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ABSTRACT Researchers typically leverage side information, such as social networks or the knowledge
graph, to overcome the sparsity and cold start problem in collaborative filtering. To tackle the limitations
of existing user interest modeling, we propose a knowledge-enhanced user multi-interest modeling for
recommender systems (KEMIM). First, we utilize the user-item historical interaction as the knowledge
graph’s head entity to create a user’s explicit interests and leverage the relationship path to expand the user’s
potential interests through connections in the knowledge graph. Second, considering the diversity of a user’s
interests, we adopt an attention mechanism to learn the user’s attention to each historical interaction and
each potential interest. Third, we combine the user’s attribute features with interests to solve the cold start
problem effectively.With the knowledge graph’s structural data, KEMIM could describe the features of users
at a fine granularity and provide explainable recommendation results to users. In this study, we conduct an
in-depth empirical evaluation across three open datasets for two different recommendation tasks: Click-
Through rate (CTR) prediction and Top-K recommendation. The experimental findings demonstrate that
KEMIM outperforms several state-of-the-art baselines.

INDEX TERMS Multi-interest, user modeling, knowledge graph, recommender systems.

I. INTRODUCTION
The rapid development of the Internet has brought an explo-
sive growth in data, resulting in a challenge for users to find
the content they want, often referred to as the information
overload problem [1]. As an effective method to alleviate
this problem, recommender systems play a vital role in
online services by analyzing users’ historical behavior data to
determine user preferences and to recommend personalized
content.

Nowadays, most recommendation methods can be charac-
terized by five general approaches [2], [3]: (i) content-based
recommendation; (ii) collaborative filtering; (iii) matrix
factorization; (iv) hybrid recommendation; and (v) Deep
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Learning-based recommendation. Content-based approac-
hes [4] typically generate recommendation results by calcu-
lating the similarity of extracted item features; however the
performance can be significantly reduced if the item content
attribute is missing. The underlying principle behind collabo-
rative filtering [5] is to calculate the similarity between users
or items and then generate personalized recommendations
according to thia similarity. Although collaborative filtering
has achieved some success in the industry, there is still scope
for considerable improvement, such as the need for more
interactive data, the difficulty in expanding user interests,
and the challenges associated with the cold start problem,
resulting from the inclusion of new users or items within
the recommendation system. Utilizing the sparsity of the
score matrix, Matrix Factorization [6] employs a row-column
transformation to learn the feature matrix of users and items
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while assuming that user preferences are mostly influenced
by a small number of critical factors. Although Matrix Fac-
torization successfully addresses the issue of missing values
for the user and item scoring matrix, the decomposed matrix
cannot correspond to concepts in the real world, and can
only be understood as abstract semantic spaces. This can
make it difficult to provide reasonable explanations for the
resulting recommendations. In practical applications, differ-
ent models are often combined or fused synergistically to
achieve better results, compared to using a specific model in
isolation [7]. Although there are many such fusion strategies
used for generating recommendations, there is no guarantee
that any fused method will perform better than the original
method when solving a specific problem. The way in which
a fused model can be optimized should also be considered.
Deep learning-based recommendation approaches [8] use
Neural Networks to model user preferences and generate
personalized recommendations. However, due to the need for
adequate auxiliary information, cold start and interpretability
remain significant challenges.

In 2012, Google proposed the concept of a ‘‘knowl-
edge graph’’. Since then, the use of knowledge graphs has
become widespread across a variety of industries and appli-
cation areas, including search, recommendation, question
answering, text understanding, and text generation. Thus, a
recommender system can benefit from the knowledge
graph’s construction of the relationships between entities
with explicit semantic links. These include: (i) enhancing
user-item and item-item connections to reduce the sparsity
of user behavior; (ii) enhancing item attributes to improve
the accuracy of recommendation learning and the comple-
tion of item representations; and (iii) making an explainable
recommendation using the knowledge graph’s semantic rela-
tionships. Currently, knowledge graph-based recommenda-
tion algorithms can be divided into two broad categories:
embedding-based methods [9], [10], [11], [12], [13], [14]
and path-based methods [15], [16], [17], [18], [19]. The
embedding-based methods utilize the representation vectors
of nodes in the learned knowledge graph to determine the sim-
ilarity between users and items for recommendations. These
methods only consider the direct relationship between entities
and require a multi-level relationship between entities. Path-
based methods make recommendations by extracting and
modeling the path between users and items within the knowl-
edge graph itself. However, the models are often complex
and need to be more scalable. Additionally, recommendation
methods based on knowledge graphs only capture the explicit
relationship features between users and items that exist in the
knowledge graph itself, as it can be challenging to extract the
implicit relationship features outside the knowledge graph.

To provide personalized services and improve recom-
mendation performance, we propose a Knowledge-Enhanced
userMulti-InterestModeling for recommendation (KEMIM),
which uses a knowledge graph to enrich and mine the poten-
tial information of users and items, and organically combines
embedding-based and path-based recommendation methods

to more reasonably express user interests. Our main contri-
butions are as follows:

• We model user interests across several dimensions.
We model explicit user interest by the user-item inter-
action and expand potential user interest by linking
the relevant entities corresponding to the knowledge
graph’s relationship path to improve the recommenda-
tion’s accuracy. At the same time, we use the semantic
relationships defined within the knowledge graph to
provide explainable recommendation results.

• We use the attention mechanism tomodel user behaviors
on explicit and potential interest. We analyze the impact
of different interactions on user preferences and effec-
tively extract dynamic preferences in the user interaction
process.

• We combine user attribute features with user interest
features to solve the cold start problem, and improve
recommendation performance.

• The proposed KEMIM system outperforms various
state-of-the-art recommendation approaches across
diverse settings, based on an empirical analysis across
three open datasets. An additional ablation analysis
supports the validity of our main contributions.

II. RELATED WORK
A. USER MULTI-INTEREST MODELING
User multi-interest modeling is a type of user interest mod-
eling that focuses on predicting and analyzing the multi-
ple interests of users; in contrast to the more traditional
user interest modeling, which typically focuses on a single
interest. Thus, user multi-interest modeling aims to under-
stand a user’s full range of interests, and studies have shown
that user multi-interest modeling can enhance the effective-
ness of personalized recommender systems. By consider-
ing multiple interests, these systems can provide a more
diverse and comprehensive set of recommendations, lead-
ing to improved user satisfaction and engagement. Thus,
this approach has received significant attention from both
industry and academia, resulting in numerous methods for
modeling using user behavior data.

Li et al. [23] proposed a novel method to learn user
representations by representing a user with many repre-
sentation vectors that encode various aspects of the user’s
interests. Xiao et al. [24] presented a Deep Multi-Interest
Network (DMIN) that predicts click-through rates by mod-
eling users’ latent multiple interests, whereas a novel frame-
work called Multi-Interest User Representation Model was
proposed by Yang et al. [25]. As a recommendation model
for news, Wang et al. [26] proposed a multi-interest news
sequence (MINS). Using the advantages of multi-interest
learning, Chai et al. [27] improve candidate matching per-
formance by utilizing user profiles. They presented the
User-Aware Multi-Intention Learning Framework (UMI) for
assessing candidates based on user profiles and behavioral
data. Portman et al. [28] introduced MiCRO, a generative
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statistical framework that models the preferences of
multi-interest users and the representations of items that
reflect multi-interest preferences over time. The Knowl-
edge Enhanced Multi-Interest Network (KEMI) [29]
utilizes knowledge graphs to learn users’ interest representa-
tions using heterogeneous graph neural networks (HGNNs)
and a unique dual memory network (Long- and Short-
Term) which is extremely useful in capturing user interests.
Yang et al. [30] provided a hierarchical model of user inten-
tions and preferences based on relation-aware heterogeneous
information network (HIN) embeddings for sequential rec-
ommendation to account for users’ multiple interests.

A user’s numerous possible interests need to be distin-
guished or accurately modeled by most existing approaches,
which makes it difficult to propose the next item accurately.

B. KNOWLEDGE GRAPH-BASED RECOMMENDATION
Knowledge graph-based recommendation refers to using
knowledge graphs within personalized recommendation sys-
tems, such that a knowledge graph helps to enhance the per-
sonalized recommendation systems’ accuracy, relevance, and
explainability [37], [38]. Such knowledge graph-based rec-
ommendations mainly exploit a knowledge graph representa-
tion or knowledge graph meta-path extraction. The methods
based on knowledge graph representationmainly use the orig-
inal dataset to construct the knowledge graph and represent
the nodes and relations in the vector space, which is computed
to generate low-dimensional dense vectors. Zhang et al. [31]
used embeddings to encode interaction information, text, and
images, and from these, they extracted multiple semantic
features fused with the recommended items. Wang et al. [32]
proposed a collaborative deep learning (CDL) model, which
uses knowledge graph representation learning to obtain struc-
tured information about items, and uses a denoising encoder
network to learn textual representation vectors at the coding
layer. Subsequent work [33] resulted in the proposal of aDeep
knowledge-aware network model that uses knowledge graph
representation techniques and convolutional neural networks
to learn sentences, and adds attention mechanisms to achieve
news recommendations.

Those methods based on knowledge graph meta-path
extraction differ as they mainly use the connectivity between
nodes to extract path information and combine it with
a collaborative filtering model to make recommendations.
Qian et al. [34] proposed a new path similarity calculation
method, PathSim, by calculating the path similarity between
nodes. Shi et al. [17] proposed a meta-path-based strategy to
calculate the path similarity using weighted meta-paths and
constructed a regularized term loss function with weights
for model training. The RippleNet model [9] adds the path
and node information in the knowledge graph as additional
knowledge to the recommendation algorithm and understands
the user’s preference for an item as a water wave propagation.
However, these models could have effectively solved the
problems of algorithm interpretability and cold start.

III. METHODOLOGY
A. PROBLEM DEFINITION
Definition 1: The user-item interaction matrix Y =

{yui|u ∈ U, i ∈ I. U = {u1, u2, . . .} and I = {i1, i2, . . .}
represent the set of users and the set of items.

Where yui = 1 indicates implicit feedback between user u
and item i, e.g., click, view, collect.
Definition 2: Knowledge Graph G, which is com-

posed of a large number of entity-relationship-entity
triples (head entity, relationship, tail entity). G =

{(eh, r, et) |eh ∈ E, r ∈ R, et ∈ E}, E and R represents the
set of entities and the set of relationships in knowledge
graph G. Meanwhile, item i in the set I can be matched with
one or more entities in G, which can be expressed as I ⊆ E .
Definition 3: User u’s historical interaction item set is

δu =
{
i1, i2, . . . , iNj

}
.

Definition 4: The set of entities related to the user u’s
interacted items is Eu = {et | (eh, r, et) ∈ G, eh ∈ δu}.
Definition 5: The related triplet set of user u is Su =

{(eh, r, et) | (eh, r, et) ∈ G, eh ∈ δu}.
To sum up, we can describe the recommendation problem

as follows: given interaction matrix Y, knowledge graph G,
and user attribute information, for any pair of u, i, learn
its prediction probability ŷui = F(u, i; θ ) ∈ [0, 1], where
θ represents the parameter of function F .

B. MODEL FRAMEWORK
Our proposed KEMIM is outlined in Figure 1, which con-
sists of four critical modules: (i) Explicit user interests;
(ii) Potential user interests; (iii) User attributes; and
(iv) Fuse user interest representation and attribute repre-
sentation to generate recommendation results. Specifically,
the model initially takes the item knowledge graph and
user attributes as auxiliary information, and the user-item
historical interaction as the explicit interests UE , and then
links related entities through the relationship structure of the
knowledge graph as the potential interests UP, before using
the attention mechanism to model them respectively. Mean-
while, to address the cold start challenge, the user attribute
features are embedded as UA. The resulting user embedding
is obtained by fusing the user interest representation and
attribute representation. As a final step, we concatenate the
user embedding U and the candidate item embedding Ij
together and feed it into the neural network and the sigmoid
function to calculate the click probability ŷuij .

C. EXPLICIT USER INTEREST MODELING
Modeling user interests is the basis of many recommendation
systems, and capturing more user preference information is
crucial if the accuracy of recommendations is to be enhanced.
The user’s historical behavior involves a variety of fea-
tures, e.g., clicking, browsing, and buying. The recommender
system based on deep learning represents these historical
behaviors through the embedding layer. It uses combina-
tion methods to fuse them into a vector that represents user
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FIGURE 1. The overall framework of KEMIM.

interests. Our approach uses the user-item historical inter-
action to extract the explicit relationship features between
users and items through the attention network as its explicit
interest representation. We assume a historical interaction
set δu of user u, and since each item matches an entity in
the knowledge graph, for each item ia (a = 1, 2, . . . ,Na),
we learn the corresponding vector representation Ia ∈ Rd

through knowledge representation learning, where d is the
size of a vector representation.

The user-item interaction is diversified. The user will be
more interested in this candidate item if many items are
similar to some candidate item in the historical interaction
set. Therefore, we use the attention mechanism to calculate
the relevant weight between each interactive item and the
candidate item. Given this weight, the vector of each his-
torical item is weighted and summed to represent the user’s
historical interest dynamically. Specifically, based on the
candidate item representation Ij ∈ Rd , each ij in the user u
interaction history item set δu is assigned a different weight
and weighted average to obtain the user’s explicit interest
representation UE :

UE = att (I , Ia) =
1
Na

∑Na

a=1
αjIa (1)

where αj is the weight factor of attention.We can use function
ρ (x, y) to fit the correlation between item ij and ia in the form
of an inner product and convert the correlation into a weight
factor through the softmax function:

αj = softmax
(
ρ

(
Ia; Ij

))
=

exp
(
ρ

(
Ia; Ij

))∑Na
a=1 exp

(
ρ

(
Ia; Ij

)) (2)

D. POTENTIAL USER INTEREST MODELING
The knowledge graph contains rich entity information, and
the association between different entities can be used to mine
potential user interests. Consider the scenario where user m
has clicked onmovie im because he is interested in the leading

actor in this movie. To discover the potential user interests,
we use the knowledge graph to link the items that users have
interacted with to related entities through the relationship
path of the knowledge graph to mine the potential interests of
the related entities. Considering the different degrees of user
interests in different relationships, we put the knowledge path
representation vectors into the attention network to calculate
the items that users have interacted with to their related
entities through the relationship path.

Given the knowledge graph G, we take the user u’s histor-
ical interaction item set δu as the head entity and relationship
along the knowledge path to get the related entities Eu and
triplet set Su of historical items. The inner product function
ρ(x, y) is used to calculate the weight factor αr of candidate
item ij and the triple

(
ehj , rj, etj

)
, under the relation rj:

αr = softmax
(
ρ

(
Ij;Ehj ,Rj

))
=

exp
(
ρ

(
Ij;Ehj ,Rj

))∑(
ehj ,rj,etj

)
∈Su

exp
(
ρ

(
Ij;Ehj ,Rj

)) (3)

where Rj ∈ Rd is the vector representation of relation rj, Ehj
is the vector representation of the head entity matched by the
item. By calculating the relevant weight factors of all triples in
Su, the relevant entities that users link to are weighted average
to represent user potential interests UP:

UP = att
((
Rj,Etj

)
, I

)
=

∑(
ehj ,rj,etj

)
∈Su

αrEtj (4)

E. USER ATTRIBUTES MODELING
Traditional recommendations ignore the attribute aspects of
users themselves and concentrate on the interaction between
users and items. We comprehensively consider the features of
user attributes and user interests to identify users better, and
help solve the cold start problem for new users.

Attribute features (based on the inherent information of
users) can be used to represent users effectively when users
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have no interaction with items. To extract these attribute
features for each user, we convert the attribute information
into sparse vectors through the one-hot encoder. Because the
vectors of one-hot type are too sparse, it will lead to too
many parameters and different lengths of vectors, which is
not conducive to the fusion of features. We therefore use the
embedding layer to compress the sparse vector representation
of attribute features into a low dimensional dense vector
of uniform length, and then map different features to the
same hidden space with user interest features through the
fully connected layer mapping function Z . User attributes
representation UA is given as:

UA = Z
(
Uage,Ugender ,Uloc,Ujob, . . .

)
(5)

F. RECOMMENDATION GENERATION AND OPTIMIZATION
User vector representations can be obtained by fusing explicit
and potential user interests and integrating user attribute fea-
tures, as follows:

U = UE + UP + UA (6)

Given the vector representation U of user u and the vector
representation Ij of candidate items ij, and given the fact that
the simple inner product is not enough to mine the complex
non-linear association between user features and item fea-
tures, we use neural network F to get ỳuij corresponding to
the probability of their interaction:

ỳuij = F
(
U; Ij

)
= σ

(
aL

(
W T
L

(
· · · a2

(
W T

2 a1
(
W T

1 fconcat
(
U , Ij

)
+ b1

)
+b2

)
· · ·

)
+ bL

))
(7)

where σ (x) =
(
1 + e−x

)−1 is a sigmoid function, an rep-
resents the activation function of the nth layer in the neural
network, and Wn and bn are the weight and bias of the
nth layer, respectively.

G. MODEL TRAINING
The loss function of KEMIM is shown in Formula (8):

L = LRS + LKG + LREG (8)

The probability distribution of the target user interacting with
candidate items is output through the softmax function in the
neural network, and the gap is between the predicted value
ỳuv and the actual score yuv:

LRS = −

∑
yuvlog ỳuv + (1 − yuv) log

(
1 − ỳuv

)
(9)

We use the random gradient descent method to optimize the
loss function iteratively. Compared with other loss functions,
the curve of cross-entropy loss is monotonic—the more sig-
nificant the loss, the greater the gradient, which is convenient
for model optimization.

We give the observed interactions a greater reward than the
unobserved interactions for the loss in the second item:

LKG =

∑
(u,i,j)∈O

−ln σ
(
ỳui − ỳuj

)
(10)

where O is the training set, there are the observed and unob-
served interactions between users and items.

Finally, for the regularization term LREG, we take all the
framework parameters into account using L2 regularization:

LREG = λ1 ∥ W ∥
2
2 +

λ2

2
(∥V∥

2
2 + ∥E∥

2
2 + ∥R∥

2
2) (11)

where λ1 and λ2 are the balancing parameters.

IV. EXPERIMENTS
A comparative evaluation of KEMIM with other recommen-
dation based approaches was conducted across three real-
world scenarios; recommendations for movies, books, and
music. Before presenting the experimental findings, we first
describe the datasets, baselines, and experimental setup,
as well as completing an ablation experiment to validate each
module in KEMIM. The selection of hyper-parameters is also
discussed.

A. EXPERIMENTS SETTINGS
1) DATASETS
For recommendation data, we use the MovieLens-20M,
Book-Crossing and Last.FM datasets. MovieLens-20M is
a frequently used dataset for recommendation tasks, com-
prising 130000 users, more than 27000 movies, and nearly
20 million movie rating data points. The Book-Crossing data
set consists of user-book interactions that were collected
from the Book-Crossing Community. It includes explicit and
implicit feedback from more than 10000 users, as well as
one million ratings on more than 19000 books. Last.FM is
a dataset of user-music interactions taken from the Last.FM
music service, which includes approximately 2000 users and
nearly 20,000 musical scores from almost 100,000 musical
compositions.

In addition to user-item interaction, it was necessary
to construct a knowledge graph for entities/items in each
dataset, using Microsoft Satori. This consisted of initially
choosing the subgraphs of the relevant disciplines (such as
the knowledge graphs of movies, books, and music), which
have a confidence level greater than 0.9 throughout the whole
knowledge graph. For each field, the names of the items in
the dataset were compared to the names of the entities in the
knowledge graph, and after this comparison, new IDs were
given to all of the entities and relationships. Unrelated items,
entities, and user-item interactions were then deleted, to keep
things simple. Table 1 displays the fundamental data for the
three datasets after having completed the entity matching
process.

2) BASELINES
To evaluate the effectiveness of KEMIM,we compared it with
a number of state-of-the-art baselines. Other than LibFM, all
of the following baselines use knowledge graphs as auxiliary
information:

CFKG [20] is a collaborative filtering recommendation
system. It integrates user behavior and the knowledge graph
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TABLE 1. Basic statistics of the three datasets.

of items into a unified graph and uses TransE to learn entity
embedding in the graph.

LibFM [21] is a feature-based factorization model.
As input for LibFM, we concatenate user ID, item ID, and
the appropriate averaged entity embeddings learned through
TransR.

RippleNet [9] is a network structure similar to water ripple
propagation. The user preference is propagated to the entity
set along the user-item interaction path using knowledge
data from the knowledge graph. The user preferences are
dispersed to generate the recommendation results.

MKR [22] is a multi-task feature learning method.
It mainly embeds knowledge from the knowledge graph into
the tasks to support the recommendation.

KGCN [10] aims to encode high-order dependent contexts
with respect to the semantic data in the knowledge graph. The
main goal of KGCN is to represent entities by aggregating
messages with a neighborhood information bias.

KGAT [13] develops an attentive message-passingmethod
across the knowledge-aware collaborative graph for embed-
ding fusion. It employs an attention mechanism to discrimi-
nate the importance of the neighbors.

HKIPN [35] presents a new heterogeneous propagation
method that simultaneously propagates knowledge and user
interest in a user-item-knowledge graph. It considers infor-
mation decay in the process of propagation.

CG-KGR [36] encapsulates historical interactions to con-
struct an interactive information summarization, and adopts
Collaborative Guidance Mechanism to extract information.

FIRE [39] models multi-granular high-order feature inter-
actions by convolutional neural networks (CNNs) and the
users’ latent intent factors by utilizing a two-level attention
mechanism to improve user and item representation learning.

3) EXPERIMENT SETUP
Our evaluation focuses on two recommendation tasks:
Top-K recommendation and Click-Through Rate (CTR)
prediction. To ensure reliable and consistent experimental
results, we divided each dataset into training, evaluation, and
test sets with a 6:2:2 ratio and performed the random split
process five times.

We use the trained model in the Top-K recommenda-
tions to rank K items according to each user’s highest
predicted scores. To evaluate the Top-K recommendation

performance of KEMIM, we uitilise two popular evalua-
tion metrics: Recall@K(the percentage of relevant items the
system selected in the top K items) and NDCG@K (Nor-
malised Discounted Cumulative Gain for the top K items).
We first transform ỳuij through the sigmoid function in the
CTR prediction process. The click rate is then determined
by comparing the rescaled ỳuij to a critical value of 50%,and
categorizing it as either 1 or 0. To evaluate the prediction’s
accuracy, we adopt the AUC (area under the ROC curve)
metric andF1 (harmonicmean of recall and precision)metric.

For the hyper-parameters of our proposed model, we select
the entity embedding dimension d and the relationship
embedding dimension k from 8, 16, 32, 64, 128}. The max-
imum number of neighbors of the node K id is selected
from the set 2, 4, 8, 16, 24, 32}. The selection range of
regularization parameter λ is 10−6, 5 × 10−6, 10−5, 5 ×

10−5, 10−4, 5 × 10−4, 10−3, 10−2, and learning rate η is
tuned within 10−4, 5 × 10−4, 10−3, 10−2, 5 × 10−1. The
model employs a batch training method and has a constant
data size per batch of 512. All models are optimized utilizing
the Adam optimization algorithm.

For the hyper-parameters of baselines, the embedding
size of TransE in the CFKG is 32, the entity embedding
size d = 8, and the learning rate η = 0.1. For RippleNet,
d = 8, η = 0.01, λ1 = 10−6, λ2 = 0.01, H = 2. For MKR,
d = 16, η = 0.01, λ1 = 10−5, λ2 = 0.01. For KGCN,
H = 2, d = 64, η = 0.01, λ2 = 0.01. For KGAT, H = 2,
d = 128, η = 0.01, λ2 = 0.01. The hyper-parameter settings
of other baseline approaches are the same as those specified
in the original paper or the provided code.

B. PERFORMANCE COMPARISON
Table 2 displays the comparison with the baseline approaches
for the CTR prediction. The second-best performances are
underlined, while the top results are shown in bold. The
experimental comparison of NDCG and Recall for different
K values in accordance with the Top-K guideline is shown
in Figure 2.
From our empirical evaluations, we make the following set

of observations:

• KEMIM generally outperforms all other approaches in
terms of performance, and the performances on AUC
and F1 are significantly improved compared with other
baselines. Specifically, for theMovie dataset, these eval-
uation metrics increased by 0.13% - 17.31% and 0.15%
- 18.45%, respectively. Likewise for the Book dataset,
they increased by 1.20% - 23.55% and 0.77% - 16.56%,
respectively. For Top-K recommendation, KEMIM has
also achieved a good performance for NDCG@K and
Recall@K values, which further demonstrates the effec-
tiveness of this proposed model.

• The results obtained using KEMIM for the Book Cross-
ing and MovieLens-20M datasets are better than that of
the baseline approaches. This is because the data in the
book dataset and Movie dataset are much sparser than
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that in the music dataset. The performance of KEMIM
remains effective when faced with sparse data scenarios.

• KEMIM comes in third place on the AUC metric for
the Last.FM dataset. However, it does not exhibit more
extraordinary performance on the F1 and Recall metrics.
As the ratio of KG triplets to items in the music dataset
is the lowest, our KEMIM cannot always successfully
extract the entities of KG to enhance the item embed-
dings. Another reason is that we put the critical value at
50% to decide if item i would be offered to user u after
normalizing the expected score ỳuij . As the distribution
of positive and negative samples in music is uneven and
restricted, a critical value of 50%may not be suitable for
binary categorization.

• The performance of the baseline approaches using the
knowledge graph is better than that of the approaches
that do not use a knowledge graph. It supports the claim
that that using the knowledge graph as additional infor-
mation to the recommender system will help to improve
the recommendation performance.

• MKR shares information through multi-task learning
in the recommendation and knowledge representation,
which can improve recommendation accuracy and opti-
mize knowledge representation. However, exact knowl-
edge representation makes the recommendation result
too single, and the recall rate of the model decreases.

• HKIPN increases the effectiveness of the propagation
process by simultaneously propagating knowledge and
user interest in a unified graph. However, simply inte-
grating KGs into recommendation models would not
improve its performance; it may even reduce its capacity
as an overall model.

• The fact that FIRE has the best performance in the music
dataset could be attributed to its ability to effectively
explore user latent intent and item fine-grained high-
order feature interactions. However, it needs to improve
its effectiveness in the movie and book datasets, which
aremuch sparser. It was also noted that the time taken for
recommendations was longer than other methods, which
is an obvious shortcoming.

• CG-KGR and KGAT perform well in CTR prediction
and are better than most baselines in Top-K recommen-
dation. This is because they exploit end-to-end joint
learning models that simultaneously use the knowledge
graph’s features and structural information. This has the
advantage that it combines knowledge graph represen-
tation learning and recommendation tasks more effi-
ciently. However, these methods need more modeling
of user attribute information. The implicit user vector
generated only by the knowledge graph and user-item
interaction needs to be more comprehensive to fully
describe user interest.

In brief, our proposed KEMIM uses user-item historical
interaction and item-related entities in the knowledge graph
to mine user interests at multiple levels. At the same time,
KEMIM combines user attribute features to make up for the

TABLE 2. Average results of CTR prediction task.

FIGURE 2. Average results of Recall@K and NDCG@K on Top-K
recommendation.

cold start defect, which significantly affects the improvement
of recommendation performance.

C. ABLATION STUDY
To discuss the impact of different modules in our proposed
model, we designed some variants for use in conducting
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TABLE 3. Sensitivity analysis of d and λ .

FIGURE 3. Ablation study of the components on Top-K recommendation.

ablation experiments: explicit interest, potential interest, and
both.We use different variants to represent users and compare
them with KEMIM. Experiments were conducted by vary-
ing the number of recommended items K with the values
1,5,10,20,50,100, for the experimental dataset MovieLens-
20M. Figure 3 shows the values of Recall@K andNDCG@K,
respectively.

Potential interest in using knowledge graph structure infor-
mation has significantly improved the recall rate. The results
of the two metrics are improved by combining explicit inter-
est with potential interest compared with individual modules.
When the value of K is small, the NDCG value with attribute
information increases significantly, suggesting that the fusion
of attribute features can improve the overall recommenda-
tion performance to a certain extent. KEMIM, which com-
bines explicit interests, potential interests, and user attributes,
is superior to the other variants considered in this empirical
study across each metric.

We conducted a comparative evaluation to investigate the
impact of attention networks on recommendations. The first
involved retaining the attention layer to capture the degree
of user interest, whereas the other involved removing the
attention layer and directly embedding nodes by weighted
averaging. The Recall@K values of these two models across
different datasets is shown in Figure 4.
From the above results, the recommendation performance

of the model retaining the attention network is equivalent
to or better than that obtained when removing the attention
network. The more the value of K , the more pronounced the
recommendation improvement by the attention network. This
comparative evaluation shows that the attention mechanism

FIGURE 4. Ablation study of the attention mechanism on Top-K
recommendation.

used in KEMIM can effectively improve the performance of
recommendations.

D. PARAMETER ANALYSIS
We conducted an analysis to verify the values of the vec-
tor representation dimension d and the training weight λ

of knowledge graph feature learning. Values for d ranged
from 4 to 64, the values for λ ranged from 0.001 to 1, and
the other parameters remained constant. Table 3 shows in
the MovieLens-20M dataset, with different dimensions and
different λ , the value of AUC (%) and R@10 (%). It has a
similar trend in the other two datasets. We can see that when
λ is constant, AUC and Recall increase with d as vectors
with larger dimensions can encode more helpful information.
However, when d is greater than 16, both AUC and Recall
begin to decline possibly because of overfitting. In addition,
when λ = 0.01, AUC andRecall perform best. Becausewhen
it is smaller than 0.01, it cannot provide practical regulariza-
tion constraints, and when it is more significant than 0.01,
it can have an enormous impact on the objective function.
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V. CONCLUSION
The knowledge graph is a powerful mechanism for intel-
ligent recommendation, but the existing recommendation
methods combined with the knowledge graph have many
apparent shortcomings. We propose a knowledge-enhanced
user multi-interest modeling for recommendation (KEMIM),
which models user interests across three different dimen-
sions: explicit interest, potential interest, and user attributes,
making full use of the rich semantics and distinctive network
structure contained in the knowledge graph, to mine users’
multi-level interests and address the problem of cold start.
Additionally, we adopt the attention mechanism to weigh
the typical user’s explicit and prospective interests to reflect
the diversity of interests, considering that various activities
influence user interests. Finally, we provide the optimization
strategy and loss function and test it over three open datasets.
By comparing the performance of existing state of the art
models and ablation experiments, we could confirm that the
model has significant effects on the recommendation perfor-
mance and analyze the impact of eachmodule and parameters
used in the model.

Future work will seek to create more effective and explain-
able recommendationmodels based on knowledge graphs and
graph neural networks. Mainly, we will focus on simplifying
and improving the knowledge extraction in the KG-based
recommender system, which is one shortcoming of our work.
In addition, we will incorporate self-supervised learning into
KG-based recommendations.
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