingly, the results in [23] lay an updated and more solid
foundation for modeling CCPs in power system operation
research.

C. THE PROPOSED MODE-BASED MODEL OF CCPs
The following mode-based model of the CCPs is proposed
regarding the spotted gaps. It extrapolates the results in [23],
giving a generic description of the operation of CCPs. The
operation is conceptualized to consist of 4 distinct modes:

1) The bypass mode
The bypass mode refers to the ‘off’ state of the CCP.
Contrary to [26], the ‘off’ state and the ‘standby’ state
of the CCP are lumped together. Under the bypass
mode, the flue gas emitted from the main boiler is
not processed and is entirely vented into the atmo-
sphere. From the power system operators’ standpoint,
the mathematical model of the whole plant falls back
to the host generation plant.

2) The regular part-load (RPL) mode
The regular part-load mode of the CCP accompa-
nies the part-load operation of the host generation plant.
Under this mode, the CCP is controlled to keep a
constant capture rate. A fixed proportion of CO2 is
captured anywhere in the operation range of the base
plant. The lean solvent is withdrawn to wash the flue
gas, while the rich solvent is boiled to regenerate the
lean solvent. The solvent cycle enters a balance: net
changes in either the rich or lean solvent tank are equal
to zero. The energy penalty is minimized.

3) The maximum regeneration (MR) mode
The maximum regeneration mode results from shift-
ing the regular part-load mode toward maximum lean
solvent regeneration. Under this mode, the CCP regen-
erates as much of the rich solvent as the boiler’s
capacity allows. The rich solvent tank depletes at the
maximum rate. The energy penalty increases as an extra
amount of rich solvent is regenerated, and the stripper
derails from its most energy-efficient configuration.

4) The solvent storage (SS) mode
The solvent storage mode is the opposite of the maxi-
mum regenerationmode. It shuts down the regeneration
completely. Under this mode, the minimum energy
penalty is achieved, as only the solvent circulation and
the compression of the captured CO2 requires power
supplies. Storage tanks become the only source and the
only sink of the solvent. If the rich or lean solvent tank
is depleted, the CCP will be forced back to the regular
part-load mode.

Note that the bypass mode is omitted in the following
operation model of CCGT-CCP. Three observations could
justify the omission. First, bypassing decisions could only
be objectively evaluated where carbon emission is appropri-
ately priced. Examples are carbon markets or carbon taxation
schemes. As such a context is beyond the scope of this paper,
including the bypass mode is unnecessary. Second, bypassing
is less likely to be allowed in the future, where more stringent
decarbonization regulation could be expected. Last, covering
the bypass mode shares the same technique as the other
modes. Introducing a new set of binary variables will do.
Consequently, omitting the bypass mode is preferable.

D. A MIXED-INTEGER OPERATION MODEL OF CCGT-CCP
The mode-based model of CCPs naturally calls for a
mixed-integer model of the net power output model. Binary
variables indicate the engagement of the modes. The power
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FIGURE 2. Geometric implication of Chen’s linear model and the proposed mode-based model.

outputs are described as affine functions of the main boiler
load level. The RPL mode is treated as the base mode. Net
power outputs under the SS and MR modes are viewed as
deviations from the base mode. The net power output of the
CCGT-CCP under the RPL mode is given by (1)

Pe,rplt = arpl1 xt + a
rpl
0 vt , ∀t ∈ T , (1)

where Pe,rplt stands for the electric power output of the whole
plant under the regular part-load mode in period t , arpl1 and
arpl0 are coefficients of the first-order and the constant terms,
xt is the load level (in percentage) of the base gas turbines, vt
is the binary variable representing the on/off state of the gas
turbines.

Deviations of the net power output of the CCGT-CCP
under the MR mode and the SS mode are modeled by (2)
and (3), respectively:

1Pe,sst = yt
(
ass1 xt + a

ss
0
)
, ∀t ∈ T , (2)

1Pe,mr
t = zt

(
amr
1 xt + amr

0
)
, ∀t ∈ T , (3)

where 1Pe,sst and 1Pe,mr
t are absolute power output devi-

ations under the SS or the MR mode with respect to the
RPL mode, yt and zt are binary variables indicating whether
the CCP is set to work under the corresponding mode, and
ass1 , a

ss
0 , a

mr
1 , and amr

0 are all coefficients following a similar
convention as in (1).

Let Pet denotes the electric power output of the CCGT-CCP
at dispatch period t . The following equality holds:

Pet = Pe,rplt +1Pe,sst −1Pe,mr
t , ∀t ∈ T . (4)

Note that the deviations of net power output are defined as
absolute values. The signs before 1Pe,mr

t and 1Pe,sst in (4)
reflect that solvent regeneration draws power from the CCGT,
while pure absorption needs little power. Compared to the
RPLmode, the net power increases under theMRmodewhile
it decreases under the SS mode.

Apart from affecting the net power output of the CCGT,
CCP’s operation modes are also coupled with the commit-
ment state of the CCGT:

yt − vt ≤ 0, ∀t ∈ T , (5)

zt − vt ≤ 0, ∀t ∈ T , (6)

yt + zt ≤ 1, ∀t ∈ T . (7)

(5) and (6) indicate that the CCP should be off if the CCGT
is off. (7) guarantees that the CCP would only operate under
one single mode at any given period.

Another set of constraints on the operation of CCP comes
from solvent circulation. As the law of conservation of matter
holds, if the solvent is assumed to be lossless, the solvent level
in the lean solvent storage tankwill always be complementary
to that of the rich solvent tank. Examination of just one side
of the circulation is enough. Therefore, only the circulation
of the lean solvent is considered. Besides, since both sides
involve equality constraints, modeling only one side also
reduces unnecessary numerical inconsistency due to finite-
precession arithmetics.

Notice that the CCP withdraws lean solvent from the stor-
age tank under the SS mode while filling it under the MR
mode. The corresponding constraints read as follows:

ṁin
t = zt

(
asol,mr
1 xt + a

sol,mr
0

)
, ∀t ∈ T , (8)

ṁout
t = yt

(
asol,ss1 xt + a

sol,ss
0

)
, ∀t ∈ T , (9)

mt = m0 +

t∑
k=1

(
ṁin
k − ṁ

out
k

)
, ∀t ∈ T , (10)

0 ≤ mt ≤ m, ∀t ∈ T , (11)

where ṁin
t and ṁout

t refer to the mass of the solvent that flows
into and out of the storage tank in period t; asol,mr

1 , asol,mr
0 ,

asol,ss1 , and asol,ss0 are all coefficients of the proper unit; mt is
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the mass of solvent contained in the storage tank in period
t , and m0 is the initial value of mt at the beginning of the
dispatch horizon; m is the capacity of the solvent storage
tanks. (8)-(11) together ensure that the solvent flow matches
the operation mode of the CCP and the load level of the base
generator, and the solvent in storage will always be in range.

It is sensible to require the solvent mass in the storage to
return to its initial value at the end of the day, as this will
facilitate the day-to-day scheduling of the CCGT-CCP [27].
The return translates to the net change of the solvent mass in
the storage over the whole day equals zero:∑

t∈T

(
ṁin
k − ṁ

out
k

)
= 0. (12)

The necessity of (12) depends in part on the time scale of the
dispatch horizon. As will be demonstrated in Section V-C, the
flexibility of the CCGT-CCP is also affected by (12).

To further expose the differences between the proposed
mode-based model and Chen’s linear model, the graphs of
the net power output in the two models are given in Figure 2.
As shown in Figure 2a, the graph of the net power output
in Chen’s linear model consists of a family of operation
lines, each corresponding to a specific energy penalty. The
more the CCP processes the captured CO2, the higher the
energy penalty is exerted on the main boiler. The energy
penalty rate, the heat demand to process one unit mass of
CO2, is assumed to be constant. So, all the operation lines
are in parallel. The operation lines corresponding to higher
carbon capture rates that are lower down the vertical axis. The
corresponding operation lines form a parallelogram operation
region regarding the full range of the processing demand.

In contrast, the proposed mode-based model results from
the optimal configuration of the CCP under three typical oper-
ation modes, as can be seen in Figure 2b. The energy penalty
rate is optimized and varies when the operating point is
changed. Flexible operation of the CCP is achieved by mode
transitions. The selected operation mode of the CCP and the
CCGT load level determine the net electric power output. The
mode-based model is an abstraction of the detailed process
simulation with optimized parameters, whereas the linear
model is deduced from the assumption of a constant energy
penalty rate of the CCP. As will be shown in Section V-D,
such an assumption leads to an inaccurate estimate of the
energy penalty.

III. ADAPTIVE ROBUST UNIT COMMITMENT PROBLEM
This Section presents the generic adaptive robust optimiza-
tion framework and the detailed formulation of the proposed
adaptive robust UC model, followed by the column & con-
straint generation decomposition algorithm.

A. THE GENERIC ADAPTIVE ROBUST OPTIMIZATION
FRAMEWORK
Adaptive robust optimization (ARO), also named adjustable
or two-stage robust optimization, addresses sequential
decision-making problems under uncertainty. A generic

description of ARO problems in compact form can be written
as follows [28]:

min
y
c⊤y+max

u∈U
min

x∈�(y,u)
b⊤x (13)

s.t. Ay ≥ d, (14)

y ∈ Sy, (15)

� (y,u) = {x ∈ Sx : Gx ≥ h− Ey−Mu} (16)

where y is the vector of first-stage decision variables, x the
second-stage decision variables, and u is the vector of uncer-
tain variables; Sy and Sx refer to the bounds (if available)
on y and x; U is the uncertainty set; � is the feasible region
of the second-stage problem parameterized by the first-stage
decision and the uncertainty variables; A, G, E, and M are
coefficient matrices; d and h are right-hand-side vectors of
proper dimensions. Caution that all symbols in (13)-(16)
are chosen arbitrarily for ease of presentation. They do not
correspond to the set of symbols in the detailed formulation.
Under the ARO framework, all decision variables are

divided into two groups. The first-stage variables are sup-
posed to be permanent once decided, while the second-stage
variables are situational. The second-stage variables are sit-
uated by the value of first-stage variables (decisions made)
and the uncertain variables (forecast). Mathematically, the
second-stage variables are functionals: they are functions
of the optimal solution of the first-stage variables and the
uncertain variables, which are themselves functions of the
problem parameters. The optimization mainly attempts to
determine the optimal solution of the first-stage variables,
while the second-stage problem essentially serves as a metric.
The optimal value of the problem should be interpreted as the
objective function’s upper bound ascribed to the particular
second-stage problem and the uncertainty set. The second-
stage problem is often called the recourse problem.
The ARO frameworkmatches well with the structure of the

UC problem under uncertainty. As commitment decisions are
prohibitively expensive to change during real-time operation,
even technically impossible for certain generation technolo-
gies, they must be decided beforehand. On the other hand,
fast-acting generators (e.g., GTs) and some other dispatch-
able resources (e.g., energy storage) can be re-dispatched
when an updated forecast with a higher confidence level is
available. The re-dispatch can be modeled as an ED problem
or an optimal power flow problem. The objective usually
consists of the production cost of the re-dispatched resources
and the power imbalance penalties due to either load shedding
or wind curtailment.

B. THE PROPOSED ARO UC MODEL
A comprehensive UC model under the ARO framework is
first proposed by Bertsimas and co-authors in [29]. In this
work, a generation mix consisting of coal-fired plants, GTs,
and wind farms is considered. The overall objective of the
optimization problem is to minimize the power generation
cost and potential power imbalance penalties due to wind
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uncertainty. Coal-fired plants usually carry the base load,
so both their commitment and power outputs are regarded
as first-stage variables. For GTs, the commitment decisions
are placed in the first stage, and the power outputs await the
second stage. For CCGT-CCPs, the commitment states of the
host CCGT and the operation modes of the CCP are decided
in the first stage. The power outputs of the CCGT-CCP, and
thus the solvent flows, are treated as second-stage decisions.
Box uncertainty sets with uncertainty budgets are considered.
The box set only requires the upper and the lower bounds on
the forecast of the uncertain variables at each dispatch period.

The following fully describes the proposedAROUCmodel
in its tri-level form. Note that all constraints in the model
are presented in the normalized form. Normalization refers
to the process of separating constants from expressions of
decision variables. After normalization, the left-hand side
of each constraint only consists of expressions of decision
variables, and the right-hand side only contains constants.

min
v,s,y,z,pe

∑
t∈T

[∑
i∈G

(
csui vit − c

su
i sit + c

on
i vit

)
+

∑
i∈Gcoal

cfueli peit
]
+max

u∈U
2 (17)

s.t. ∀i ∈ G, t ∈ T :
vit − vi(t−1) − vih ≤ 0,
t ≤ h ≤ min

{
V on
i + t − 1, |T |

}
, (18)

vi(t−1) − vit + vih ≤ 1,

t ≤ h ≤ min
{
V off
i + t − 1, |T |

}
, (19)

sit − vi(t−1) ≤ 0, (20)
sit − vit ≤ 0, (21)
vi(t−1) + vit − sit ≤ 1, (22)
vit , sit ∈ {0, 1}, (23)

∀i ∈ GCCP, t ∈ T :
constraints (5)-(7) (24)

∀i ∈ Gcoal, t ∈ T :
peit − Pivit ≥ 0, (25)
− peit + Pivit ≥ 0, (26)
pei(t−1) − p

e
it + Ŕivi(t−1) + Pi

(
1− vi(t−1)

)
≥ 0, (27)

peit − p
e
i(t−1) + R̀ivit + Pi (1− vit) ≥ 0. (28)

(17) is the overall objective function, containing the unit com-
mitment cost of all generators, the production cost of all coal-
fired generators, and the maximum recourse cost. csui , c

on
i ,

and cfueli are the coefficients of unit start-up cost, fixed unit
operation cost, and marginal production cost, respectively.
vit is the on/off state of unit i in dispatch period t . sit is
an auxiliary binary variable introduced to exactly model the
unit start-up action. peit is the electric power output of unit
i in period t . 2 is the value function of the entire recourse
(re-dispatch) problem. T is the dispatch period index set. G
is the full index set of all generators, with different super-
scripts indicating the subset of the respective generator type.
(18)-(19) limit the minimum on/off periods. (20)-(22) are
logical relations that model the exact start-up action. (23)

ensures that vit and sit must be binary. For CCGT-CCPs, (24)
enforces the operation modes of the CCPs must be unique
and dictated by the commitment state. For coal-fired units,
(25)-(26) bounds the power output, and (27)-(28) limits the
ramping rate between adjacent periods, where Pi and Pi are
the minimum and maximum power outputs, and Ŕi and R̀i
are the maximum ramp-up and ramp-down rates. (17)-(28)
constitutes the first-stage problem.

The second-stage problem is a bi-level optimization. The
upper level is a maximization problem concerning uncertain
variables u. A box uncertainty set with cardinality constraints
(29)-(31) is used to model how the actualization of the uncer-
tainty would deviate from the forecast.

U =
{
uupt + u

dn
t ≤ 1, (29)∑

t∈T
uupt + u

dn
t ≤ M , (30)

uupt , udnt ∈ {0, 1}
}
, (31)

uupt and udnt are binary variables indicating whether the actu-
alized wind power hits the upper and lower bounds of the
forecast error. (29) ensures that the actualized wind power
would only deviate in one direction rather than both. (30) is
the cardinality constraint, whereM is the uncertainty budget.
In this work, the uncertainty budget represents the number
of dispatch periods where the wind power differs from the
forecast value. The larger the uncertainty budget chosen,
the higher the variability of the wind power is considered.
It is a parameter that reflects the system operators’ level of
conservativeness.

The lower-level problem, denoted by 2 in (17), is formu-
lated as an optimal power flow problem that aims to minimize
both the production cost of the fast-acting units and power
imbalance penalties. Note that all first-stage and uncertain
variables can be considered constants in the lower-level prob-
lem. Expressions introduced by (32)-(33) are devised to ease
the normalization of the constraints, where pvarit and pfixit are

the coefficients and constant terms in the net power output

expressions of the CCGT-CCP, and ṁvar
it and ṁfix

it are those in
the solvent flow expressions. peit andmit are proxies represent-
ing CCGT-CCP’s electric power output and the solvent mass
in storage. The true decision variables behind the proxies are
the CCGT output levels xit .

i ∈ GCCP, t ∈ T :

pvarit = arpl1,i + a
ss
1,iyit − a

mr
1,izit ,

pfixit = arpl0,ivit + a
ss
0,iyit − a

mr
0,izit ,

peit = pvarit xit + p
fix
it ,

ṁvar
it = amr,sol

1,i zit − a
ss,sol
1,i yit ,

ṁfix
it = amr,sol

0,i zit − a
ss,sol
0,i yit ,

mit = mi0 +
t∑

k=1

(
ṁvar
it xik + ṁ

fix
it

)
,

(32)
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The actualized wind power scenario is denoted by Ŵt .
It is calculated by (33), where 1W up

t and 1W dn
t are forecast

errors’ upper and lower bounds.

∀t ∈ T :
Ŵt = Wt +1W up

t uupt −1W dn
t udnt , (33)

Accordingly, (34)-(50) establishes the lower-level
problem.

2 =

{
min

pe,pwc,pls,x

∑
t∈T

[ ∑
i∈GCCP

cfueli xit +
∑
i∈GGT

cfueli peit

+ cwcpwct + c
lsplst

]
(34)

s.t. ∀t ∈ T :∑
i∈GCCP

pvarit xit +
∑
i∈GGT

peit − p
wc
t + p

ls
t

= Dt−Ŵt−
∑
i∈Gcoal

peit−
∑

i∈GCCP

pfixit : (χ),

(35)

∀i ∈ GGT, t ∈ T :

peit ≥ Pivit :
(
αlb

)
, (36)

− peit ≥ −Pivit :
(
αub

)
, (37)

pei(t−1) − p
e
it ≥ −Ŕivi(t−1)
− Pi

(
1− vi(t−1)

)
:

(
βup), (38)

peit − p
e
i(t−1) ≥ −R̀ivit − Pi (1− vit) :

(
βdn

)
,

(39)

∀i ∈ GCCP, t ∈ T :

xit ≥ GT ivit :
(
αlb

)
, (40)

− xit ≥ −GT ivit :
(
αub

)
, (41)

xi(t−1) − xit ≥ −Ŕivi(t−1)
− GT i

(
1− vi(t−1)

)
:

(
βup), (42)

xit − xi(t−1) ≥ −R̀ivit

− GT i (1− vit) :
(
βdn

)
, (43)∑t

k=1
ṁvar
ik xik ≥ −mi0 −

∑t

k=1
ṁfix
ik :

(
ηlb

)
,

(44)

−

∑t

k=1
ṁvar
ik xik ≥ −m+ mi0

+

∑t

k=1
ṁfix
ik :

(
ηub

)
,

(45)∑
t∈T

ṁvar
it xit = −

∑
t∈T

ṁfix
it : (ϕ), (46)

∀t ∈ T :
− pwct ≥ −Ŵt : (γ ), (47)

− plst ≥ −Dt : (ι), (48)

l ∈ L, t ∈ T :∑
i∈GCCP

hgenl,i p
var
i,t xi,t+

∑
i∈GGT

hgenl,i p
e
i,t−B

w
l p

wc
t +B

d
l p

ls
t

≥ −fl + Bdl Dt − B
w
l Ŵt

−

∑
i∈GCCP

hgenl,i p
fix
i,t −

∑
i∈Gcoal

hgenl,i p
e
i,t :

(
λlb

)
,

(49)

−

∑
i∈GCCP

hgenl,i p
var
i,t xi,t−

∑
i∈GGT

hgenl,i p
e
i,t+B

w
l p

wc
t −B

d
l p

ls
t

≥ −fl − Bdl Dt + B
w
l Ŵt

+

∑
i∈GCCP

hgenl,i p
fix
i,t +

∑
i∈Gcoal

hgenl,i p
e
i,t :

(
λub

)}
.

(50)

where the objective of the lower level, (34), is to minimize the
variable production cost of GTs and the CCGT-CCP, at the
same time, minimize penalties due to wind curtailment or
load shedding. cfueli , cwc, and cls are the coefficients of the
marginal production cost of generators and the penalties of
wind curtailment and load shedding, respectively. Note that
for the CCGT-CCP, its variable production cost is calculated
based on the CCGT’s load level xit , not its net electric power
output. (35) enforces system-wide power balance in each
dispatch period. (36)-(37) bounds the power output from GTs
between their minimum and maximum values, which are
denoted by Pi and Pi, respectively. (38)-(39) guarantees GTs’
upward and downward ramp rates are within their ramping
capabilities, which are noted by Ŕi and R̀i. (40)-(43) is a
similar set of constraints as (36)-(37), except that it regards
the load level of the CCGT xit , not the electric power output.
(44)-(46) is the same set of constraints as (11)-(12) written in
the normalized form. (47)-(48) restrains the wind curtailment
and load shedding within the available quantity. (49)-(50)
ensures the power flow on each transmission line is within
the line capacity. The power flow is modeled by the power
transfer distribution factor (PTDF), which belongs to the
sensitivity factor subgroup of the DC power flow model,
according to [30]. L is the index set of all transmission lines.
hgenl,i ,B

w
l , andB

d
l are the PTDFs for all generators, wind farms,

and system loads. As both the wind power and system load
are considered to be aggregated, their PTDF matrices are
multiplied by their bus-wise capacity vector and degenerate
to a single dimension.

In (35)-(50), the greek symbols in the round brackets
denote the sets of dual variables that correspond to the con-
straints before them.Aswill be introduced in the next Section,
the dual variables are used to dualize the lower-level problem
and transform the bi-level recourse problem into an equiva-
lent single-level optimization problem.

C. THE COLUMN & CONSTRAINT GENERATION
DECOMPOSITION ALGORITHM
The ARO UC problem is a tri-level optimization problem
that is hard be solved in its original form. Decompositions
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are often employed to derive equivalent forms that give
tractability. In [28], Zeng and Zhao proposed to solve ARO
UC problems using the column & constraint generation
(C&CG) decomposition algorithm. It is iterative and proved
to be finitely convergent. The algorithm follows a similar
spirit as the classic Benders’ decomposition (as used in [29]).
It decomposes the original problem into a master problem
that consists of the first-stage problem and under-estimators
of the second-stage problem, and a set of subproblems that
amount to the original second-stage problem with all first-
stage variables fixed. The algorithm differs from the classic
Benders’ decomposition in that the under-estimator is con-
structed using the primal form of the second-stage problem
rather than the sub-differential. The algorithm’s effective-
ness can be inferred similarly to that of the classic column
generation algorithm. The subproblems serve as the pricing
problems and populate critical scenarios, which correspond
to vertices of the uncertainty set. For each identified critical
scenario, a copy of the second-stage problem is added to the
master problem, i.e., the generated columns and constraints.
At the same time, a new under-estimator is introduced by an
inequality constraint on the epigraph of the new copy of the
second-stage problem. Every iteration in the algorithm tight-
ens the master problem, leading to a non-decreasing sequence
of lower bounds on the original problem. The algorithm
stops either when a small enough gap between the upper and
lower bounds of the objective function is achieved or when
the subproblem returns a visited critical scenario. The finite
convergence builds upon the finiteness of critical scenarios.
Intuitively, C&CG could be treated as a clever combination
of Benders’ decomposition and column generation methods.

Using C&CG on (13)-(16), the master problem (till the
k-th iteration) writes as [28]:

MP : min
y,η,x1...xk

c⊤y+ η (51)

s.t. Ay ≥ d, (52)

η ≥ b⊤xi, 1 ≤ i ≤ k (53)

Ey+ Gxi ≥ h−Mu∗,i, 1 ≤ i ≤ k. (54)

y ∈ Sy, (55)

where u∗,i refers to the critical scenario returned by the i-th
subproblem; xi is the corresponding generated columns; η is
the auxiliary scalar variable used to construct the inequality
on the epigraph of the second-stage problem.

Notice that even with all first-stage variables fixed, the
second-stage problem still has a bi-level optimization struc-
ture. The classic Karush-Kuhn-Tucker conditions or the
strong-duality theory could be used to reformulate the bi-level
problem into a single-level equivalent. In this paper, the
strong-duality-based reformulation is adopted:

SP : Q (y) = max
u,π

(
h− Ey−Mu

)⊤
π (56)

s.t. G⊤π ≤ b, (57)

u ∈ U, π ≥ 0. (58)

Algorithm 1 The C&CG Algorithm
Initialize: LB ← −∞, UB ← +∞, k ← 0, ϵ ←

non-negativereal number
while (1− LB/UB) ≥ ϵ do
1. SolveMP to have the optimal solution

(
y∗,k , η∗,k

)
2. Update LB = c⊤y∗,k + η∗,k

3. Solve SP with y = y∗,k to have the new critical
scenario u∗,k

4. Update UB = min
{
UB, c⊤y∗,k+1 +Q(y∗,k+1)

}
if u∗,k turns out to be a repeated critical scenario then
break

end if
5. Generate xk and add a new set of (53) and (54)
to MP
6. k ← k + 1

end while
return (y∗, η∗)

Bilinear terms that appeared in (56) can be exactly linearized
by using the Fortuny-Amat &McCarl’s trick [31], which usu-
ally goes by the name of the big-M method. The algorithmic
procedure of the C&CG is summarized in Algorithm. 1.

IV. CASE STUDY
In this Section, the specifications of the case study are
described. Computer programs are implemented in the Julia
programming language [32]. The JuMP package [33] is used
for the mathematical optimization modeling and the Power-
Models package [34] for the power flow formulation. The
latest Gurobi 10.0 [35] solves all the mixed-integer pro-
gramming instances. Computation is conducted on a desktop
computer with an Intel Core i7-10700 @ 2.90 GHz CPU and
16 gigabytes of RAM.

The case study is based on amodified 39-bus New England
power system originally published in [36] and is now main-
tained in the case files library of MATPOWER [37]. The
single-line diagram of the system is provided in Figure 3. The
transmission system is untouched. Generators are reordered
and assigned different technologies. G1 to G5 are coal-fired
plants; G6 and G7 are GTs; G8 is the CCGT-CCP; W1 and
W2 are aggregatedwind farms. All generators keep their orig-
inal capacity except G8, which is replaced with the proposed
CCGT-CCPmodel. Fuel costs of all fossil plants are assumed
to be affine functions. The coefficients of the cost functions
are also modified. The case file is available online in [38].

The system load profile and wind power profile are pro-
vided in Figure 4. Bus-wise loads share the system load in
proportion to the solved power flow in the case file. As W1
andW2 are aggregated, they follow the same profile, and their
power outputs are proportional to their capacities. The error
bounds of the wind power forecast are set to be ±10%. The
default value of the uncertainty budget is set to be 6.

For the CCGT-CCPmodel, coefficients and constant terms
of the affine functions are tabulated in Table 2. The unit
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FIGURE 3. Single-line diagram of the modified 39-bus New England power system.

FIGURE 4. Forecast profiles for the case study.

of electric power is MW. The unit of solvent mass flow
is kilogram/sec. The units of the first-order coefficients
are denominated by percentage, respectively. The default
value of solvent storage capacity is 6599 × 103 kilograms,

equivalent to the solvent consumption under SS mode at
maximum CCGT load for 1 hour. The initial stored sol-
vent mass’s default value is 80% of the solvent storage
capacity.
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TABLE 2. Coefficients in the CCGT-CCP model.

TABLE 3. The ARO UC solution.

For Gurobi, the MIP gap is set to be 1e−6, and the integer
tolerance is set to be 1e−8 for both the master problem and
the subproblems. The convergence gap of the C&CG is set to
be ϵ = 1e−5.

V. NUMERICAL RESULTS AND DISCUSSIONS
In this Section, numerical results are presented and discussed.
Discussions are organized around four topics, eachmaking up
a subsection. Model parameters that are altered for analysis
and comparison will be noted at the beginning of each sub-
section.

A. EFFECTIVENESS OF THE MODE-BASED CCP MODEL
UC solutions of G1-G8 under default values of the solvent
storage parameters are tabulated in Table 3. As the system
load is relatively heavy against the generation capacity, all
coal-fired generators (G1-G5) and one GT (G6) must keep
on in every period. Although CCGT-CCP (G8) has a slightly
cheaper marginal cost than GTs, its minimum output power
is larger than GTs. So, in the first 6-7 periods, G6 rather than
G8 is committed. The last three rows in Table 3 indicate that
constraints (5)-(7) are working properly. In each period, one
mode at most is active. No mode activation happens when the
host CCGT is off.

Besides, the pattern of the CCP operation mode transition
matches the trend of the system load subtracting wind power
and the coal-fired generators. In Table 3, there are four sets of
mode transition sequences. First, a sequence of SS→ MR→
SS occurred during periods 10-12. Then, the MR mode is
turned on for two consecutive periods. In period 20, the SS
mode is activated. In the last period, the MR mode is again
switched on.

The accordance between the transition sequence and the
variation of the net load could be better shown in Figure 5.
Notice the ‘V’ shape of the net load highlighted by the red
dotted rectangle 1 in Figure 5. Remember that the power out-
put of CCGT-CCP increases under the SSmode and decreases

FIGURE 5. Power dispatch solution of coal-fired generators.

under the MR mode. The peak-valley-peak pattern resonates
well with the first sequence. A surge of the net load happened
in period 20, which is captured by rectangle 3. The surge
coincides well with the activation of the SS mode in the
same period. Don’t forget that solvent circulation and storage
also constrain the operation of the CCP. The CCP drains
the storage under the SS mode, whereas it supplements the
storage under the MR mode. In other words, the storage tank
must have enough lean solvent before the SS mode could
be called up. Such constraint explains why the MR mode is
turned on during periods 16-17. Pinpointed by rectangle 2,
it is clear that the net load drops to the lowest during these two
periods before the surge in period 20. It is the best chance for
the CCP to replenish the solvent at the lowest possible cost
and prepare for the coming exhaustion in period 20. The last
sequence could be interpreted following similar reasoning in
conjunction with the daily solvent restoration constraint (12).
After the exhaustion in period 20, the CCP seeks to restore
the solvent level in the storage tank at the lowest cost. It can
be seen in rectangle 4 that after period 20, the lowest net load
appears in the final period.

To sum up, the simulation result validates the proposed
mode-based model’s effectiveness. They also confirm CCPs’
positive contribution to the flexibility of the generation side.

B. ROBUSTNESS OF THE SOLUTION
To better understand the robustness of the solution given by
the ARO framework, it is helpful first to look at the source
of the robustness. Figure 6 depicts all 47 critical scenarios
identified by the C&CG algorithm. Conceptually, the crit-
ical scenarios in ARO are similar to those in the stochas-
tic programming framework. The recourse problem must be

VOLUME 11, 2023 34521



L. Wang et al.: Adaptive Robust UC of CCGT Considering Mode-Based Modeling of CCP

FIGURE 6. All critical scenarios of the wind power identified by the C&CG
algorithm (M = 6).

feasible under every scenario simultaneously regarding the
current first-stage solution. It is safe to say that the solution
provided by the ARO framework is no worse than stochastic
programming in the sense of its immunity to uncertainty.

The difference between the two frameworks resides
in the conception of the scenarios. Scenarios in ARO result
from the iterative pricing process in the C&CG algorithm,
whereas the scenarios in stochastic programming are usu-
ally generated by Monte Carlo Simulation using the sample-
average approximation. The former is a posteriori, while the
latter is a priori to the optimal solution.

Note also that the availability of the critical scenarios in
ARO is algorithm-dependent. If sub-differentials are used
in the master problem instead of the primal form of the
recourse problem, e.g., in the classic Benders decomposition,
no specific scenario will be explicitly identified by the algo-
rithm. The recourse problem is masked by its dual, less
interpretable than the critical scenarios. Interpretability may
count as one advantage of the C&CG algorithm over other
alternatives.

However, further elaborations are needed when interpret-
ing the robustness of the solution given by the ARO frame-
work. One common pitfall, at least under the topic of power
system operation planning, is to take the ‘worst-case’ sce-
nario (the profile in red in Figure 6) as the ‘dispatched’ profile
of the wind power. Such an understanding raises two issues.

• It mixes up the wind forecast from the actual wind power
that is integrated into the grid. The former is solely
determined by nature. Only the latter can be regarded
as partially dispatchable since the utilized wind energy
will never be greater than the available energy in the
wind. Simply put, the integrated wind power equals the
available wind power minus wind curtailment.

• It violates the rule of non-anticipativity. It can be
checked that if the worst-case scenario is the only wind
profile considered in the formulation, the optimal solu-
tion of the model will be less costly than the truly robust
solution. The expected value of perfect information in
stochastic programming (see Chapter 4.1 of [39]) also
applies in ARO. In short, the robustness of the solution

comes from the simultaneous consideration of multiple
wind scenarios, not a single scenario.

As Section III-A mentions, the ARO focuses on finding
the optimal value of the first-stage decisions, neither the
second-stage decisions nor the uncertain variables. Only the
first-stage decisions are concrete. The second-stage decisions
are designed/considered hypothetical, against which quanti-
tative assessments of the first-stage decisions are conducted.
It does not decide what will be the actualization of the
uncertainty.

The following test is designed to demonstrate the robust-
ness of the optimal first-stage solution. One hundred wind
power scenarios are randomly generated, assuming a uni-
form distribution on the interval between the error bounds,
as shown in Figure 7. The optimal first-stage solutions under
different uncertainty budgets (M ) are substituted into the
recourse problem to be tested against every generated wind
power scenario. If the test problem is determined to be infea-
sible or the optimal value of the test problem is greater than
the optimal value given by the AROUCmodel, the test counts
as a failure. Otherwise, it counts as a success. The failure rate
is the number of failures divided by the total number of tests.
The lower the failure rate, the higher the robustness of the
first-stage solution.

The failure rates and statistics on other aspects of the test
problems’ optimal solutions are tabulated in Table 4 against
the optimal solutions given by the ARO UC. The following
three observations are ready to be made:
• The uncertainty budget reflects the decision-makers’
risk-taking propensity. Risk-seeking propensity projects
a lower uncertainty budget, while a higher uncertainty
budget captures risk-averse. In this work, a lower uncer-
tainty budget translates to a wind power profile that sel-
dom deviates from the forecast. Consequently, the ARO
UC model returns a lower estimate on the upper bound
of the objective value of the recourse problem, which is
shown in the 5th column in Table 4. This trend could
be explained by the expensive GTs compensating for all
wind power deviations. Higher estimates on wind power
deviations invoke potentially more compensations from
GT and, in turn, lead to higher operating costs.

• The uncertainty budget confines the robustness of the
first-stage solution. In the 6th column, it can be seen
that there is one failed test when M = 4. Notice also
that its statistics on wind curtailments are the highest
among the four data sets. The root cause lies in how
the uncertainty budget shapes the optimal solution of
the first-stage decisions. If the generation cost is to
be minimized, coal-fired generators should produce as
much energy as possible. However, higher dispatched
from coal-fired generators leaves smaller re-dispatch
room for GTs and the CCGT-CCP to compensate for the
wind deviations.When the deviation of the truly realized
wind power profile exceeds the estimates reflected by
the uncertainty budget, wind curtailment is inevitable
since little room for re-dispatch is left to flexible sources.
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TABLE 4. Summary of the robustness test results.

FIGURE 7. Generated wind power scenarios assuming uniform
distribution.

The overall operation cost increases if the penalty due
to the curtailed wind power overtakes the saved cost
from dispatching more coal-fired power. This pattern
can be sustained by the increasing trend of the fuel
cost of the coal-fired generator in the first-stage solution
(the 4th column) and the rising trend of statistics on
wind curtailment (columns under the ‘wind cur.’ title)
concerning lowered uncertainty budgets.

• TheARO framework is, in general, conservative towards
uncertainty. Compared to the average optimal objective
value of the test recourse problem, estimates given by
the ARO UC model are uniformly higher. Even with a
relatively low uncertainty budget, the estimate made by
the ARO UC model is 1.03% higher than the test sam-
ples’ average. Numerical results in Table 4 confirm such
propensity towards conservatism, a consensus amongst
the literature.

To sum up, the solution given by the ARO UC model
is robust against the prescribed uncertainty. The uncertainty
budget is vital to the solution’s robustness.

C. SENSITIVITY ANALYSIS ON PARAMETERS RELATED TO
SOLVENT STORAGE
Adding solvent storage into the solvent circulation loop
grants improved operational flexibility to the CCPs. To some
extent, the heat-intensive solvent regeneration process can
then be temporally decoupled from the carbon absorption
process. The storage tank’s capacity limits the extent to which
the decoupling achieves. A convenient measure of the storage

TABLE 5. Optimal ARO UC objective values under different (α, m)
combinations.

TABLE 6. Dispatch results of case 1 v.s. case 10.

tank’s capacity is to count how many hours it can sustain
when the CCP consumes or regenerates the solvent at the
maximum rate. In the interest of determining its impact on
the optimal objective values, the storage capacity measured in
hours is altered to carry out a sensitivity analysis. The default
value of the storage capacity is 1 hour. In [8], the storage
capacity is 4 hours. Hence, setting the capacity from 1 hour to
4 hours seems sensible. A less obvious and almost neglected
parameter regarding solvent storage is the initial solvent level
in the storage m0. The following definition is proposed to
expose better the implication from the initial solvent level:

m0 = α · m, α ∈ [0, 1], (59)

where α is called the initial solvent ratio. Let α take either
0.2, 0.5, or 0.8. The corresponding optimal solution of the
ARO UC problems are tabulated in Table 5. As the first-stage
commitment costs are identical under all settings, the corre-
sponding cost terms are ignored in Table 5.

It can be seen that regardless of what the value α takes,
larger storage capacity leads to a lower estimate of the
recourse cost, a higher first-stage cost, and comprehensively
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FIGURE 8. CCGT-CCP’s load level and net power output in case 1 v.s.
case 10.

a lower total cost. Increased coal power cost means coal-fired
generators are dispatched to produce more energy. Following
the analysis from the previous subsection, the re-dispatch
room left to the flexibleGTs and the CCGT-CCP is decreased.
It is seemingly contrary to the also decreasing trend of the
estimate on the recourse cost, which should be larger when
the re-dispatch room is limited. The experiment below is
conducted to unearth the root cause of this pattern.

The first-stage solutions of case 1 and 10 are tested
against the same wind power scenario using the recourse
problem. The dispatch results are broken down to each gen-
erator and listed in Table 6 for comparison.

According to the results, no wind curtailment happens in
both cases. So, the net load must also be the same under both
cases because the load profile and the wind power scenario
are exactly the same. The total dispatched energy in case 1
is slightly lower than in case 10 but still matches the trend in
the previous analysis. Note that G7 has the highest fuel cost
among the three generators. It can be seen that in case 10,
production from G7 drops nearly 200 MW·h. Production
from G6 has increased by 56.2 MW·h.

The behavior of G8 appears to be unexpected. As G8’s
fuel cost is also lower than G7’s, its production should also
increase. However, G8’s electricity production drops over
50 MW·h. One explanation is that the proposed model treats
the electric power output of the CCGT-CCP as a proxy of
the CCGT’s load level, see (1)-(4) in Section II-D. Therefore,
it is the load level (x) rather than the electric power (pe) that is
priced in the recourse objective function (34). Given that the
same load level maps to altered electric power outputs under
different CCP operation modes, it is not impossible for the
CCGT’s load to increase while the net electricity production
decreases.

Figure 8 portrays the CCGT-CCP’s load level and electric
power output over time under the two cases. Now it is clear
that the speculation is correct. The load level profiles are
overlapped except at around period 15. The CCGT-CCP is
dispatched to a higher production level in case 10 than in
case 1, even though the difference is small. From electric
power output profiles, CCP’s positive contribution to flexibil-
ity is undeniable. The strictly proportionate relation between

FIGURE 9. CCP’s stored solvent in case 4, 5 and 6.

TABLE 7. Optimal objective values: mode-CCP v.s. lin-CCP.

the load level and the electric power output in case 1 indicates
that no operation mode transition ever happened to the CCP.
With almost the same load level profile, the electric power
output in case 10 is much more responsive than in case 1,
thanks to propermode transitions of the CCP. Specifically, the
reached operating range is [342.5, 633.0] MW in case 10 and
[394.8, 633.0] MW in case 1. The former is 21.96% wider
than the latter.

The above results confirm that larger capacities of solvent
storage contribute positively to the flexibility of the CCP.
Recall the results in Table 5. The value of the initial solvent
ratio also delivers commensurate impacts on the objective
values of the ARO UC problem. For example, case 5 already
achieves the lowest total cost in all 12 cases with m = 2.
In contrast, case 9 achieves the lowest with m = 3. Worse,
none of the 4 cases under α = 0.2 achieves the exact low cost.
From a cost-performance perspective, the initial solvent ratio
might be evenmore useful than the solvent storage capacity in
short-term operations. The former needs no additional invest-
ments and can be adjusted in the short term, while the latter
requires relatively significant follow-on investments and can
not be changed conveniently. It is, therefore, worthwhile to
understand how the initial solvent ratio shapes the optimal
solution to the UC problem.

Similar experiments as above are carried out on cases 4, 5
and 6 to isolate the influence from the initial solvent ratio,.
This time, the variations of the stored solvent under all three
cases are plotted in Figure 9. As case 5 achieves the lowest
operation cost, it is chosen as the baseline. Notice also the
grey cap line indicating the solvent storage capacity. Com-
pared to case 5, the other two cases suffer from a limited
upward or downward ‘ramping’ room. Taking case 6 as an
example, at around period 10, the CCP should activate theMR
mode. However, due to a higher initial solvent ratio, there is
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TABLE 8. Dispatch results: mode-CCP v.s. lin-CCP.

not enough room in the storage tank for the CCP to run under
the MR at the current load level for one hour. So, the CCP
has to wait until period 11 to turn on the SS mode for two
consecutive periods. For case 4, the difficulty comes from an
opposite direction.

The presence of the daily solvent restoration constraint (12)
in the proposed model reinforces the initial solvent ratio’s
impact. Constraint (12) implies a complementary relationship
between the SS and the MR mode. In other words, whenever
the SS mode is activated, the MR mode will be activated in
future periods and vice versa. With the restoration and the
initial solvent ratio going hand in hand, the CCGT-CCP’s bias
towards either direction of ramping (in electric power output)
is vaguely determined. It tends to do downward ramping
when α ≤ 0.5, upward ramping when α ≥ 0.5, and stays
neutral when α = 0.5.

It is tempting to argue that letting the CCGT-CCP stay
neutral is the best strategy. The results in Table 5 also seem
to call for such an argument. However, the genuine deter-
mining factor should be the shape of the load profile the
CCGT-CCP serves. This factor can be highly case-sensitive.
How α should be appropriately set is beyond the scope of
this work. Nevertheless, the significance of the initial solvent
ratio to CCGT-CCPs in short-term power system operation
problems is unmistakable.

D. THE MODE-BASED CCP MODEL V.S. THE LINEAR CCP
MODEL
In order to quantify the difference between the proposed
mode-based CCP model and Chen’s linear CCP model, the
linear CCPmodel in [9] is adapted to the CCGTmodel in this
paper. The resulting CCGT-CCP model is then substituted in
the ARO UC model. All parameters of the case problem are
set to be the same as in case 5. For clarity, the mode-based
CCP model and linear CCP models’ results are denoted by
mode-CCP and lin-CCP, respectively.
Table 7 tabulates the optimal objective values of the two

models. The overall objective value is reduced by 0.09%
when lin-CCP is used. The start-up and fixed operating costs
are identical, indicating that the UC solutions are not affected
by different modeling of the CCP. However, the fuel costs
of the coal-fired units are 1000 dollars higher for mode-
CCP than lin-CCP, in addition to a mild rise in the recourse
objective values. Such trends suggest that lin-CCP exhibits
higher flexibility than mode-CCP. Nevertheless, a closer look
into the dispatch results tells another story.

FIGURE 10. CCGT’s load level and net power output: mode-CCP v.s.
lin-CCP.

The CCGT’s load level and net electric power output pro-
files of the two models are plotted in Figure 10. As shown
by the dotted profiles, the operating range of lin-CCP (red)
is narrower than mode-CCP (black). Specifically, the reached
operating range ofmode-CCP is between [342.5, 633.0]MW,
4.91% wider than lin-CCP’s range of [356.1, 633.0] MW.
Besides, by matching the CCGT’s load level profiles to the
net power profiles, it is clear that the energy penalty model
of lin-CCP is different from mode-CCP. Take the dispatch
period 19 as an example. Both models give the same net
electric power output as mode-CCP while the CCGT load
level given by lin-CCP is less thanmode-CCP,which is 66.2%
v.s. 74.5%.Note that the gap of 8.2 percentage points amounts
to a difference of around 70 MW in gross power output. The
above two observations indicate that lin-CCP underestimates
the energy penalty from CCP compared to mode-CCP.

In Table 8, the dispatch results of fast-acting units are
listed. Please be reminded that G6 has the lowest marginal
production cost among the three units. When using lin-CCP,
the dispatched production of G6 is 71.7 MW·h higher than
mode-CCP, whereas the dispatched production of G7 and G8
drops. It explains the lower recourse objective value achieved
by lin-CCP. However, the total dispatched production of the
three units is 50.2 MW·h lower for lin-CCP than mode-CCP.
It matches the $ 1000 reduction in coal-fired units’ fuel cost.

To sum up, the overall optimal objective value of the
ARO UC is slightly improved by 0.09% while the reached
operating range of the CCGT-CCP is narrowed by 4.68% if
the linear CCP model is adopted. Such changes are attributed
to underestimated energy penalty from the CCP in the linear
model than the mode-based model.

E. COMPUTATIONAL PERFORMANCE OF THE C&CG
ALGORITHM
There are 15 cases in previous subsections where the full
ARO UC model is solved using the C&CG algorithm. Algo-
rithmic parameters are kept the same, as stated in Section IV.
As the scale of the benchmark system is moderately large,
and various combinations of physical model parameters have
been tested, the cases may count as empirical evidence of
the computational performance of the C&CG algorithm for
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TABLE 9. Statistics on the computational performance of the C&CG algorithm.

real-world applications. Statistics on the results from the
15 cases are tabulated in Table 9.

As the statistics on the optimality gap of the last iteration
suggest, the exact optimal solution of the AROUC problem is
found in all 15 cases. The optimality gap is defined as the rela-
tive difference between the upper bound and the lower bound
of the optimal objective value. The data could be attributed to
the rounding errors due to finite-precision arithmetics of float
numbers. Interestingly, the value chosen for the convergence
gap ϵ works exceptionally well.

The count on the identified critical scenarios is one order
of magnitude larger than those in [40]. The mathematical
structure of the proposed UC model may explain the drastic
difference. In common UC models, only the commitment
decision requires binary variables, which will also appear
directly in the objective function. The UC model developed
in this work introduces extra binary variables to indicate
the operation modes of the CCP, which are not directly
included in the objective function. The operation modes will
change the level of flexibility of the CCGT and, in turn,
change the optimality of the dispatch result. As the chain
of cause and effect for the operation modes is longer than
the commitment decisions, this may pose difficulties for the
algorithm. Besides, commitment decisions generally have
higher sensitivities on the objective value than the operation
modes indicators. Binary variables with lower sensitivities
may cause troubles to the branch and bound algorithm in
the MIP solver. The proposed model is computationally more
challenging than common ARO UC formulations.

Computation time varies quite widely from case to case.
The number of all identified scenarios also faces a simi-
lar situation. Indeed, there is a positive correlation between
the computation time and the number of critical scenarios
considered in the model. Recall the structure of the master
problem (51)-(55) in the C&CG algorithm. The scale of the
master problem groves linearly regarding the number of iden-
tified critical scenarios. However, due to heuristics in theMIP
solver and the evolving numerical characterization of each
instance of the master problem, the computation time may
not be strictly monotonically increasing over the scale of the
master problem or, more specifically, the number of critical
scenarios.

Take case 1 as an example. The convergence trajectory
and computation time of the master problems at each iter-
ation are plotted in Figure 11. It is shown by the bars that
the computation time of an expanding master problem is
not increasing monotonically. Another prominent pattern in
Figure 10 is the downward staircase shape of the convergence

FIGURE 11. Convergence trajectory and computation time of case 1.

trajectory. The three apparent plateaus correspond to an order
of magnitude of 10−2, 10−4, and 10−5. At the end of the final
plateau, the optimality gap falls off a cliff, indicating that
the algorithm has found the true optimum. Combining the
pattern with the accumulated computation time, one would
agree that the value of the convergence gap seriously impacts
on the algorithm’s computation speed. For instance, if set
ϵ = 1e−4, the algorithm will stop at iteration 31. The overall
computation time will be 331.5 seconds, only a quarter of the
time for finding the true optimum. There is indeed always
a trade-off between efficiency and accuracy. However, even
the worst case 1501.4 seconds run is way more fulfilling to
the efficiency demand of day-ahead problems. As a result,
solving the proposed ARO UC model using C&CG has the
potential to be implemented for real-world application.

VI. CONCLUSION
In this paper, the flexible operation of the carbon capture
plants is abstracted to a generic mode-based model. A mixed-
integer electric power output model of this low-carbon high-
flexibility generation technology is proposed, building upon
results from state-of-the-art research on process modeling
of the combined-cycle gas turbine generators with post-
combustion carbon capture. The new model is applied to a
day-ahead adaptive robust unit commitment problem where
wind power is considered the source of uncertainty.

The correctness of the proposed mode-based CCP oper-
ation model is demonstrated. Compared to the linear CCP
model, the proposed mode-based model achieves a 4.91%
wider operating range in the net electric power output,
although the overall optimal objective value is slightly
increased by 0.09%. The proposed model is more accurate
than the linear model since the latter assumes a constant
reboiler heat duty, which underestimates the energy penalty
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of the CCP. The practicality of the proposed adaptive robust
unit commitment model is also validated. Using the C&CG
algorithm, most problem instances can be solved under
15minutes. Finally, the initial solvent ratio is demonstrated to
be non-trivial to the generation flexibility of generators with
carbon capture plants. An optimal setting of the initial solvent
ratio enlarges the operating range by 21.96%.

The applicability of the proposed model is beyond
short-term scheduling problems for bulk power systems. It is
interesting to consider the proposed CCP model in expansion
planning problems for distribution systems with several types
of renewable energy [41]. The proposed model may also be
used to relieve transmission congestion issues, together with
other flexibility sources such as distributed generations [42].
The authors plan to tackle these issues in future work.
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