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ABSTRACT The multiple-choice multidimensional knapsack problem (MMKP) is a well-known NP-hard
problem that has many real-time applications. However, owing to its complexity, finding computationally
efficient solutions for the MMKP remains a challenging task. In this study, we propose a Modified
Artificial Bee Colony algorithm (MABC) to solve the MMKP. The MABC employs surrogate relaxation,
Hamming distance, and a tabu list to enhance the local search process and exploit neighborhood information.
We evaluated the performance of the MABC on standard benchmark instances and compared it with several
state-of-the-art algorithms, including RLS, ALMMKP, ACO, PEGF-PERC, TIKS-TIKS2 and D-QPSO. The
experimental results reveal that MABC produces highly competitive solutions in terms of the best solutions
found, achieving approximately 2% of the optimal solutions with trivial (milliseconds) CPU time. The
Kruskal-Wallis test revealed that there was no statistically significant difference in the objective function
values between the MABC algorithm and other state-of-the-art algorithms (H = 0.31506, p = 0.98882).
However, for CPU efficiency, the test showed a statistically significant difference (H = 84.90850, p = 0),
indicating that the MABC algorithm exhibited significantly better CPU efficiency (with shorter execution
times) than the other algorithms did. Along with these findings, the ease of implementation of the algorithm
and the small number of control parameters make our approach highly adaptive for large-scale real-time
systems.

INDEX TERMS Artificial bee colony algorithm, multiple-choice multidimensional knapsack problem,
hamming distance, surrogate relaxation.

I. INTRODUCTION
The MMKP is a generalization of the classical knapsack
problem (KP) [1]. It is significant because it can model a
wide range of real-time applications such as resource allo-
cation [2], intelligent transportation systems [3], logistics [4],
quality of service (QoS) [5], [6], web service composition [7],
Energy-Efficient Offloading in Mobile Edge Computing [8],
medicine [9], budgeting problems [10], hardware design [11],
and cloud computing [12].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenzhou Tang .

Formally, the MMKP can be expressed as a set of items
divided into n disjoint groups and an m-dimensional resource
constraint represented by the vector of resource availability
bk = {b1, . . . , bm}. Item j in group i has a non-negative profit
value vij and consumes a certain amount rkij of resource k (k =
1, . . . , m). The decision variable xij = 1 if item j from class i
is selected and xij = 0 otherwise. The MMKP is then defined
as

Maximize
n∑
i=1

ni∑
j=1

vijxij (1)
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s.t.
n∑
i=1

ni∑
j=1

rkijxij ≤ b
k , k = 1, . . . ,m (2)

ni∑
j=1

xij = 1,i = 1, . . . ,n (3)

xij ∈ {0, 1} ,i = 1, .., n,j = 1, ..,ni (4)

As a variant of the classical KP, the MMKP can be con-
sidered as a combination of two challenging problems: the
multidimensional knapsack problem (MKP) [13] and the
multi-choice knapsack problem (MCKP) [14]. It involves a
linear objective function under two types of linear constraints:
(2) and (3). The first is a multidimensional constraint and the
second is a choice constraint. If constraint (3), which limits
each group to a single item, is relaxed, the problem is reduced
to MKP [15]. Constraint (2) guarantees that the knapsack
capacities are respected, and if the resource constraint is
relaxed to a single dimension (m = 1), the problem is reduced
to an MCKP [16].

The MMKP has a potentially wide range of practical
applications. However, developing an efficient and effective
algorithm for the problem is challenging because it is an NP-
hard problem [17] as it is not trivial to find even a feasible
solution within polynomial runtime complexity, particularly
for large-scale problems.

NP-hard problems have numerous local minima that can
be challenging to escape. This is further aggravated by the
cycling phenomenon, wherein the algorithm repeatedly visits
a candidate solution, thereby wasting time and causing it to
fall into a local optimum.

Recently, metaheuristics based on nature-inspired algo-
rithms have gained attention as a solution to the MMKP and
other complex optimization problems. These algorithms are
inspired by the behavior and decision-making processes of
natural systems, such as the genetic algorithm (GA) [18],
particle-swarm optimization (PSO) [19], ant colony opti-
mization (ACO) [20], [21], biogeography-based optimization
(BBO) [22], harmony search (HS) [23], and artificial bee
colony (ABC) algorithm [24]. By combining metaheuristics
with mathematical optimization techniques, they can effec-
tively solve complex optimization problems and produce
near-optimal solutions.

The use of metaheuristics based on nature-inspired algo-
rithms in practical problems highlights the importance and
potential of these algorithms for real-world applications.
These algorithms can effectively and efficiently solve com-
plex optimization problems, making them useful in various
fields [25], [26].

Since its invention by Karaboga [24], the ABC algorithm
has received increasing attention owing to its flexibility, sim-
plicity of employment, and small number of control param-
eters [27]. Compared to other evolutionary algorithms, the
ABC algorithm can escape local optima [28], [29] in several
real-world problems [30], [31], [32] and is widely used in
the field of combinatorial optimization problems [33] such

as traveling salesman [34], vehicle routing [35], [36], graph
coloring [37], team orienteering [38], bioinformatics [39],
web service composition [40], social network analysis [41],
timetabling [42], [43], [44], controller design [45], and image
processing [46].

TheABC algorithm contains threemain phases: employed-
bee, onlooker-bee, and scout-bee. The employed-bee and
onlooker-bee phases are dedicated to the exploitation of the
search space, whereas the scout-bee phase is dedicated to
the exploration of the search space. The exploration strategy
of the ABC algorithm, which is based on a stochastic pat-
tern search process, delivers excellent performance. However,
similar to other evolutionary algorithms, it encounters perfor-
mance challenges during the exploitation process [47].

The deficiencies in the ABC exploitation process are
caused by several factors. In the employed-bee phase, the
local search process is related to neighborhood information,
which limits the efficiency of the exploitation process owing
to the restricted information that a neighborhood can offer.
A similar drawback affects the onlooker-bee, because the
same structure is applied in the onlooker-bee phase. Further-
more, the fitness structure used in ABC maintains only food
sources with high amounts of nectar; however, low-nectar
solutions may also contain useful information. These factors
lead to an imbalance between exploitation and exploration in
the search process, causing delayed convergence and falling
into a local optima [48].

In this study, we propose a Modified Artificial Bee Colony
(MABC) algorithm to solve the MMKP based on the ABC
algorithm. The MABC algorithm improves the performance
of the ABC algorithm by integrating three distinct tech-
niques, namely, surrogate relaxation, Hamming distance, and
tabu list, to handle the combinatorial nature of the problem,
increase population diversity, and facilitate faster conver-
gence to find near-optimal solutions within a short compu-
tational time. The MABC algorithm adopts the Hamming
distance to measure the dissimilarity between candidate solu-
tions, which is defined as the number of positions (groups) at
which two solutions differ. The algorithm employs a stochas-
tic selection process to generate new solutions within a pre-
defined Hamming distance from the current solutions. This
approach improves the population diversity, thereby avoiding
convergence to local optima. Furthermore, the MABC algo-
rithm employs a surrogate relaxation approach to address the
combinatorial nature of the MMKP problem. By combining
surrogate relaxation with Hamming distance techniques, the
MABC algorithm aims to accelerate the convergence and
find near-optimal solutions in reduced computational time.
Finally, the MABC algorithm integrates a tabu list that mon-
itors the recently visited solutions, thereby preventing the
algorithm from revisiting them. This technique enhances the
exploration of the solution space and assists in avoiding the
local optima.

The approach was validated on standard benchmark prob-
lem instances and compared with several state-of-the-art
algorithms in literature.
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The remainder of this paper is organized as follows. Sec-
tion II presents a brief review of the relevant literature.
We describe our MABC algorithm in Section III. Section IV
presents and discusses the extensive computational results
obtained for the known benchmark problems. Finally, Sec-
tion V concludes the study.

II. LITERATURE REVIEW
MMKP is strongly constrained and NP-hard [49]. Conse-
quently, the search space grows exponentially with the prob-
lem size [17], which renders scanning highly difficult or even
impossible in practice, despite advancements in computer
technologies. In particular, it is challenging to identify a good
solution quality without falling into a local optimum when
scanning most of the search space.

Several exact approaches have been proposed to solve the
MMKP problem [50], [51], [52] most of which use a branch-
and-bound algorithm. Khan [52] suggested a combination
of a branch-and-bound algorithm and linear programming.
Sbihi [51] described an exact branch-and-bound algorithm
that explores the search tree using the best-first strategy.
In this approach, the upper bounds of the objective function
are computed by reducing multiple dimensions to one and
transforming the problem into an MCKP problem. Hence,
the computational results reported in Sbihi [51] indicate that
the algorithm outperformed Khan’s approach [52]. Razzazi
and Ghasemi [53] used a more powerful branch-and-bound
scheme based on a depth-first strategy to explore the search
tree. They calculated the upper bounds using the surrogate
relaxation of the problem. Their algorithm provides better
results than those of Sbihi [51]. Ghasemi and Razzazi [50]
developed an exact algorithm based on an approximate core
to solve MMKP. They obtained promising results with up to
five knapsack constraints and 1000 items.

Nevertheless, exact approaches can only deal with prob-
lems of a limited size (n = 100 and m = 10) [54]. For real-
time decisions, exact algorithms are not feasible owing to
their complexity and requirement of a fast system response.
Therefore, approximation algorithms are viable options for
solving the MMKP, particularly in cases where a precise
optimal solution is not required and computational time is a
significant constraint.

For larger instances, several heuristics have been proposed
to determine near-optimal solutions within acceptable com-
putation time [54]. In 1997, Moser et al. [55] introduced
the first heuristic algorithm for resolving the MMKP based
on Lagrangian relaxation and repetitive permutation. The
approach was subsequently improved by Akbar et al. [56].

Further, Hifi et al. [57] used a reactive local search
(RLS) and a modified reactive local search (MRLS), which
yielded better results than those of Moser et al. [55]. Cherfi
and Hifi [58] proposed a hybrid algorithm combining local
branching with column generation, which outperformed all
previous approaches.

Combinations of linear programming relaxation and other
techniques are often used in MMKP algorithms to solve the

reduced problem [59], [60], [61]. Cherfi [62] extended the
approach proposed by Cherfi and Hifi [58] to improve the
quality of solutions by combining column generation tech-
niques and local search. Ren and Feng [63] presented an
ACOapproach following the scheme of amax-min ant system
to solve the MMKP problem. Crévits et al. [64] introduced
a semi-continuous relaxation approach to solve the MMKP.
In their approach, relaxation is used at each iteration to gener-
ate an upper bound and then create a sub-problem that can be
solved to find a lower bound. Pseudo cuts are also produced
to prevent falls into the local optima.

Mansi et al [60] described another hybrid approach based
on iterative relaxation that applies new cuts to generate a
reduced problem and a reformulation procedure. Addition-
ally, Htiouech et al [65] used a surrogate constraint combined
with an oscillationmethod to solve theMMKP. Subsequently,
Htiouech and Alzaidi [66] divided the MMKP into small
sub-problems and used an agent-based approach to solve the
reduced problem. Xia et al [67] proposed a first-level tabu
search algorithm. Their proposed algorithm performs fairly
well compared with legacy heuristic approaches.

Gao et al [61] described a new iterative pseudo-gap enu-
meration based on a new family of pseudo-cuts resulting
from the reduced cost constraint of non-basic variables.
Dong et al. [68] proposed an enhanced quantum particle
swarm optimization algorithm for MMKP that prioritizes
effective genes and reserves particles with greater revolution-
ary potential. The algorithm employs a mutation based on
elite genes to prevent local optimization when the population
diversity decreases.

Caserta et al. [69] defined a primary mathematical model
for solving the MMKP. Their model addresses complex sys-
tem reliability and uses a new robust formulation charac-
terized by second-order cone programs. In this model, the
resource consumption values of items are nondeterministic.
The authors demonstrated the ability to convert a nonde-
terministic MMKP into an integer linear program without
extra complexity. Mkaouar et al. [70] developed an algo-
rithm that uses the ABC algorithm to resolve the MMKP.
Their proposed algorithm, inspired by the general behavior
of the honeybee swarm, provided better quality solutions for
medium and large scale instances compared to other reported
approaches.

Mansini and Zanotti [71] proposed a new approach for
solving this problem. The method solves sub-problems of
increasing size using a recursive variable fixing process until
an optimality condition is satisfied. Syarif et al. [72] analyzed
three different GA and evaluated the performance of several
heuristic algorithm approaches to solve the MMKP.

Yang et al. [73] applied a memetic algorithm to theMMKP.
The authors designed a repair heuristic based on a tendency
function with human experience through experiments using
genetic algorithms. Lamanna et al. [74] provided a new vari-
ant of the heuristic framework kernel search applied to the
MMKP. Dellinger et al. [75] proposed simple strategies that
generate bounded solutions for the MMKP.
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Despite the existence of several exact and approximate
heuristic algorithms for solving the MMKP, new algorithms
must be developed. This is for several reasons, including
the fact that the MMKP is an NP-hard problem, meaning
that obtaining exact solutions for large problem instances
is a difficult task. Moreover, many existing algorithms are
computationally intensive and require considerable computa-
tional time to provide the best possible solutions, particularly
for large problems. The computational time required to solve
the MMKP problem can be reduced by developing more
efficient algorithms. Finally, new algorithms may need to be
developed to handle new constraints, objectives, or uncertain-
ties or to adapt to new problem instances or settings, which
may require more flexible and adaptable solutions.

Despite the diversity of methods used in research on the
MMKP, none of the methods have leveraged dissimilarity
and similarity measures between solutions. Such a measure
can be highly valuable because it provides numeric values
quantifying the relative positions (distances) of solutions with
respect to each other in the search space. Therefore, this
concept can provide significant flexibility for the algorithm
to jump from one current local search area to another, and
consequently explore several different zones of the search
space.

III. MABC
To the best of our knowledge, the ABC algorithm has
not yet been used for the MMKP, except in the study by
Mkaouar et al. [70] that presents an algorithm inspired by the
general behavior of a honeybee swarm. However, this study
represents the different phases of the ABC algorithm for the
MMKP.

The ABC algorithm was first proposed by Karaboga [24]
to solve continuous and discrete problems. Subsequently,
Karaboga and Basturk [28] compared the performance of
the ABC algorithm to that of the GA, differential evolution
(DE), PSO, and evolutionary algorithm (EA), and tested them
using five multidimensional numerical test problems. The
experimental results show that ABC escaped falling into a
local minimum, was more proficient for multivariable and
multimodal function optimization, and outperformed DE,
PSO, and EA [28], [29].

The ABC algorithm simulates the intelligent comportment
of a honeybee swarm while probing for a food source (solu-
tion). In an ABC, a potential solution for the considered
problem is a symbol of a food source, and the quality of this
solution depicts the quantity of nectar in this food source.
ABC adopts a colony model divided into three categories
according to the task performance.

Employed-bees: Each employed bee is a distinct food
source. Employed-bees are responsible for investigating nec-
tar food sources in areas or neighborhoods already visited by
them. An employed-bee modifies the food source (current
solution) in its memory depending on the local information
(visual information) and assessments of the nectar amount
(fitness value) of the new source (new solution). If the quan-

tity of nectar in the new solution is higher than that in the
current solution, the bee memorizes the new position and
abandons the old one. Otherwise, it retains the position of the
solution in memory. Moreover, it shares information about
food sources with a certain probability with the bees residing
in the hive (onlooker-bees).

Onlooker-bees: receive information from employed-bees
and evaluate the quality of the food source. Similar to the
employed-bees, onlooker-bees attempt to improve the solu-
tions using a greedy search strategy.

Scout-bees: The employed-bee and onlooker-bee phases
are dedicated to the exploitation of the search space, whereas
the scout-bee phase is dedicated to the exploration of the
search space. Scouts search for new food sources in new
areas. An employed-bee becomes a scout-bee when the qual-
ity of a food source does not improve after a predetermined
number of attempts, called the ‘‘limit.’’

This cycle (employed-bee, onlooker-bee, and scout-bee
phases) is repeated until ‘‘maxCycle’’ (maximum number of
cycles) is reached. Subsequently, the best global solution is
returned by the algorithm.

The main steps of the ABC algorithm are summarized in
Algorithm 1.

Algorithm 1Main Steps of ABC Algorithm
ABC algorithm
Output: Global best solution found

1. Initialization
Repeat
2. Employed-bee phase
3. Onlooker-bee phase
4. Scout-bee phase
5. Refresh memory
Until (one of the stop conditions is satisfied)

The different phases of the ABC algorithm were modi-
fied to improve its performance. The following subsections
describe each step in more details.

A. INITIALIZATION OF POPULATION
The generation of an initial population in an optimization
metaheuristic is important because it affects the search in
future iterations and significantly influences the final solu-
tion. The random method aims to generate random solutions
to produce greater diversity, which is an important factor for
determining the quality of the final solution. The random
greedy method may generate a population with good fitness
solutions; however, there is a risk of rapid convergence toward
a local optimum [76].

Because it may not produce feasible solutions for the
MMKP within a reasonable computation time, the random
initialization method for the candidate solutions of the ini-
tial population used in the standard ABC is not suitable
for the MMKP. Therefore, in this study, a new initialization
method based on the Hamming distance (see Section V.B.1)
was applied to create the initial population (initializeSolution
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procedure) to increase the diversity of the population and help
avoid getting stuck in local optima.

The principle of this procedure is to assign the n groups
of the problem to N classes with N < n and n mod N = 0.
The groups are randomly assigned to classes with the same
number of groups in each class. The problem here is reduced
toN sub- problems (classes) containing each of the nN = n/N
groups. Each reduced problem P′ is individually solved. The
combination of N partial solutions for the N sub-problems
can be a candidate for a complete feasible solution for the
MMKP. The initializeSolution procedure is repeated for each
candidate solution Xl of the initial population with l = {1,. . . ,
SN}, and SN is the size of the population.

The main steps for the solution generation are presented in
Algorithm 2.

B. MODIFIED EMPLOYED-BEE PHASE
This phase aims to enhance the performance of the ABC algo-
rithm by obtaining superior quality solutions while avoiding
convergence to local optima [47], [48], [77].

1) DISTANCE MEASURE: HAMMING DISTANCE
In this study, we incorporated the concept of a distance mea-
sure to enhance the exploitation search process. Manipulating
the distances between solutions facilitates the localization of
relative positions of the solutions. It also offers flexibility of
movement within the search space from the position of the
current solution to that of another by acting on a predefined
part of the current solution. The size of the manipulated part
represents the distance between the current and newly gen-
erated solution. The distance between solutions reflects the
degree of similarity. If the distance between the two solutions
is small, then the solutions are similar and located within a
neighborhood search area, whereas if the distance between
the two solutions is large, then the solutions are dissimilar
and localized in different search areas.

The MABC algorithm utilizes the Hamming distance as
a distance metric because of its simplicity and effectiveness
in capturing the differences between two solutions based on
the number of different bits. Specifically, in the context of
the MMKP, the Hamming distance is adept at capturing the
differences between two solutions based on the number of
groups in which the corresponding items differ.

In information theory, the Hamming distance between two
binary strings a and b is measured by performing the XOR
operation (a⊕ b) and then counting the total number of ones
in the resultant string [78]. Typically, the Hamming distance
between two vectors a and b of the same length n is given by

dh (a, b) =
n∑
i=1

(ai ⊕ bi) (5)

The solution for the MMKP is represented as a vector X
of length n (number of groups). X is used to indicate item j
with j ∈ {1,.., ni}, which is selected from each group i with
i ∈ {1,.., n}. Fig. 1 illustrates the structure of solution X for

Algorithm 2 initializeSolution Procedure
initializeSolution procedure
Input: index l of the candidate solution Xl with l = {1, . . . , SN}
Output: solution Xl
1. /∗ initialization phase∗/
2. Xl ← Null
3. O = {1, . . . , n} //O is the set of remaining groups not selected
4. O′ = ∅// the set of groups already selected
5. Limit the bound on the availability of resources k (k = 1, . . . , m) to bkp =
bk
N for each subset
6. dh= constant // number of items to be exchanged from a candidate
solution
7. While (O′ ̸= ∅)// while there is a group not yet initialized
8. Select O′′//O′′ is a randomly selected nN = n/N groups
9. O← O\O′′//O= the remaining groups after the difference between
O and O′′

10. O′ ← O′
⋃
O′′//O′ = the union of O′ and O′′

11. /∗Solve sub-problem O′′∗/
Set xij =1 with j the item selected for group i ∈ O′′ having the lowest

resource consumption, min
ni∑
j=1

rkij
bk

, i ∈ {1, . . . , n}

12. /∗d random exchanges between items∗/
13. d = 1
14. While (d < dh)
15. Select group i randomly, i ∈ {1,.., n}
16. Select item j′ randomly, j′ ∈ {1,.., ni }, with xij = 0 and j ̸= j′

17. Check if the resource constraints are satisfied
18. Boolean violatedres← false
19. For int k = 0 to m
20. Res = 0
21. For each group i ∈ O′′

22. Res = Res+rkij
23. End For
24. If (Res−rkij + r

k
ij′ > bkp)

25. Violatedres← true // the resource constraints are
violated
26. Break // quit loop; For int k= 0 to m
27. End If
28. End For
29. If (violatedres = false) // no resource constraints violated
30. xij ← 0
31. xij′ ← 1
32. Update the Xl
33. End If
34. d = d+1
35. End While
36. Return Xl

FIGURE 1. Structure of a solution X for the multiple-choice
multidimensional knapsack problem (MMKP).

an instance containing ten groups (n = 10) and five items
(ni = 5).

In our approach, we define the distance between two solu-
tions as the number of groups in which selected items differ.
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FIGURE 2. Illustration of hamming distance calculation: X→X′ = 1 step;
X→X′′ = 4 steps.

FIGURE 3. Exploitation process with hamming distance.

The distance d between two solutions X and X ′ of length n is
given by

d
(
X ,X′

)
=

n∑
i=1

∣∣X [i]− X ′ [i]
∣∣

with
{ ∣∣X [i]− X ′[i]

∣∣ = 0 if X [i] = X ′[i]∣∣X [i]− X ′[i]
∣∣ = 1 if X [i] ̸= X ′[i]

(6)

An example of the calculation of the Hamming distance
between the two MMKP candidate solutions is shown in
Fig. 2.

The unit of the Hamming distance measure (dh) is referred
to as a step (the number of groups in which the corresponding
items differ). For example, if dh (s, s′) = 2, s is two steps away
from s′.

This approach aims to manipulate the search depth in
the exploitation phase by expanding (selecting large steps
between solutions) or narrowing (selecting small steps
between solutions) the local area around the solution (Fig. 3).
This facilitates the exchange of a set of items in a single
iteration, and consequently helps the algorithm to quickly
converge to promising regions of the solution space. Specif-
ically, the proposed algorithm generates a candidate solution
s′ in the neighborhood of the current solution s with dh (s,
s′) = d steps (number of items to exchange) from the current
solution s by performing d exchanges E (i, j, h) of d items
satisfying xih = 1, with d new items belonging to the same
group satisfying xij = 0.
Algorithm 3 presents the main steps for generating a new

solution V from the current solution X with dh (X , V ) = d .

2) SURROGATE RELAXATION
Each solution has more than one neighboring candidate solu-
tion. The choice of movement depends only on the informa-
tion from the neighborhood domain of the current solution.

Algorithm 3 Hamming Distance Algorithm
Hamming distance algorithm
Input: current solution X
Output: new candidate solution V

1. dh = constant
2. For d = 1 to dh
3. select item h with xih = 1 from X
4. select item j with xij = 0 //j and h belong to the same group
5. replace item h with j//a mutant solution V is generated from X
6. if the new solution V is feasible, then replace V with X
7. End For
8. Return V

Therefore, it is important to define a neighborhood relation
between the solutions in the search space. In this study, the
neighborhood relation was based on the surrogate constraint
relaxation information. The surrogate relaxation technique
is mainly used to prevent the algorithm from getting stuck
in local optima. This involves approximating the original
optimization problem with a simpler, relaxed problem that is
easier to solve. By relaxing the problem, the algorithm can
explore a larger solution space and avoid becoming trapped
in local optima. Glover [79] proposed a surrogate constraint
obtained by substituting the constraints of a problem with
a single constraint to obtain approximate near-optimal solu-
tions for integer programming problems. Surrogate relaxation
has been proven to be efficient in the exploitation of several
knapsack problems [65], [80].

Htiouech et al [65] used surrogate relaxation information
according to the search direction: add move, drop move
(infeasible solution case), or swap move (feasible solution
case). Here, we are interested only in the swap move strategy,
because our algorithm only deals with feasible solutions.
The surrogate relaxation algorithm (swap move) proposed
by Htiouech et al. continues through all groups and items
in each group, and performs intensive mathematical tests
and computations. Exchanges between items are performed
whenever an improvement is detected. The algorithm stops
only when no further improvement is possible, which making
it computationally heavy.

However, in our study, the computational time was consid-
ered a critical measure of the quality of the obtained solu-
tions. Consequently, adjustments were made to the surrogate
relaxation method used by Htiouech et al. [65] to overcome
its limitations in terms of time complexity. Therefore, in the
employed-bee phase of the MABC, we combine the Ham-
ming distance (local search depth control) and the surro-
gate relaxation information structure to utilize its solution
improvement efficiencywithout increasing the time complex-
ity of the algorithm. Thus, only dh exchanges are permitted in
the current solution. The choice rule for exchanges between
items is based on the information provided by the surrogate
relaxation.

During this step, demp exchanges are performed for each
candidate solution (Steps 18–21 in Algorithm 4). In each
exchange E (i, j, h), item h is selected from group i and
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replaced by item j belonging to the same group. The choice
of the demp groups (items from the current solution to be
exchanged) is based on the lowest ratio utility (Step 19 in
Algorithm 4) given by

uij =
vij
m∑
k=1

rkij
bk

∣∣∣∣∣∣∣∣ xij = 1, i = 1, .., n, j = 1, .., ni (7)

For each selected item with xih = 1, surrogate relaxation
is used (Step 20 in Algorithm 4) to select a new item xij =
0 from the same group to maximize (11).

maximize
{
vij/sij
vih/sih

| xij = 0, xih = 1
}

(8)

sij =
m∑
k=1

Ak

(1k )2
rkij

with 1k
= bk −

n∑
i=1

ni∑
j=1

rkijxij
∣∣xij = 1,k = 1, ..,m

and Ak =
n∑
i=1

ni∑
j=1

rkij
∣∣xij = 0 (9)

In (8), the term vij/vih represents the gain of the profit
value, and sij/sih represents the gain in terms of the remaining
available resources. Consequently, the choice of the new item
j (xij = 0) to be exchanged instead of the old item h (xih =
1) is made to improve the quality of the solution in terms of
the maximization of (i) profit and (ii) savings of aggregate
resources.

After the exchange, the decision variable xij changes from
0 to 1, and xih changes from 1 to 0. Therefore, a new solution
Vl is generated (Step 22 in Algorithm 4) from the current
solution Xl (with l in {1, . . . , SN}), where dh (Xl , Vl) =
demp. A greedy selection based on the value of the objective
function is performed between the newly generated solution
and the current solution (Steps 23–29 in Algorithm 4).

C. MODIFIED ONLOOKER-BEE PHASE
The probability of selecting a candidate solution in this phase
(Steps 32–34 in Algorithm 4) is inspired by the Gbest-guided
artificial bee colony (GABC) algorithm [81], which is given
by

probi =
(
0.9 ∗ fitness(Xi)

fitnessbest

)
+ 0.1 (10)

where fitness (Xi) is the fitness value of the current solution
and fitnessbest is the highest fitness value.

A feasible candidate solution with relatively low nec-
tar content may yield a better global solution than another
candidate solution with higher nectar content. Therefore,
the greedy selection between the current solution Xl and
the new solution Vl is based on the highest fitness value

computed by (11).

fitnessl (Xl) =
bk∑n

i=1
∑ni

j=1 r
k
ij

,k = 1, ..,m,∀l ∈ {1, ..,SN}

(11)

The depth of the search is controlled using the Hamming
distance (dh). In other words, dh = don maximum number of
exchanges is allowed (Steps 39–42 in Algorithm 4) to obtain
a new candidate solution Vl from the current solution Xl .

dh(Xl,Vl) = don, l ∈ {1, ..,SN} (12)

For each candidate solution, don items (xij = 1) with
the lowest profit selected using (13) (Step 40 in Algorithm
4) are exchanged randomly with the new item (xij = 0),
thereby satisfying the choice constraint (Step 41 in Algorithm
4). No exchange is allowed, unless this leads to a feasible
solution.

min
1≤i≤n
1≤j≤ni

vijxij
∣∣ xij = 1 (13)

After don exchanges, a greedy selection between the new
solution Vl and the current solution Xl is performed, and only
the solution with the highest fitness value (11) is retained
(Steps 43–50 in Algorithm 4). Equation (11) (the bound of
the resources availability per consumed resources) ensures an
improvement in the quality of the retained solution (neither
the current solution Xl nor the newly generated solution
Vl) in terms maximizing the remaining available resources,
which reduces the overall load on the resources during the
subsequent iterations of the exploitation process.

D. MODIFIED SCOUT-BEE PHASE
The employed-bee and onlooker-bee phases could be consid-
ered perturbation processes that aim to change the trajectory
of the search to release the solution when it is stuck in a
potential local optimum, and further improve the solution
without losing the progress made by the exploitation process.
If the solution cannot be further improved, it is completely
re-initialized with a randomly generated new solution (scout
bee) using the initializeSolution procedure (Algorithm 2)
(Steps 59–64 in Algorithm 4).

A tabu list (TL) is used in this study. This involves tracking
recently explored solutions and temporarily excluding them
from the search. This helps the algorithm avoid revisiting the
same solutions repeatedly and efficiently exploring new areas
of the solution space, thus accelerating convergence. TL is
updated using the first-in-first-out (FIFO) strategy. Consider
Vl as the new solution to be inserted into TL, and Xl as the
oldest solution in the list. The TL vector is updated as follows

TL = TL− Xl + Vl (14)

E. GENERAL APPROACH
Algorithm 4 presents the main steps of the MABC. The
algorithm begins by generating the initial population (Steps
11–15 in Algorithm 4), followed by the main loop containing

VOLUME 11, 2023 45261



A. Mkaouar et al.: Modified ABC Algorithm for MMKP

the employed-bee, onlooker-bee, and scout-bee phases of the
algorithm. The employed-bee (Steps 16–30 in Algorithm 4)
and onlooker-bee (Steps 31–57 in Algorithm 4) phases aim to
improve the quality of solutions. In the employed-bee phase,
if the generated solution achieves a better objective value
than the current solution, the current solution is updated.
However, in the onlooker-bee phase, the solutionwith the best
remaining resource value is retained. If a solution reaches
the maximum for non-improvement (limit), the solution is
completely reset by the scout bee (Steps 59–64 in Algorithm
4). The three main steps of the algorithm (employed-bee,
onlooker-bee, and scout-bee phases) are repeated until the
maximum number of cycles is reached (Step 66 in Algorithm
4). The global best solution is memorized in each cycle (Step
65 of the algorithm) and then returned to the end of the
algorithm (Step 67 in Algorithm 4).
The pseudo code for the proposed approach is presented in

Algorithm 4.
The computational complexity of the MABC algorithm

was determined by evaluating the worst-case time complex-
ity of each component. The time complexity of the MABC
algorithm was estimated to be O((demp + don) × ni × m).

IV. COMPUTATIONAL RESULTS
This section assesses the performance of the MABC algo-
rithm.

A. PROBLEM INSTANCES
We experimentally examined the algorithms on two sets of
benchmark instances: E1 (I07 – I13) proposed by Khan [52],
and E2 (INST01 – INST20) proposed by Hifi et al [57]. The
instances (I01–I06) are known to be easily solvable in the
literature. Hence, this study focused on the most difficult and
large instances (E1 and E2).

All the benchmarks are available from the MMKP bench-
marks website [82].

The first set contained 7 instances (I07–I13), and the num-
ber of groups in each instance varied between 100 and 400.
Each group contained 10 items. Therefore, the number of
decision variables ranges from 1000 to 4000. The second
set contains 20 instances (INST01–INST20). The number of
items in each group varied from 10 to 30 and the number of
groups ranged from 50 to 400. Therefore, the total number of
items in each instance of the second set varied from 500 to
7500.

All benchmarks are characterized by their common dimen-
sionality size m = 10, n indicates the number of groups, and
ni indicates the size of group i. The details of these instances
are summarized in Table 1.
The best results are obtained using the following parame-

ters

- maxCycle = 20
- limit = 5
- TL length = SN

Algorithm 4 High-Level Pseudo Code for MABC
MABC
Output: BGS

1. /∗ Parameter initialization ∗/
2. predefine limit
3. predefine maxCycle
4. predefine demp//demp=dh (Xl , Vl ) is the number of exchanges used in the employed-bee
phase
5. predefine don//don=dh (Xl , Vl ) is the number of exchanges used in the onlooker-bee phase
6. TL length= SN // the TL has the same tenure as the population size
7. For l = 1 to SN
8. triall ← 0
9. End For
10. /∗Generate an initial population∗/
11. For l ← 1 to SN
12. Use the initializeSolution procedure (algorithm 2) to generate a candidate solution Xl
13. TLl ← Xl// initially, the TL contains the initial population
14. End For
15. Cycle← 1
16. /∗ Employed-bee phase ∗/
17. For l = 1 to SN
18. For i = 1 to demp
19. Select xihfrom Xl having the lowest uij computed using (7)
20. Select xij that maximizes (8) // the choice of item j is based on the surrogate
relaxation
21. End For
22. Calculate the fitness value fitness (Vl )//Vl is generated from Xl after demp exchanges
23. If f (Vl ) > f (Xl ) and Vl /∈ TL //f is the objective function value of the considered
solution
24. Xl ← Vl
25. Update TL using (14)
26. triall ← 0
27. Else
28. triall ← triall+ 1
29. End If
30. End For
31. /∗Onlooker-bee phase∗/
32. For l = 1 to SN
33. Calculate the probability values probl using (10)
34. End For
35. t ← 1
36. l ← 1 // set index l of the current solution at 1 with l ∈ {1, . . . , SN}
37. While (t < SN) do
38. If rand (0,1) < probl// rand (0,1) returns a real value between 0 and 1
39. For i = 1 to don
40. Select xih using (13) with xih = 1 from Xl
41. xij ← rand (ni) with xij = 0 and j ̸= h // rand (ni) returns an integer between 1
and ni
42. End For
43. Calculate fitness (Vl ) using (11) // Vl is the mutant of Xl after performing don
exchanges
44. If fitness (Vl ) > fitness (Xl ) and Vl /∈ TL
45. Xl ← Vl
46. triall ← 0
47. Update TL using (14)
48. Else
49. triall ← traill+ 1
50. End If
51. t ← t+ 1
52. l ← l+ 1
53. If l = SN
54. l ← 1
55. End If
56. End If rand (0,1) < probl
57. End While
58. /∗The scout phase∗/
59. For l = 1 to SN
60. If (triall = limit)
61. Generate a new solution Xl using (algorithm 2)
62. Update TL using (14)
63. End If
64. End For
65. Memorize the BGS
66. Until Cycle = maxCycle
67. Return BGS
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TABLE 1. Details of E1(I01 – I20) and E2 (INST01 – INST20).

- demp = n / ni: Hamming distance (number of allowed
exchanges) used in the employed-bee phase.

- don = ni: hamming distance onlooker-bee phase

B. PERFORMANCE OF MABC
In this section, we compare the convergence performance
of our proposed MABC algorithm, which includes surrogate
relaxation, Hamming distance, and tabu list, with its basic
version, BABC, which does not use these techniques. The
objective of this comparative analysis is to demonstrate the
favorable impact of these additional techniques on the con-
vergence performance of the MABC algorithm.

Table 2 provides the detailed results for both algorithms for
the two sets of instances. Column 2 shows the CPLEX solu-
tion. Columns 3 and 4 display the solutions obtained (Obj)
by the BABC and its computational time (CPU), respectively,
whereas columns 5 and 6 display the results for the MABC.
Column 7 shows the deviation between the results of the two
algorithms, given by

%dev =
(
1−

BABCMMKP

MABCMMKP

)
× 100 (15)

Columns 8 and 9 present the solutions obtained for the
MABC when maxCycle was set to 2000. The best com-
putational times and objective function values for the two
algorithms are highlighted in bold.

The results in Table 2 indicate that BABC provides accept-
able results within a short average computational time.
The MABC attained better solutions than the BABC with

shorter computational times. Therefore, MABC improves
the instances by an average of 4.6% with a shorter execu-
tion time (a total of 3.46 s against 10.11 s). Evidently, the
improvements in the results are due to modifications of the
BABC to enhance its performance. Table 2 shows the good
quality of the solutions provided by both BABC and MABC
(7% on average for BABC and 2.4% on average for MABC
over the quality of the solutions provided by CPLEX); the
computational times for both algorithms are very low (0.1 s
and 0.3 s on average for each instance for BABC andMABC,
respectively), which proves that both the algorithms are very
fast and adequate for real-time and critical-time problems.
On average, the quality of the solutions generated by the
MABC algorithm is 4.6% higher than that generated by
the BABC algorithm. This improvement is ascribed to the
modifications made during the different phases of the basic
version (utility ratio, surrogate relaxation, random exchanges,
Hamming distance, TL, etc.).For the same limit parameter
value, a higher maxCycle parameter value (maxCycle = 50)
was set for the BABC. However, the computational time for
the BABC algorithm was found to be (slightly) lower than
that for the MABC algorithm. This can be ascribed to the
fact that, in the BABC, only one item is exchanged randomly
in the employed-bee and onlooker-bee phases. Therefore, the
number of loops and mathematical computations were lower.
Finally, we can conclude that the modified version achieved
an improvement of almost 4.6% over the basic version, with-
out any additional computational time.

Furthermore, different configuration parameters may pro-
vide better solution quality. However, this often leads to a
significantly longer CPU time. Column 8 shows a deviation
of 0.21% in the quality of the solutions obtained when the
maxCycle was changed from 20 to 20×100 = 2000. The
CPU time increased from less than 10 s for all instances to
756 s. The set of values chosen in our experiment showed
an acceptable trade-off between the quality of the objective
function and the required computational time.

C. FURTHER ANALYSIS OF MABC BEHAVIOR
In this study, we conducted a sensitivity analysis of two cru-
cial parameters, maxCycle and limit, to analyze the behavior
of the MABC algorithm. First, we set the limit parameter to
a predetermined value and varied the maxCycle parameter.
Then, we fixed the maxCycle parameter and varied the limit
parameter to evaluate the impact of each parameter on the per-
formance of the algorithm. Through this approach, we gained
insight into the optimal values of these parameters to achieve
an efficient and effective optimization.

Fig. 4 provides a closer view of the behavior of the MABC
by illustrating the evolution of the quality of solutions over
time (I13 as an example). The figure demonstrates a con-
tinuous gradual improvement in the quality of the solutions
over the cycles until it reaches amaximum (stagnation phase).
When the threshold for the number of non-improvement
(limit parameter) times is reached, the solution is discontin-
ued and replaced by a new randomly chosen solution. This
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TABLE 2. Comparison between BABC and MABC.

FIGURE 4. Solution rate evolution of MABC.

explains the sudden drop in the quality of solutions (orange
lines).

Fig. 5 shows the behavior of MABC when fixing the limit
parameter value and varying the maxCycle parameter value
for instance 20. It is clear from the figure that the objective
function value of the obtained solutions gradually increases
by 2.7% from maxCycle 1 to 19 (41% improvement in

FIGURE 5. Behavior of MABC for instance 20 when varying maxCycle with
the limit set at 5.

total), until it becomes almost constant at 20. This significant
improvement requires almost no extra-computation time (less
than 0.1 ms in each cycle).

Fig. 6 shows the sensitivity of the limit parameter to the
quality of the obtained solution by setting the maxCycle
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FIGURE 6. Behavior of MABC for instance 20 when varying the limit and
maxCycle set at 100.

parameter value and varying only the limit parameter for
INST20. The sensitivity of the limit parameter variation
becomes detectable only with a large number of cycles (max-
Cycle= 100 in this case) and a significant separation interval
between the values of the limit parameter (intervals of 40,
50, and 100 in this case). Fig. 6 shows that when the limit
value is relatively low (the solution quickly reaches the re-
initialization threshold), the execution time becomes consid-
erable (26 s for limit = 2 and maxCycle = 100), whereas by
increasing the value of the limit, the execution time decreases
gradually (until waiting for 11 s in this case). The decrease in
CPU time is accompanied by a slight decrease in the quality
of the objective function because the more the value of the
limit parameter increases, the less the reinitialization phase
(scout-bee phase) is executed, and consequently, the running
time will be reduced (and vice versa).

D. COMPARATIVE STUDY
In this subsection, we compare the results of the MABC with
those of state-of-the-art algorithms.

We implemented MABC in Java JDK version 8, and all the
reported computational experiments were conducted on a PC
with a 2.30-GHz Intel i5 CPU.

Table 3 presents the results of our approach, compared to
the results of six approaches from the literature, namely RLS:
reactive local search-based algorithm [57], ALMMKP: ACO
approach [63], PEGF-PERC: two variants of the reduce and
solve approach [54], TIKS-TIKS2: two variants of the two-
phase iterative kernel search approach [74] and D-QPSO:
Diversity reserved quantum particle swarm optimization
approach [68]. The details of the running configurations of all
these state-of-the-art algorithms, except those of ALMMKP
(not reported), are presented next.

RLS: The algorithms were coded in C++ and tested on an
Ultra-Sparc10 250 Mhz.

PEGF-PERC: The algorithms were executed on an Intel
Xeon 2.83 GHz E5440 CPU and CPLEX 12.4. Two variants,

PEGF and PERC, were proposed and the best results obtained
are presented in Table 3.

TIKS and TIKS2: The algorithms were coded in Java 8 and
Gurobi 9.0 is used as anMILP solver. The tests were executed
on an Intel Core I7-5930K 3.5 GHz processor. TIKS has a
1200 s time limit using six cores and TIKS2 has a 3600 s time
limit using two cores on the machine.

D-QPSO: The algorithm was coded in MATLAB, run on
an Intel Core 2 2.66GHz and tested only on the E1 benchmark
set.

To enable comparisons between the best results, Table 3
presents the best objective function value and the minimal
running time produced by our algorithm within 100 trials
using different random seeds for each instance.

Note that different trials yielded slightly different results,
with deviations in the range of 0.1–1.5% in the quality of the
obtained solutions. Additionally, the best solutions obtained
with CPLEX 12.9 within a time limit of 3600 s are reported.

Most heuristic comparisons in the literature are based on
the objective function values. However, it is not fair to assess
algorithms by comparing only the best reported solutions.
Nevertheless, to facilitate an objective comparison between
the computation times of the methods cited earlier, they must
be run on the same platform and configuration. Because these
algorithms are not available, this is not possible.

Therefore, our comparative study included both computa-
tional time and objective function values to better evaluate the
performance of our algorithm. The best computational times
and objective function values for the state-of-art algorithms,
cited in table 3, are highlighted in bold. The last column
indicates the percentage of solutions achieved by our algo-
rithm compared to the best objective function value from
the literature. Finally, the last two rows of Table 3, labeled
as ‘‘Average’’ and ‘‘Sum,’’ report the runtime average and
runtime sum, respectively, of all the solutions over all the
instances realized by each of the considered methods.

The quality of the solutions generated by the MABC is
evaluated against the CPLEX solutions in Table 3, show-
ing an average similarity of nearly 2%. This indicates that
the MABC produces high-quality solutions that are close to
the optimal solutions obtained by CPLEX. Our algorithm
demonstrated a significantly improved runtime compared
to other algorithms. In comparison to the fastest algorithm
(ALMMKP) cited in Table 3, which recorded an average
runtime of 11.5 s per solution and a total runtime of 294 s
for all instances, our algorithm exhibited an average runtime
of 0.37 s per solution and a total runtime of 10.11 s for all
solutions. Consequently, our algorithm, MABC, resulted in a
time saving of more than 283 s for all instances when com-
pared to the fastest algorithm from the literature (ALMMKP).
Moreover, for the largest instance, INST17 (7500 variables),
MABC provides a value close to 2%, similar to the best
solution in less than 2 s (1.3 s).

To further illustrate the significance of the results
obtained from the proposedMABC algorithm compared with
those of other state-of-the-art algorithms (RLS, ALMMKP,
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TABLE 3. Comparison of MABC with state-of-the-art algorithms.

PEGF-PERC, and TIKS), we performed a Kruskal-Wallis
test, which is a nonparametric statistical test that compares
the median values of independent groups based on the ranks
of the observations. The test output provides the p-value
and H statistic, where the former measures the probability
of observing the data if the null hypothesis (no differences
between the groups being compared) is true, and the latter
measures the overall difference among the medians of the
groups being compared.

We applied the Kruskal-Wallis test on two levels: the
objective function value and CPU. For the objective func-
tion value, the H statistic was 0.31506, with a p-value
of 0.98882, indicating no significant difference among the
medians of the groups being compared. This suggests that
there is no significant difference between the objective
function values of the solutions obtained by the MABC
algorithm and those obtained by the other state-of-the-art
algorithms.

For CPU, the H statistic was 84.90850 and the p-value
was 0, indicating strong evidence to reject the null hypothesis
of equal medians among the compared groups. Thus, we can
conclude that there is a significant difference in the CPU
performance of the MABC algorithm compared with other
state-of-the-art algorithms.

V. CONCLUSION
In this study, we developed a new approach (MABC) to solve
the MMKP problem based on the ABC algorithm combined
with surrogate relaxation, Hamming distance, and tabu list.
The proposed method was validated using 27 benchmark

instances. The experimental results verified that MABC gen-
erated competitive results (2.4% proximity to CPLEX solu-
tions) within very short computational time (in milliseconds).

The Kruskal-Wallis test was used to compare the perfor-
mance of the MABC algorithm with that of other state-of-
the-art algorithms in terms of objective function value and
CPU efficiency. Statistical analysis revealed no statistically
significant difference between the objective function values
obtained by the MABC algorithm and the other algorithms
(H= 0.31506, p= 0.98882). However, for CPU performance,
the Kruskal-Wallis test demonstrated a statistically signifi-
cant difference between the MABC algorithm and the other
algorithms (H= 84.90850, p= 0). Thus, it can be concluded
that the MABC algorithm has a significantly different CPU
efficiency compared with other state-of-the-art algorithms,
with very short execution times.

However, increasing the parameter configuration values
(limit and maxCycle parameters) may improve the quality of
the obtained solutions, but with a significant computational
time cost. Therefore, using the Hamming distance during the
exploitation process to limit the local search to a finite number
of groups (items) significantly reduces the time complexity of
the algorithm. However, this may lead to a loss of informa-
tion.

Therefore, the MABC algorithm is effective for solving
optimization problems with complex constraints and objec-
tive functions. Nevertheless, the performance of the algorithm
may depend on the selection of parameters, and it may not
be suitable for problems requiring high precision or a large
number of variables.
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In future work, we aim to improve the quality of the
obtained solutions without increasing the computational
weight of the algorithm. This study was restricted to feasible
exchanges between items. Thus, complex moves that traverse
the solutions from the feasible search space to the infeasible
space, and vice versa, can be examined. In addition, a sys-
tematic empirical study on the general swarm intelligence
performance (including that of ABC and ant colony) can
be conducted to achieve an efficient and consistent solution
quality for the MMKP.
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