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ABSTRACT In the routine inspection process of railway catenary systems, the primary task is to find out
the locations of various components accurately. The complex composition of the components in the catenary
system and their large dimensional differences make the inspection of small components considerably
difficult. Aiming at the problem of the difficulty in locating small components, a new locatingmethod, named
asymmetrically effective decoupled head-you only look once (AED-YOLO), for locating small components
of the catenary has been proposed in this study. In this method, firstly, a small object detection layer has
been added to improve the detection accuracy of the small-sized components such as fastener nuts and
bracing wire. Secondly, to reduce missed and false detection errors of small components, the improved
bidirectional feature pyramid network with high-order spatial interactions and recursive gated convolution
has been used to fuse the features of different scales to further enhance the ability to detect small objects.
Finally, an asymmetrically effective decoupled head has been proposed using different decoupled branches
to decouple the classification and localization processes, thus further reducing the error in small-sized object
classification and location. Experiments performed on the railway catenary dataset collected on-site show
that the proposed localization method can efficiently improve detection accuracy, achieving a mean average
precision of 93.5%. Thus, compared to the other methods, the proposed method can accurately locate small-
sized components.

INDEX TERMS Railways catenary, component detection, YOLO, asymmetrically effective decoupled head.

I. INTRODUCTION
In a high-speed railway transportation system, the catenary
system plays an important role as the power transmission
equipment. As shown in Fig. 1, the composition of the railway
catenary, erected along the railway line, contains a total of
more than 40 types of components of various sizes. Under
long-term working load conditions, the catenary inevitably
suffers from defects and abnormalities in the components. For
high-speed trains, the quality status of the catenary seriously
affects the safety of the trains. Therefore, routinemaintenance
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and quality inspection of the catenary is particularly impor-
tant [1], [2].

Even in the current technological background, the routine
maintenance of the catenary is still dominated by manual
visual inspection, in which the determination of whether
defects or abnormalities have occurred in the catenary is
done by visual inspection by the maintenance personnel [3].
However, it cannot be ignored that owing to the presence of
a large number of different-sized components in the cate-
nary system, relying on manpower alone cannot meet the
requirement of timeliness of railway maintenance [4], [5],
[6]. In addition, as shown in Fig. 2, due to the complex
composition of the catenary, the size and shape of the small
and large components are quite different. It is very easy to

34870
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6842-8404
https://orcid.org/0000-0003-2547-8783
https://orcid.org/0000-0002-9899-0609


S. Xu et al.: Locating Approach for Small-Sized Components of Railway Catenary Based on Improved YOLO

FIGURE 1. Schematic showing the location of the catenary in a railway
line.

FIGURE 2. Structural of the catenary.

produce visual fatigue and a large subjective impact by man-
ual inspection alone, which is unable to meet the requirement
of maintenance of small components [7], [8].

The most critical step in railway catenary maintenance
is accurately locating the catenary components, based on
which defects and abnormalities can be analyzed [5].With the
development of computer vision technology, various visual
inspection methods based on deep learning have been applied
in the industry. In this paper, we summarize the existing
research literature on catenary component location detection
as well as the advantages and disadvantages of the existing
methods in their practical applications.

Zhong, et al. [1] proposed a forced learning refined
localization-based catenary fasteners defect detection
method, which utilized the faster region-based convolutional

neural network (Faster RCNN) [9] and residual network
101 (ResNet101) [10] to perform coarse localization of the
catenary to obtain a coarse localized feature map. Then, the
obtained feature map was enhanced at a fine level by rein-
forcement learning [11]. Experimental results showed that
the proposed reinforcement learning-based fastener defect
and looseness detection method was effective. This has
important implications for the progress of catenary health
condition detection methods. A CNN-based fastener detec-
tion method, named PVANET++, was proposed by Zhong,
et al. [4], in which the input images were localized by
PVANET++, and the Hough transform was used to locate
the pins. Subsequently, a new anchoring mechanism was
applied to generate multiple defect candidate frames. Finally,
multiple hidden layer features and candidate frames were
combined to obtain the final defect location. The results
obtained by applying their method on an actual railway
catenary dataset showed that the proposed PVANET++ has
advanced localization detection capability. Tan, et al. [12]
proposed a mask region-based convolutional neural network
(Mask RCNN) [13] and multi-feature clustering-based cate-
nary detection method. The proposed method used gradient,
texture, and grey feature fusion to detect and locate defects
such as broken objects, dirt, and foreign objects in insulators
with high accuracy. Tan, et al. [14] used Faster RCNN as the
base network to locate and identify catenary pendants. This
method incorporated fine locating algorithms, edge fitting
algorithms, and bending zoom algorithms to achieve sub-
pixel-level defect detection, which could be used to effi-
ciently detect defects such as micro deformation, loosening,
and so on. A pantograph-body anomaly detection method
for high-speed railways was proposed by Chen, et al. [15],
which used a deep vision network to locate and detect pan-
tographs in railway catenary systems. In addition, this method
combined the image vision feature extraction algorithm to
detect the state of the connection point between the pan-
tograph and the body of the car. A fault diagnosis method
was proposed for the current-carrying ring components [16],
which used an improved RetinaNet [17] algorithm. The
proposed method can improve the efficiency and safety of
the railway transportation system and avoid unnecessary
accidents.

The above analysis shows that most of the current defect
detection and fault diagnosis methods for catenary equip-
ment belong to the analysis of a single component. However,
research on the detection and location techniques for more
than 40 components of the entire catenary system, especially
small components, has not been done fully. At present, the
dimensions of the different types of components vary consid-
erably. Thus, it is difficult to detect components of different
sizes.

To solve the difficult problem of detecting small targets
and the problem of missed detections, a method has been
proposed in this study for accurately locating small-sized
components in the catenary. The main contributions of this
study can be summarized as follows:
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1. Based on you only look once (YOLO) network,
an enhanced method, named asymmetrically effec-
tive decoupled head-YOLO (AED-YOLO), has been
proposed for locating small-sized components in a
high-speed railway catenary system.

2. Combined with HorNet [18], an improved version of
the bidirectional feature pyramid network has been
proposed for bidirectional feature fusion to improve
the detection performance of small-sized objects, thus
improving the detection accuracy for catenary compo-
nents.

3. An asymmetrically effective decoupled head (AED-
Head) has been proposed to provide different decou-
pled methods for different task properties of classifica-
tion and localization using an asymmetrical decoupled
structure. It can match the spatial feature requirements
of different tasks and thus further improve the classifi-
cation and localization accuracy.

The remainder of this paper has been organized as follows.
A few related works on object detection based on deep
learning have been introduced in Section II. The catenary
full-component locating detector, named AED-YOLO, has
been described in Section III. In Section IV, experiments
performed using the proposed method and the results thus
obtained have been presented to illustrate the effectiveness
of the proposed method. Finally, conclusions from this study
have been given in Section V.

II. RELATED WORK
A. YOLOv5 NETWORK
The YOLO series of object detection networks are used in a
wide range of industries and agriculture [19], [20], [21], [22].
Version V5 combines most of the steps from V1 to V4 for
optimal combination. The architecture of the YOLOv5 net-
work can be split into three parts: backbone, neck, and head.
In the backbone network, cross stage partial dark network
(CSPDarkNet) is used for image feature extraction and image
downsampling. In the neck network, the path aggregation
network is used for feature fusion at different scales. Image
feature extraction and semantic information capture for large,
medium, and small targets are achieved by fusing feature
maps of 19 px (pixels) × 19 px, 38 px × 38 px, and 76 px ×

76 px sizes. Finally, a simple full convolutional prediction
head is used in the prediction head section to generate local-
ized candidate frames for different-sized targets, resulting in
a final prediction output.

After the success of YOLO, some improvements based on
the YOLO architecture, such as YOLOX [23], TPH-YOLO
[24], and other methods, have been done which will not be
described in this paper.

B. FEATURE PYRAMID NETWORK
Shallow feature maps maintain rich shallow features of
images, such as their morphology, size, and other fea-
tures, whereas deep feature maps preserve semantic infor-

FIGURE 3. Structural of the FPN (a), PANet (b) and BiFPN (c).

mation, such as contextual information and location rela-
tionships [25], [26]. Better detection performance can be
achieved by fusing the feature maps of the different phases.
The first feature pyramid network (FPN) [27], whose struc-
ture is shown in Fig. 3(a), was proposed for the first time to
build a deep-to-shallow feature fusion path, thus enriching
the semantic information in the shallow feature maps and
obtaining different degrees of accuracy improvement in sev-
eral application scenarios. Based on the FPN, Liu, et al. [28]
proposed a secondary fusion model named path aggregation
network (PANet), which adds a bottom-up secondary fusion
path, to enhance the effectiveness of feature fusion and thus
improve the detection accuracy. The structure of the PANet
is shown in Fig. 3(b). Although PANet adds a secondary
fusion path, it is a simple structured bidirectional fusion
method, which still has certain limitations. To solve this prob-
lem, Tan, et al. [29] further proposed a complex bidirectional
fusion network named Bi-FPN based on the original FPN,
thus establishing a bottom-up and top-down bidirectional
fusion path. This increases the semantic information in the
shallow feature map while further enriching the morphologi-
cal information of the deeper features. Its structure is shown
in Fig. 3(c).

C. SPPCSPC MODULE
The spatial pooling pyramid cross-stage partial convolution
(SPPCSPC) module has been proposed for feature fusion at
different scales, thus improving the ability of the network
to perceive the image features [30]. However, in the SPPC-
SPC module, the introduction of convolution adds a large
number of parameters. In this study, the SPPCSPC struc-
ture was introduced in YOLOv5 for feature fusion but with
the difference that the group convolution was introduced in
the SPPCSPC structure for parametric number compression.
The comparison of the original SPPCSPC structure and the
SPPCSPC structure with group convolution for parametric
number compression is shown in Table 1. The architecture
of the SPPCSPC module is shown in Fig. 4.
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FIGURE 4. The architecture of the SPPCSPC module.

TABLE 1. Parameters of SPPCSPC and SPPCSPC-Group (based on
YOLOv5L).

It can be seen from Table 1 that the improved SPPCSPC
module with group convolution reduces the parameters by
∼21.2 M and reduces the computation by ∼17 GFLOPs.

III. METHOD
A. OVERVIEW
In this work, YOLOv5 has been used as the baseline on which
a bidirectional feature pyramid network, based on the HorNet
plug-in, has been extended. In addition, an AED head to
decouple the information for detecting each component of the
catenary has been added to the network. The overall architec-
ture of the network is shown in Fig. 5. Further, the featuremap
upsampling is done using the bilinear interpolation method.

B. BI-FPN WITH HORBLOCK
Based on the original FPN, HorBlock has been added for
feature extraction to obtain higher detection accuracy with
a small increase in parameters and computational cost. The
structure of the proposed improved Bi-FPN with HorBlock,
named Hor-Bi-FPN, is shown in Fig. 6, and the structure

of HorBlock is shown in Fig. 7. This block compresses the
number of parameters while ensuring good feature extraction
capabilities. The output feature map for the neck section
comes directly from HorBlock and is fed directly into the
parsing head used for localization and classification tasks.

In HorBlock, the main process that is performed is the
high-order gate convolution. The gated convolution and
recursive design enable efficient, scalable, and translational
higher-order spatial interactions to improve the utilization
of effective information. The calculation process can be
described as follows:

x = LayerNorm(Input) (1)

yC/4, x7C/4
= Split[Proj2C1×1(x)] (2)

xC/4
1 , xC/2

2 , xC3 = Split[Dwconv2C1×1(x
7C/4)] (3)

yC/2
= ProjC/2

1×1[x
C/4
1 × yC/4] (4)

yC = ProjC1×1(x
C/2
2 × yC/2) (5)

yC = ProjC1×1(x
C
3 × yC ) (6)

where Input means input features, the LayerNorm is layer
normalization, xC/4, yC/4 is output feature with channel C/4.
Split is the channel split, and ProjC1×1 represents the convolu-
tion with a kernel size of 1×1 and an output channel number
of C .

The addition of a large-scale feature map size of 152 px
× 152 px for small-sized components detection improves
the ability of the network to sense them, thus avoiding the
problem of small object loss due to the sampling process at
high depth, consequently improving the detection rate of the
network for catenary components.

C. ASYMMETRICALLY EFFICIENT DECOUPLED HEAD
In YOLOX, a form of predictive branch decoupled detection
head has been proposed to solve the problem of convergence
and the inability of YOLOv3 to decouple the detection head.
In the predictive branching decoupled head, the category
and position information are decoupled independently, thus
improving its detection performance. However, it cannot
be ignored that the performance of the network is poten-
tially affected when the coupled detection head is decoupled.
In addition, in the proposed decoupled head, the decou-
pled category and location information employ the same
decoupled approach, which not only increases the number of
parameters but also affects the effective acquisition of loca-
tion information by the detection head, and thus affects the
detection performance. Based on the above analysis, AED-
Head has been proposed in the catenary detection method. Its
structure is shown in Fig. 8.

In the classification branch, the input is concatenated
together after convolution with the kernel size of 1 × 1. The
output of a convolution is inputted into the feature enhance-
ment module (FEM). The output of the FEM is summed with
the convolved feature map and concatenated together with the
input again. Lastly, the final classification result is obtained
after convolution with a kernel size of 1 × 1.
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FIGURE 5. The architecture of the proposed AED-YOLO method.

FIGURE 6. The architecture of the proposed Hor-Bi-FPN.

The classification branch calculation process can be
described as:

x1 = ConvC1×1(Input) (7)

Cls = ConvC1×1

{
Cat

[
Input,
(FEM (Cat (Input, x1)) ⊕ x1)

]}
(8)

Where Input means input features, andCls is the classification
prediction results.

In FEM, the calculation process can be described as
follows:

Output = ConvC1×1 (Input) ⊕ ConvC3×3,6 (Input) (9)

whereConvC3×3,6 represents the convolutionwith a kernel size
of 1× 1, the dilated ratio is 6, and the output channel number
is C . ⊕ is the add operation and Cat represents concatenate
operation.

In the location branch, the output of a convolution is given
as input to the FEM. The output of the FEM is summed using

FIGURE 7. The architecture of the HorBlock.

the convolved feature map. Finally, the result is obtained
after convolution with a kernel size of 1× 1. The calculation
process can be described as follows:

Reg = Conv41×1

{
Cat

[
Input,
(FEM (x1) ⊕ x1)

]}
(10)

IoU = Conv11×1

{
Cat

[
input,
(FEM (x1) ⊕ x1)

]}
(11)
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FIGURE 8. The architecture of the proposed AED-Head.

TABLE 2. Parameters of AED-Head and decoupled head (based on
YOLOv5L).

Where Input means input features, Reg is the regression pre-
diction results. IoU means the location accuracy.
This improvement not only speeds up the convergence of

the network but also reduces the number of parameters. The
parameters of the AED-Head and the decoupled head are
shown in Table 2.
It can be seen from Table 2 that the proposed AED-Head

reduces the parameters by 3.4 M and the computation by
25.7 GFLOPs.

The asymmetrical structure of the decoupled head
improves the accuracy of the classification of different-sized
components and thus ensures the accuracy of locating them.
The decoupled head of the size of 152 px ×152 px improves
locating the small components such as fastener nuts.

IV. EXPERIMENTS AND RESULTS
A. DATASET
Data from 300km/h High-Speed Rail China High-Speed Rail
400km test data. The catenary images are acquired from the
high-speed railway catenary inspection vehicle and manually
labeled. The dataset for the 40 catenary components is shown
in Table 3.

TABLE 3. The distribution of the dataset.

TABLE 4. Parameter setting.

TABLE 5. Results were obtained by applying the different methods to the
catenary dataset.

FIGURE 9. Diagram of IoU.

B. IMPLEMENTS DETAILS
1) PARAMETER SETTINGS
The initialization parameters of the backbone network were
transformed from the pre-trained YOLOv5l network. Then,
the initialization weights of the other convolution layers
were initialized using the ‘‘Kaiming’’ initialization method.
The proposed AED-YOLO model was trained using the
mini-batch stochastic gradient descent method with a batch
size of 4. Other parameters were set as shown in Table 4.

2) COMPUTATION PLATFORM
The proposed method was implemented in Python and
PyTorch and was run on Ubuntu 18.04 and a computing
platform with GeForce RTX Titan Xp.
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TABLE 6. Results of the different methods for some small and medium-sized components.

FIGURE 10. The average detection accuracy for some small components.

C. EVALUATION METRIC
In the field of object detection, the intersection over union
(IoU) ratio and confidence are the most used evaluation
metrics. The IoU metric is used to evaluate the degree of
coincidence between two regions and is defined as:

IOU =
Iarea
Uarea

(12)

where Iarea is the intersection area, andUarea is the union area.
As shown in Fig. 9, the red bounding box is the real bounding
box containing the detection object, the green bounding box
is the prediction box output by the algorithm, and the over-
lapping area of the two is the yellow bounding box area. Then

the IoU of the target recognition is expressed as follows:

IOU =
B1 ∩ B2
B1 ∪ B2

(13)

where B1 is the area of the red box and B2 is the area of the
green box.

In addition to IoU, the following four evaluation metrics
were used for evaluating the test results of detection: accuracy
(Acc), precision (P), recall (R), and average precision (AP).

P =
TP

TP+ FP
× 100% (14)

R =
TP

TP+ FN
× 100% (15)

AP =
P+ R
2

× 100% (16)
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FIGURE 11. Locating effect of some small components.

where TP is the predicted defect number of IoU > 0.5, FP is
the predicted defect number of IoU ⩽ 0.5, and FN indicates
the missed inspection number. The mAP is the average APs
of all categories.

D. RESULTS
In the experimental part, classical methods such as YOLO3,
SSD, Faster RCNN, and TPH-YOLO were selected for com-
paring their performance with that of the proposed method,
and the results thus obtained are shown in Table 5.

The data in Table 5 leads to the conclusion that the
proposed AED-YOLO method achieves the highest average
accuracy of 93.5% when applied to the catenary dataset of
40 components. This exceeds the results of YOLOv3 by
1.8% and YOLOv5 by 2.3%. Compared to the other meth-
ods, the mean average precision is also greatly improved.
The detection results for some of the small-sized compo-
nents are shown in Fig. 10. It can be seen from the figure
that compared to the other methods, the proposed method
achieves high mean precision for 14 small-sized compo-
nents. In particular, a significant improvement in the detec-
tion precision for screw_nut_isoeletric, screw_pin_fix, and
insulator_flow_porcelain_hook is observed. The results of
the inspection of some of the key components are shown
in Fig. 11. As can be seen from the figure, the proposed
method exhibits good detection performance for small-sized
components in critical areas.

TABLE 7. Results of the ablation study.

TABLE 8. Parameter comparison.

In catenary systems, a large proportion of the components
are small, and the inspection of small components is a top
priority. Table 6 gives the inspection results for eight small-
sized components. It can be seen from the results that the
detection accuracy of the proposed AED-YOLO method is
high, compared to the other methods, for the eight small-sized
components, indicating that the proposed method exhibits
better detection and positioning capability for small-sized
components.

E. ABLATION STUDY
In the ablative experimental test, YOLOv5l was selected as
the baseline network and combined with other modifications
to perform a series of ablation experiments. The results of the
experiments are given in Table 7.
It can be seen from the table that compared to the baseline,

themAP of the YOLOv5l+Hor-Bi-FPNmethod is improved
by 1.1%, and thus this method will be more accurate in locat-
ing catenary components. The detection accuracy can be fur-
ther improved by 1.2% by adding an AED-Head. Compared
to the original YOLOv5, it can be seen from Table 6 that the
proposedmethod can improve the detection accuracy bymore
than 10% when detecting Insulator_flow_porcelain_hook,
Screw_pin_fix, and Screw_nut_wire. The accuracy of several
other components is also observed to be improved by varying
degrees. This shows that the method proposed in this work
can efficiently improve the positioning accuracy of small- and
medium-sized components of the catenary system.

F. DISCUSSION
Although the method proposed in this work is effective in
improving the positioning accuracy of small-sized compo-
nents in contact network systems, it also introduces a large
number of parameters. Table 8 shows the changes in the
number of parameters and the number of calculations before
and after the improvements.

As can be seen from the table, the method proposed in this
work increases the number of parameters by 19.6 M and the
number of calculations by 90.5 GFLOPs, compared to the
original YOLOv5. As a result, it is slower in providing results.
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V. CONCLUSION
In this work, a precision location network for catenary com-
ponents has been proposed. In conjunction with HorNet,
an improved version of the bidirectional feature pyramid
network has been proposed for bidirectional feature fusion
to increase the perceptibility of the small-sized components.
Secondly, an AED head has been introduced to provide
different decoupled methods for performing the tasks of
classification and localization using an asymmetrical decou-
pled structure. Experiments demonstrate that the proposed
approach is advanced compared to the existing approaches
in terms of detecting 40 types of components located in a
high-speed railway catenary system and exhibits an mAP of
93.5%. In particular, for locating small-sized components, the
detection precision is observed to be improved by varying
degrees; thus, providing superior locating detection capabil-
ity for small-sized components.

In future research, we plan to further improve the detec-
tion performance and optimize the framework to accelerate
the proposed approach to meet real-time and high-accuracy
requirements. In addition, integrating more efficient and less
parametric detection methods will also be an aim of our next
research work.
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