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ABSTRACT Due to thewidespread use of distributed datamining techniques in a variety of areas, the issue of
protecting the privacy of sensitive data has received increasing attention in recent years. Privacy-preserving
distributed data mining (PPDDM) focuses on decentralized data analysis without the disclosure of sensitive
information from data owner. However, the previous PPDDM mostly works on a limited amount of labeled
data. In contrast to the real world, unlabeled data is abundance and labeled data is scarce. The objectives
of this paper are to study and to analyze privacy-preserving properties of semi-supervised learning (SSL)
algorithm with the combination of labeled and unlabeled data, where data is distributed among multiple
data owners. In this paper we propose a Privacy-preserving Distributed Data Mining (PPDDM) method by
designing a reliable application of secure MPC to semi-supervised tri-training algorithms. We simulate the
original tri-training algorithm and tri-training algorithmwith secureMPC using a different types of classifiers
and datasets. The simulation results show that tri-training in secureMPC has almost same accuracy compared
to original tri-training algorithm. We also compare execution time in addition to performance evaluation of
tri-training in secure and the original tri-training algorithms.

INDEX TERMS Distributed data mining, multi-party computation, privacy-preserving, semi-supervised
learning, tri-training.

I. INTRODUCTION
Nowadays, we have known an unprecedented surge in data,
especially for personal data in the business and health care
environment. Most companies and organizations have private
big data that are involved in medical services, social media
applications, e-commerce, online banking, and interdisci-
plinary research data. The entire data infrastructure is built on
a distributed system nationally or globally. Distributed data
mining offers intriguing possibilities for fresh insights and a
wide range of applications but is often fraught with concerns
regarding model accuracy and data privacy. Consider the case
of analyzing patient data in health care. Hospitals use patient
data to improve diagnosis accuracy and efficiency [1].

However, learning patient data from a single hospital limits
the performance of the model and can lead to incomplete
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knowledge discovery. Individual behavior and social condi-
tions also have a role to affect patient health [2]. Combining
diverse patient data from multiple hospital sources provides a
path for obtaining more accurate and reliable health outcome
analysis models [3], [4], [5]. Due to the widespread use of
distributed data mining techniques in a variety of areas, the
issue of protecting the privacy of sensitive data has received
increasing attention in recent years [6], [7].

Privacy-Preserving Distributed Data Mining (PPDDM)
focuses on distributed data analysis without leaking sensitive
information from one party to another. PPDDM technology
aims to make it technically or mathematically impossible
to derive the original data from communication messages
and even from the final analysis results [7], [8]. There are
three issues in PPDDM for real-world applications. That is,
how to deal with some data issues (classification, regression,
etc.), how to point out opposition concerns related to the data
party (malicious, honest, etc.), and a balance between privacy
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and model performance. Currently, several privacy protection
techniques are available for distributed data mining. These
include data perturbation, local learning and global integra-
tion, and secure multi-party computation (MPC) [9].

Data perturbation protects privacy by adding noise to indi-
vidual datasets while retaining essential summary informa-
tion [10], [11]. One approach to data perturbation is to use
statistical techniques to replace original data with synthetic
values that have similar statistics. Synthetic data can be gen-
erated using statistical models trained on the original data.
Another approach is to distort the data using additive noise,
multiplying noise, or other randomization methods [12].
Among PPDDM techniques, data perturbation is relatively
simple [11]. However, the quality and accuracy of the train-
ing model can be affected. Another PPDDM approach is
local learning and global integration. This approach inte-
grates local models into a global model using an ensemble
learning technique to improve performance [9]. Each party
can train their own local data, which is then integrated to
create centralized or global data mining to produce the final
result. The original data of each party is not shared. The
most well-known and widely used PPDDM is secure MPC,
an encryption-based method that allows multiple parties to
collectively compute functions on their own data without
sharing it [6], [7]. SecureMPC also protects participants from
external attacks and from each other. The result is accurate,
and each party only sees the data obtained from the published
result. In real-world data, secure MPC supports fixed-point
and floating-point operations with controlled linear complex-
ity [13], [14].

However, the previous PPDDM mostly works on the lim-
ited amount of labeled data [4], [12], [14], [15], [16]. In the
real-world, unlabeled data is abundant, and labeled data
is scarce. Semi-supervised learning (SSL), which leverages
both labeled and unlabeled data, is a type of machine learning
method between supervised and unsupervised learning that
takes full advantage of large unlabeled samples and labeled
samples. For example, for classification issues, additional
data points with unknown labels can be used to support the
classification process [17]. SSL training assumes that the
labeled training data is supplemented by additional unlabeled
data that needs to be used properly to improve the accuracy
of the model [18], [19].

The disagreement-based semi-supervised classification
realizes the utilization of unlabeled data by using multiple
classifiers. In the learning process, unlabeled data is used
as a platform for information interaction between several
classifiers. The original disagreement-based algorithm was
developed in [20] which is called co-training which requires
two views of sufficient and redundant. Later, Goldman and
Zhou proposed a new co-training method called statistical co-
training [21], which uses two different learning algorithms
based on a single view. In [22], Zhou and Li developed
a tri-training that does not require sufficient and excessive
views. Tri-training also does not require the use of a different

TABLE 1. Different types of PPDDM.

supervised learning algorithm that hypothetically divides the
instant space into a set of equivalent classes.

The existing work on [6], [12], and [16] propose MPC-
based on supervised PPDDM to enable multiple parties to
jointly train a model on a labeled dataset without sharing
their private data. The focus is on protecting the privacy of
the data owners while still allowing for collaborative model
training. In semi-supervised PPDDM, the goal of MPC is
to train a model on a dataset that contains both labeled and
unlabeled data. The challenge is to make use of the unlabeled
data to improve model performance without compromising
the privacy of the data owners. Secure MPC can be used in
semi-supervised PPDDM to allow parties to jointly train a
model on the labeled data while keeping the unlabeled data
private.

Combining tri-training algorithms with existing secure
MPC protocols is a potential solution to achieving pri-
vacy preservation in tri-training algorithms. However, it is
important to note that the presence of unlabeled data in tri-
training introduces additional privacy concerns that need to
be addressed. These concerns include the potential for infor-
mation leakage through the use of semi-supervised learning
and the need to ensure that the privacy guarantees provided
by secure MPC are maintained even when dealing with unla-
beled data.

Additionally, the scalability of the approach is also a chal-
lenge, especially when dealing with large datasets and com-
plex models. Therefore, careful consideration of the specific
requirements and constraints of the problem at hand is neces-
sary to determine the most appropriate solution.

In this paper we propose a Privacy-preserving Distributed
Data Mining (PPDDM)method by designing a reliable appli-
cation of secure MPC to semi-supervised tri-training algo-
rithms. In summary, the main contributions of this paper are
as follows:

1) We introduce privacy-preserving distributed data min-
ing implementation with semi-supervised learning
algorithm. Secure multi-party computation is used to
preserve data input among multiple parties and tri-
training algorithm as the base of semi-supervised learn-
ing. As far as we know, this is the first study to imple-
ment and analyze the accuracy of semi-supervised tri-
training algorithm using secure MPC.

2) We carry out a number of experiments from small to a
large real-world and artificial datasets to demonstrate
the reliability of the proposed design.
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3) We record key performance metrics, which are clas-
sification accuracy and execution time to verify the
effectiveness and efficiency of our design.

The rest of this paper is structured as follows. Section I
gives the outline of the related work. Section III describes
the preliminary of secure multi-party computation and semi-
supervised learning. Section IV explains the methodology of
the proposed solution for privacy-preserving semi-supervised
tri-training algorithm. Furthermore, the experiment results
and discussion are described in Section V. Finally, Section VI
gives conclusion and provides some future work.

II. RELATED WORK
Table 1 presents different types of supervised and semi-
supervised PPDDM related to MPC-based and non-MPC-
based privacy preservation approach. Relatively few inves-
tigations have been conducted on semi-supervised PPDDM,
and none of them utilize secure-MPC as a privacy preserva-
tion method.

Non-MPC-based supervised PPDDM was proposed
by [23] and [24]. Zhao et al., [23] presented a non-MPC-based
supervised PPDDM. They provided a framework to protect
private training data against leakage from gradient sharing.
This framework was designed by adopting a new knowledge
transfer technique, known as private aggregation of teacher
ensembles (PATE) in an efficient and novel manner. The
framework allows effective transfer of relational knowledge
from sensitive data to public data in a privacy-preserving way
and enables participants to jointly learn local models based on
the public data with noise-preserving labels. Han et al., [24]
proposed a verifiable federated learning scheme that supports
privacy protection over deep neural networks. To ensure the
confidentiality of the user’s local gradients, a double-masking
protocol was used in the scheme. The authors used aggrega-
tion technology of data tags to ensure that the information
returned by cloud server can be verified.

A non-MPC-based fully decentralized semi-supervised
learning privacy-preservation was proposed by Fierimonte
et al. [18]. The main component of the proposed algorithm
consists of a fully distributed computation of the adjacency
matrix. They extend a Laplacian regularized least square
algorithm, a member of manifold regularization family. The
distributed semi-supervised algorithm is efficient and scal-
able for low-rank distributed matrix completion, based on the
framework of diffusion adaptation. The algorithm can pre-
serve privacy by the inclusion of flexible privacy-preserving
mechanisms for similarity computation. Nevertheless, in this
algorithm, the whole dataset is loaded once at a time and
processed in each iteration, which causing higher workload.
Besides, this algorithm calculates the Euclidian Distance
Matrix (EDM) with respect to total samples. Obviously, this
process will consume much time and waste computational
resources, especially when the scale of training data is large.

Another non-MPC-based implementation on graph-based
semi-supervised PPDDM was introduced by Li and Li [25].

They proposed inductive semi-supervised learning with
harmonic anchor mixture in PPDDM. The idea lies in com-
bining mixture models and graph-based methods to construct
an anchor mixture with the ability of label prediction. The
authors also proposed an optimization process, which is accu-
rately calculated through secure protocols, to achieve effec-
tiveness. The possibility of privacy leaks from each party’s
input data is one of the limitations of this method, where each
side shares its data in its unprocessed condition.

A PPDDM based on secure-MPC was proposed by
Liu et al. [6]. They designed a high performance algorithm
based on optimized matrix computation with one-hot encod-
ing and LU decomposition for regression problem (e.g. least
squares method). The authors introduced two real situations
to preserve privacy.

Another anMPC-based approach in PPDDMwas proposed
by Tran et al. [12]. They develop a new efficient framework
for privacy-preserving deep learning models. The framework
is able to operate in a decentralized network environment that
does not require a trusted third-party server, while maintain-
ing the privacy of local data at a low cost of transmission
bandwidth. The framework ensures not only the confidential-
ity of user data, but also the applicability of the paradigm in a
decentralized network with no third-party server. The authors
employed a model sharing strategy to prevent the direct leak-
age of local data and devised a secure model sharing protocol
to provide secure sharing and aggregation for collaborative
model construction. Furthermore, the secure model sharing
protocol combines randomization techniques with the secure
sum protocol. Without trusting each other or a third-party
server, parties utilizing the honest-but-curious approach are
protected from both inside and outside threats.

Sotthiwat et al. [16] offered an alternative application of
MPC to provide privacy protection for distributed supervised
learning. Instead of applying heavy MPC over the entire
local models for secure model aggregation, they proposed
to encrypt a critical portion of model parameters (gradients)
to reduce communication cost, while maintaining MPC’s
privacy-preserving benefits without compromising the accu-
racy of the jointly learned model. In particular, only the
first layer of local models is encrypted with MPC tech-
nique, while the remainder is transmitted directly to the
centralized node. Such a technique effectively minimizes
the additional computing and communication cost caused
by MPC, while maintaining MPC’s advantages in terms of
privacy protection and model accuracy. Even though these
studies employ a dependable secure-MPC privacy protec-
tion, they have limitations in overcoming real-world chal-
lenges in data mining, particularly those involving the usage
of labeled and unlabeled data. To overcome the limitations
of previous work, we provide a privacy-preserving for tri-
training algorithm using secure-MPC. Our work exploits
the real-world problem of distributed data mining using
labeled and unlabeled data, and encrypts the data to enhance
privacy-preservation.

34720 VOLUME 11, 2023



H. Kurniawan, M. Mambo: Reliable Application of MPC for Securing the Tri-Training Algorithm

III. PRELIMINARIES
A. SECURE MULTI-PARTY COMPUTATION
Secure multi-party computation is an area of cryptography
which deals with two or more parties Pi(i = 1, 2, . . . n)
compute a function f (x1, x2, . . . , xn) = (y1, y2, . . . , yn) on
their private input xi in a distributed computing environment.
After the computation is complete, each side ofPimust obtain
its own corresponding output yi without obtaining any other
information. The previous technique for evaluating secure
functionality was for all parties to communicate their input
to a trusted third party. This trustworthy party then calculates
the function and returns the result to the parties. However,
we wish to eliminate this trustworthy third party entirely.
Intuitively, a multiparty computation is secure if the revealed
information is identical to what it would have been if the com-
putation had been conducted by encrypting communications
to a trusted third party.

Basic protocols for secure MPC often fall into one of two
different groups [26]. The first is based on Yao’s [27] concept
of a garbled circuit or Yao circuit: in this scenario, one party
gives the function to be calculated as a binary circuit, while
another party encrypts the gates of this circuit to gener-
ate the garbled circuit. This technique is plainly predicated
on a computational assumption, namely that the encryption
system is secure. The second technique is based on secret
sharing schemes: suppose a party expresses the function to
be calculated as an arithmetic circuit. To achieve absolute
security, this second technique employs a perfectly secure
secret sharing system. It turns out that the first technique
appears to be more suited to the situation of two parties,
whilst the second approach appears to be better suited to the
case of three or more parties. In 1982, Yao [27] explicitly
presented and solved the secure two-party computation issue.
Goldreich et al. [28] expanded and extended the two-party
computation situation to the MPC problem. The study in [13]
has created and implemented a computation framework and
protocol called SPDZ based on the notion and theory of
multi-party computation and secret sharing. Through secret
sharing and homomorphic encryption, SPDZ may perform
any combination of addition and multiplication operations.

The SPDZ protocol [29] divides a MPC work into two
parts. The first step is an offline preprocessing phase in which
numerical triples are generated and shared among parties
in advance. By using relatively homomorphic encryption,
it is possible to improve speed while also guarding against
a dishonest majority. The second step is an online phase in
which real computation are performed. The computational
cost during the actual computation of the online phase is
minimal when an offline pretreatment step is used to offload
work. This capability of secure multi-party computation has
the potential to enable a variety of machine learning appli-
cations that are currently infeasible because of data pri-
vacy concerns. A flexible software framework that aims to
make modern secure MPC techniques accessible to machine
learning has been developed [30] named CRYPTEN. This
framework provides a comprehensive tensor-computation

library in which all computations are performed via secure
MPC. The framework design adopted the two main princi-
ples: machine-learning first API design, and Eager execution
of an imperative programming model.

B. SEMI-SUPERVISED LEARNING
The main principle of semi-supervised learning is to con-
struct learner to mark unlabeled samples using the model
hypothesis in the distribution of data. To compensate for
the absence of labeled data, the current semi-supervised clas-
sification uses large amounts of unlabeled data to enlarge
the training set of the classification algorithm. Examples of
semi-supervised classification are generative methods, semi-
supervised support vector machine methods, graph-based
methods and disagreement-based methods.

Generative based semi-supervised learning methods gen-
erate labeled and unlabeled examples by the same parametric
model. The model parameters connect unlabeled samples
and the learning target in a direct manner. Algorithm in this
methods often treat the labels of unlabeled data as missing
model parameter values and employ the EM (expectation-
maximization) technique for maximum likelihood estimation
of the model parameters. The algorithms are distinguished by
the generative models used to fit the data, such as mixture of
Gaussian [31], mixture of experts [32], and Naive Bayes [33].
This method is simple and straightforward to construct. Gen-
erative approaches may outperform discriminative models,
e.g semi-supervised support vector machine (S3VM), when
learning from a relatively small number of labeled examples.
Nonetheless, approaches in this domain are severely lacking.
In other words, when the model assumption is erroneous,
training the model with a large number of unlabeled data
would degrade performance and need more computational
time.

Semi-supervised support vector machine (S3VM) meth-
ods attempt to use unlabeled data to change the decision
boundary learned from a small number of labeled examples
so that it explores the less dense region while maintaining
the accurate classification of labeled data. This methods are
based on the separation of low density. Transductive Support
VectorMachine (TSVM) is the most well-known S3VM [34].
This algorithm builds an SVM using labeled samples before
assigning potential labels to unlabeled data. Then, it maxi-
mizes the margin across both labeled and unlabeled data with
their prospective labels by reversing the labels of the unla-
beled samples on opposite sides of the decision boundary. The
best solution is reached when the decision boundary not only
classifies the labeled data as precisely as possible, but also
avoids passing through the high density region. In the S3VM,
an SVMmust be trained by solving a quadratic programming
problem during every learning process. As a result, its time
complexity is substantial.

Graph-based semi-supervised learningmethods essentially
attempt to create a graph with all the data [35].They utilize
nonnegative weights on the edge of any two samples to char-
acterize their similarity, and propagate labels from labeled
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samples to unlabeled ones based on the pairwise similarity.
Zhou et al. [36] suggested a regularization paradigm for
directed graphs that takes the directionality and global rela-
tionship into account. To generate a graph with all training
samplesÂ requires a significant amount of time.

Disagreement-based semi-supervised learning methods
are based on discrepancies of multiple classifiers to clas-
sify unlabeled data during the learning process. Among
the numerous semi-supervised learning methods, the
disagreement-based semi-supervised learning methods are
simple and effective. As stated in [37], they may per-
form well in many routine situations. Meanwhile, it is not
always the cases in other semi-supervised learning meth-
ods. For example the three methods (generative methods,
semi-supervised support vector machine methods, graph-
based methods) may degrade performance or spend more
computational time, and they are not suitable for secure-
MPC scheme. We will focus on disagreement-based semi-
supervised learning in our implementation. Well-known
examples of disagreement-based semi-supervised learning
are co-training [20], tri-training [22], and tri-training with
disagreement [38].

Blum and Mitchell [20] proposed co-training in 1998,
which is the original disagreement-based algorithm, also
known as the standard simultaneous training algorithm. They
assume that the dataset have two views with sufficient redun-
dancy to meet the following criteria: First, each view is
sufficient for training a strong learner. Second, the views are
conditionally independent of one another.

In most real-world applications, a data set has only one
attribute set, not two. As a result, typical joint training is
ineffective and inefficient. Methods that do not rely on the
availability of two perspectives have been developed to take
advantage of learner interaction when using unlabeled data.
Contrary to the findings of previous studies [20], [21], [33],
Zhou and Li [22] introduced tri-training, which does not need
the availability of two perspective learning algorithms. Tri-
training can be used for a broader range of real-world issues.
Using three classifiers, tri-training performs classification by
utilizing unlabeled data. This kind of configuration addresses
the difficulty of knowing how to effectively choose the most
strongly anticipated unlabeled cases to label and generates a
final hypothesis.

Sogaard [38] proposed tri-training with disagreement as
an enhancement to the tri-training algorithm 1. The enhance-
ment concentrated on strengthening tri-training algorithm by
changing lines 16-17 with equation (1). The condition to
update value of third classifier c3 is satisfied when two clas-
sifiers c1 and c2 agree and the third classifier c3 is disagrees.
Tri-training with disagreement is substantially more efficient
than tri-training since it imports less unlabeled data. Due to
the ease of implementation in real-world problems by using
only one learning algorithm to generate the three classifiers,
we will adopt tri-training and tri-training with disagreement
for applying MPC to disagreement-based semi-supervised

learning.

if cm(x) = cs(x) ̸= ci(x)(m, s ̸= i) then

×Li← Li ∪ (x, cm(x)) (1)

In general, tri-training algorithm works as follows.
1) The three classifiers were first trained from the labeled

data. To diversify the three classifiers, tri-training boot-
straps the label samples set to generate three unique
classifiers. Throughout the tri-training procedure, the
three classifiers are upgraded.

2) In every learning round, if two classifiers agree on how
to classify an unlabeled instance but a third disagrees,
the third classifier will be updated using values of the
first and second classifiers.

3) Finally, the combination of three classifiers is deter-
mined by majority vote. When the classifier no longer
changes, the process stops.

Algorithm 1 describes the pseudocode of the tri-training
algorithm, where L is original Labeled example set, U is
Unlabeled example set, and Learn is the learning algorithm
(e.g. Decision Tree,Multi-layer Perceptron, Nal̈ve Bayes, and
Support Vector Machine). The output of the algorithm is the
classifier c with majority voting.

IV. METHODOLOGY
A. PROBLEM DEFINITION
In a distributed system, data is distributed across multiple
sites. The goal of a PPDDM approach is to compute a model
utilizing all the data without any site disclosing sensitive
information. In this section, we firstly describe the prob-
lem under consideration as describe in Table 2. Original
dataset D is the real dataset used during simulation, then D
is splited into two parts Dtr and Dtx for training and test-
ing process respectively. The distributed system is consisted
of n Data Owner: {DO1,DO2, . . . ,DOn} and m Computing
Parties: {CP1, . . . ,CPm}. Training dataset Dtr are horizon-
tally distributed among the DO. Different DO may have
several instances with the same set of attributes. Throughout
the training, no information about each specific instance is
exposed to anyone other than its owner. We assume a semi-
honest adversary design, whichmeans that the data owner and
computing parties must strictly follow the PPDDM protocol
specification.

B. SECURE MPC FOR TRI-TRAINING ALGORITHM
SecureMPC enables participants to compute data while keep-
ing it secret. This secure MPC capability has the potential
to enable a wide range of machine learning applications
that are now infeasible due to data privacy issues. This sec-
tion describes how tri-training algorithm as a part of semi-
supervised classification works on a secure MPC system.

Secure MPC can be used in a variety of ways. Essentially
secure MPC is used in a distributed computing environment.
Figure 1 shows the architecture of secureMPC in a distributed
system with n Data Owner DO and m Computing Parties

34722 VOLUME 11, 2023



H. Kurniawan, M. Mambo: Reliable Application of MPC for Securing the Tri-Training Algorithm

FIGURE 1. Architecture of secure MPC with n data owner (DO) and m computing parties (CP) with encrypted dataset.

TABLE 2. Notation used in the system.

CP using encrypted dataset. Each Data Owner DO holds Dtr
and shares the same key k , then encrypts X = Enck (Dtr )
to produce encrypted data X from Dtr , where Enck (·) is an
additive homomorphic encryption [39] with key k . The X
from each DO is sent to CP, then the CP will provide secure
computation of tri-training algorithm from X ’s and produce
the encrypted model c̄.
The following assumptions are stated in this application:

privacy-preservation mode uses the ‘‘semi-honest’’ adver-
sary [40] (also referred to as the ‘‘honest-but-curious’’ threat
model). Every party follows the protocol exactly: it executes

all of the calculations stated in the program and delivers
the proper results to the parties mentioned in the program.
The communication channel is secure: no party has access
to data that has not been directly disclosed to it. Every side
has a private source of randomness. Parties may utilize any
previously viewed data and undertake arbitrary processing to
infer information.

Two semi-supervised learning algorithm Tri-training [22]
and Tri-training with disagreement [38] is used in secure
MPC process based on Algorithm 1. The basic idea of this
implementation is to compute both the tri-training algorithm
and tri-training with disagreement algorithm using secure
MPC for each Computing Party CP with encrypted dataset
input from multiple Data Owner DO.

Suppose we have n data owner {DO1, . . . ,DOn} that
ready to contribute their data and m computing parties
{CP1, . . . ,CPm} to perform secure MPC in this applica-
tion. We provide original dataset D during experiment, then
split D into two part Dtr and Dtx based on split ratio for
training and testing purpose. In our implementation we use
0.8 and 0.2 ratio for Dtr and Dtx respectively. Training
dataset Dtr is splited into n part {Dtr−1, . . . ,Dtr−n}. Then
{Dtr−1, . . . ,Dtr−n} is assigned to each {DO1, . . . ,DOn}
respectively.
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Algorithm 1 Tri-Training Algorithm
1: Input: L: Original labeled example set
2: U : Unlabeled example set
3: Learn: Learning algorithm
4: Output: Classifier c
5: for i ∈ {1, 2, 3} do
6: Si← BootstrapSample(L)
7: ci← Learn(Si)
8: e′i← 0.5; l ′i ← 0
9: end for

10: repeat
11: for i ∈ {1, 2, 3} do
12: Li← 0; updatei← FALSE
13: ei← MeasureError(cj&ck )(j, k ̸= i)
14: if (ei < e′i) then
15: for each x ∈ U do
16: if cm(x) = cs(x)(m, s ̸= i) then
17: Li← Li ∪ (x, cm(x))
18: end if
19: end for
20: if l ′i = 0 then
21: l ′i ←

ei
e′i−ei
+ 1

22: end if
23: if (l ′i < |Li|) then
24: if (ei|L ′i | < e′il

′
i ) then

25: update← TRUE
26: else if l ′i > ei

e′i−ei
then

27: Li← Subsample(Li,
e′il
′
i

ei
)

28: update← TRUE
29: end if
30: end if
31: end if
32: end for
33: for i ∈ {1, 2, 3} do
34: if (ei|L ′i | < e′il

′
i ) then

35: ci← Learn(L ∪ Li); e′i← ei; l ′i ← |Li|
36: end if
37: end for
38: until none of ci(i ∈ {1, 2, 3}) changes
39: c(x)← argmax

y∈label

∑
i:ci(x)=y 1

Firstly, each DO encrypts its Dtr training dataset X =
Enck (Dtr ), where X consisted of {L̄∪Ū} and then split X into
m shares {X1, . . . ,Xm} using randommasks, 3 random shares
in this example. These random shares can be combined to
reconstruct the original X dataset. These shares {X1,X2,X3}
are then distributed between 3CP {CP1,CP2,CP3} using
secret sharing. In this process, encrypted shares are dis-
tributed in random order. As a result, none of the CP know
which shares they hold. The same computing procedure is
executed for tri-training and tri-training with disagreement
algorithm as described in algorithm 2:

Algorithm 2 Secure MPC for Tri-Training Algorithm
With m Computing Parties {CP1, . . . ,CPm}

1: Input: Encrypted labeled dataset {L̄1, . . . , L̄m},
2: Encrypted unlabeled dataset {Ū1, . . . , Ūm},
3: TrainClassifier : Train L̄ using learning algorithm.
4: Output: Encrypted model c̄
5: CP1← (L̄1 ∪ Ū1),. . . , CPm← (L̄m ∪ Ūm)
6: for i ∈ {1, 2, 3} do
7: for each CP do
8: Si← BootstrapSample(L̄)
9: c̄i← TrainClassifier(Si)
10: end for
11: end for
12: repeat
13: for i ∈ {1, 2, 3} do
14: for x ∈ U do
15: if c̄m(x) = c̄s(x)(m, s ̸= i) then
16: L̄i← L̄i ∪ (x, c̄m(x))
17: end if
18: end for
19: c̄i← TrainClassifier(L̄ ∪ L̄i)
20: end for
21: until none of c̄i(i ∈ {1, 2, 3}) changes
22: apply majority vote over c̄i

1) CP1,CP2,CP3 hold secret shares X1,X2,X3 respec-
tively, where X1 = L̄1 ∪ Ū1, X2 = L̄2 ∪ Ū2, and
X3 = L̄3 ∪ Ū3.

2) Encrypted labeled dataset L̄ for each CP can
be defined as: L̄1 = (x11, y11), . . . , (x1ı , y1ı ),
L̄2 = (x21, y21), . . . , (x2ȷ , y2ȷ ), and L̄3 =

(x31, y31), . . . , (x3κ , y3κ ).
3) For each CP, setup Si ← BootstrapSample(L̄) for i ∈
{1, 2, 3}.

4) For eachCP, c̄i← TrainClassifier(Si): for i ∈ {1, 2, 3}
using learning algorithm.

5) Training process stops when none of c̄i, i ∈ {1, 2, 3}
change.

6) Final result is an EncryptedModel based on the major-
ity vote over c̄i.

Each CP jointly computes all functions according to the
secure MPC protocol in CRYPTEN framework [30] during
simulation. The result is jointly computed and then can be dis-
tributed (encrypted) to the user as a service. Finally, we cal-
culate the classification accuracy (equation 2) of Encrypted
model c̄ with an input testing dataset Dtx .

V. RESULT AND DISCUSSION
In this section, we discuss the experimental environment and
the results. We conducted experiments using six datasets with
four learning algorithms as classifiers for tri-training algo-
rithm. Using original training input data Dtr and encrypted
private training input data X , we compare the perfor-
mance of secure MPC for tri-training and tri-training with
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TABLE 3. Public dataset used in privacy-preserving semi-supervised
learning.

disagreement algorithm. The simulation for original input
data is performed without privacy-preservation whereas the
simulation process for private input data is executed under the
privacy-preservation mode using secure MPC. When com-
paring cryptographic techniques, performance factors such as
classification accuracy and execution time should be consid-
ered [11].

A. EXPERIMENTAL SETUP
1) SIMULATION ENVIRONMENT
We provide the following computing environment for the
experiments. A server computer has a CPU configuration of
Intel Xeon Bronze 3206R 1.90GHz, 32.0 GB RAM, stor-
age 2 TB and run under Ubuntu-20.04 operating system.
The software specification to implement the simulation for
original tri-training and tri-training with disagreement are
conda version 4.10.3, python 3.9.7, torch 1.10.11, torchvi-
sion 0.11.2, omegaconf 2.1.1, onnx 1.10.2, pandas 1.3.5, and
tensorboard 2.8.0. The experiments on data classification for
tri-training and tri-training with disagreement using secure
multi-party computation are carried out under the CRYPTEN
framework [30].

2) DATASETS USED IN THE EXPERIMENTS
The datasets for the experiment are public classification
datasets that have been widely used in the information secu-
rity and machine learning research communities. The dimen-
sions of the datasets used for the performance testing vary
from small to extremely large, to check the performance of
the proposed application in different circumstances. Table 3
describes the number of samples and descriptions of each
dataset. The first one is AUSTRALIAN credit card applica-
tion dataset, which consists of 690 samples and 14 features
with 2 classes. This small dataset is intriguing due to its mixed
characteristics, nominal with a limited number of values and
nominal with a higher number of values. The second one is
Breast Cancer Wisconsin Diagnostic dataset (WDBC) con-
tains 569 samples, 30 features, and 2 classes to conclude
whether they are benign or malignant cancer diagnostic [41].
The next is MNIST dataset of handwritten digits formatted as
28× 28 images, with 784 features created [42]. This dataset
is composed of 60,000 examples with 10 label decisions to
recognize a one digit number between 0-9. The UNSW-NB15
dataset [43] is used in this experiment, which has 2,540,044
rows of data with 49 attributes and 9 classifications. The

Australian Centre for Cyber Security’s (ACCS) Cyber Range
Lab created the UNSW-NB15 dataset as a mixture of genuine
modern regular activities and synthetic contemporary assault
behaviors. One of the huge datasets used in this experiment
is HIGGS dataset [44], which has 11,000,000 records. The
HIGGS dataset has 28 attributes and 2 labels for a classi-
fication problem produced using Monte Carlo simulations.
Finally, CIC-IDS [45] is the largest dataset used in this exper-
iment, providing 15,450,706 samples and 78 features. The
CIC-IDS dataset includes 7 distinct attack scenarios, such as
brute-force, heartbleed, botnet, DoS, DDoS, online assaults,
and network penetration.

We also provide artificial dataset for simulation with differ-
ent dimensionality, noise intensity, extreme outliers, and non-
uniform distribution aspect. Table 5 shows artificial datasets
with noise aspect [46]. We use MNIST handwritten dataset
generated using Gaussian noise. We vary the variance of
Gaussian noise in the MNIST dataset to evaluate the clas-
sification accuracy of the original tri-training algorithm and
tri-training with disagreement algorithm. In figure 2 we show
the Gaussian noise in MNIST handwritten dataset. Figure 2a
represents the original MNIST handwritten dataset, figure 2b
presents the Gaussian noise in MNIST handwritten dataset
with mean 0.0 and variance 0.05, figure 2c shows the MNIST
handwritten dataset with Gaussian noise with mean 0.0 and
variance 0.1, figure 2d displays the MNIST handwritten
dataset with Gaussian noise with mean 0.0 and variance 0.5,
and finally, figure 2e displays theMNIST handwritten dataset
with Gaussian noise with mean 0.0 and variance 0.7.

Table 6 displays non-uniform distribution aspect for
artificial dataset [47], [48]. The Forest cover type dataset
is a non-uniform distribution dataset with 581,012 records,
55 features, and 7 classes. The Epileptic Sizure Recognition
dataset is also a non-uniform dataset with 11,500 records,
178 features, and 5 classes.

In table 7, we provide artificial dataset with different
dimensionality. We generate four different artificial datasets
with 10,000 × 50 dimensions, 10,000 × 100 dimensions,
10,000 × 150 dimensions, and 10,000 × 200 dimensions.
Finally, in table 8 we generate two extreme outliers with
10,000 × 5 dimensions and 10,000 × 10 dimensions.

The Inter quartile range IQR technique is utilized to iden-
tify the extreme outliers of a given dataset. This method
divides the dataset into quartiles, with the first quartileQ1 rep-
resenting the value below which 25% of the data points, the
second quartile Q2 being the median point of the dataset, and
the third quartileQ3 indicating the value below which 75% of
the data points. The IQR value can be obtained by calculating
IQR = Q3 − Q1.
In Table 8, we provide artificial datasets containing

extreme outlier values. These datasets differ in the total
number of extreme outlier values, with the first dataset hav-
ing 2, the second dataset having 11, and the third dataset
having 24 such values. Extreme outliers are those data points
that fall outside the range of Q1 − 3 ∗ IQR or Q3 + 3 ∗
IQR. Figure 3 demonstrates an example of visualizing the

VOLUME 11, 2023 34725



H. Kurniawan, M. Mambo: Reliable Application of MPC for Securing the Tri-Training Algorithm

FIGURE 2. MNIST handwritten digit image with additional gaussian noise.

FIGURE 3. Visual representation displaying boxplot chart of extreme
outlier data point from artificial dataset.

extreme outlier dataset using a boxplot chart that includes 5
features.

3) CLASSIFIER USED IN THE EXPERIMENTS
Typically, a classification model is used to predict the
class label for an unlabeled data object. In this experiment,

we employ various classification techniques, including the
decision tree, naive bayes, multi-layer perceptron (MLP), and
support vector machines (SVM) classifiers, to support tri-
training and tri-training with disagreement algorithm. Each
technique employs distinct learning algorithms to construct
models with excellent generalizability. In general, the classi-
fication model is constructed by dividing the available dataset
into a training set, which is used during the classifier’s con-
struction phase, and a test set for validation.
• Decision tree classifiers provide a readable classifica-
tion model that is potentially accurate in many different
application contexts. The decision tree classifier [49]
creates the classification model by building a deci-
sion tree Each node in the tree specifies a test for an
attribute, and each branch descending from that node
corresponds to one of the attribute’s possible values.
Each leaf represents the associated class labels for the
instance. Instances in the training set are classified by
navigating them from the tree’s root to a leaf, based on
the results of tests along the path. Each node, beginning
with the root node of the tree, divides the instance space
into two or more sub-spaces based on an attribute test
condition. Then, a new node is created by moving down
the tree branch corresponding to the attribute’s value.
This procedure is then repeated for the subtree rooted
at the new node until all training set records have been
categorized.

• The Naive Bayes classifiers [50] are a family of
Bayesian classifiers. The number of parameters required
by Naive Bayes classifiers is proportional to the num-
ber of variables (features/predictors) in a learning prob-
lem. This experiment utilizes Gaussian Naive Bayes for
numerical/continuous characteristics. Assume that the
distribution of continuous values is Gaussian. Conse-
quently, likelihood probabilities are calculated using the
Gaussian distribution.

• MLP [51] is a learning algorithm that trains on a dataset
to learn a function. MLP is capable of learning a non-
linear function approximator for classification or regres-
sion. At least three layers of nodes comprise an MLP:
an input layer, a hidden layer, and an output layer. Each
node, excluding input nodes, is a neuronwith a nonlinear
activation function. MLP classifier employs backpropa-
gation, a supervised learning technique, for training.

• SVMs were first proposed in statistical learning the-
ory [49]. SVM can deal with high-dimensional data
and generates a very comprehensive (geometric) model.
An SVM predictor is based on the kernel function
K, which defines a specific type of similarity mea-
sure between data objects. Kernel functions include
linear, RBF (radial basis function), polynomial, and
sigmoid kernels, among others. The SVM learning
problem can be formulated as a convex optimization
problem, in which a variety of algorithms can be
used to locate the global minimum of the objective
function.
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B. PERFORMANCE EVALUATION
We evaluated the performance of secure MPC for tri-training
and tri-training with disagreement regard to classification
accuracy and execution time. Classification accuracy is cal-
culated based on the fraction of correctly classified samples
in equation (2) from original Dtx data testing to encrypted
model from proposedmodel, the best performance is 1.While
execution time is calculated for the whole training process,
execution time is measured in second. All measurement is
calculated in average value based on 10-fold cross valida-
tion [52]. The label ratio is a ratio of L

Dtr
for original tri-

training and tri-training with disagreement algorithm, and
ration of L̄

X for tri-training in secure MPC and tri-training
disagreement in secure MPC.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(2)

CompAccTriTrain =
AccTriTrainMPC
AccTriTrain

(3)

CompAccTriDisagr =
AccTriDisagrMPC
AccTriDiasgr

(4)

where FP, TN , TP and FN definitions are the false positive,
true negative, true positive, and false negative, respectively.
We define CompAccTriTrain in equation (3) as the compar-
ison of classification accuracy between tri-training in secure
MPC and original tri-training algorithm, CompAccTriDisagr
in equation (4) as the comparison of classification accuracy
between tri-training with disagreement in secure MPC and
original tri-training with disagreement algorithm.

1) CLASSIFICATION ACCURACY FOR WIDELY USED
DATASETS
Figure 4 shows classification accuracy for the AUS-
TRALIAN dataset with different classifiers and the effect
of increasing label ratio. Figure 4(a) describes classification
accuracy for decision tree classifier. Both tri-training and
tri-training in secure MPC have almost equal accuracy with
different values of label ratio. The same indication show for
original tri-training with disagreement and tri-training with
disagreement in secure MPC. Figure 4(b) shows comparison
of classification accuracy using Naive Bayes classifier. The
accuracy value of tri-training to tri-training in secure MPC
is almost the same for different value of label ratio, the
same evidence show for accuracy comparison of tri-training
with disagreement to tri-training with disagreement using
secureMPC. Figure 4(c) describes classification accuracy for
AUSTRALIAN dataset using MLP classifier. For all label
ratio, we get the same accuracy for tri-training and tri-training
using MPC, and almost the same accuracy for tri-training
with disagreement and tri-training with disagreement using
MPC. Figure 4(d) shows the accuracy for SVM classifier.
For all classifiers we can see the accuracy is increasing while
label ratio is increasing, this indicates the large portion of L
labeled data, we can achieve better accuracy.We calculate the
average value of CompAccTriTrain and CompAccTriDisagr
for each classifier and label ratio, both CompAccTriTrain

and CompAccTriDisagr have the same value 0.99. We can
conclude that tri-training in secure MPC and tri-training with
disagreement in secure MPC achieve the same performance
accuracy as the original tri-training and tri-training with dis-
agreement algorithm.

Figure 5 illustrates the classification accuracy for the
WDBC dataset using several classifiers and the effect of
changing the label ratio. Figure 5(a) depicts the classifica-
tion precision of the decision tree classifier. With varying
label ratio values, tri-training and tri-training in secure MPC
achieve nearly identical levels of accuracy. Both original tri-
training with disagreement and tri-training with disagreement
in secure MPC display the same indication. Figure 5(b)
illustrates a comparison in classification precision using the
Naive Bayes classifier. The accuracy value of tri-training
to tri-training in secure MPC is nearly same for different
label ratio values; the same is true for tri-training with dis-
agreement to tri-training with disagreement in secure MPC.
Figure 5(c) demonstrates the classification accuracy for the
WDBC dataset using the MLP classifier. For each label
ratio, tri-training and tri-training with MPC yield identical
accuracy, while tri-trainingwith disagreement and tri-training
with disagreement withMPC yield almost identical accuracy.
Figure 5(d) illustrates the precision of the SVM classifier.
We can see that the accuracy of each classifier improves as
the proportion of L labeled data increases. Calculating the
average value of CompAccTriTrain and CompAccTriDisagr
for each classifier and label ratio yields the same value for
both variables: 1.00. Tri-training in secure MPC and tri-
training with disagreement in secure MPC attain the same
accuracy in performance as the original tri-training and tri-
training with disagreement algorithm.

Figure 6 depicts the classification accuracy of the MNIST
dataset using several classifiers, as well as the effect of
varying the label ratio. Only Naive Bayes classifier have the
accuracy under 0.90 in figure 6(b). Decision tree classifier
has the best accuracy 1.00 for all label ratio in figure 6(a).
We compute the average variable value of CompAccTriTrain
and CompAccTriDisagr for each classifier and label ratio,
the same outcome for both variables is 1.00. Tri-training
in secure MPC and tri-training with disagreement in secure
MPC achieve the same performance precision as the original
tri-training and tri-training with disagreement algorithm.

The next experiment is executed on large dataset UNSW-
NB15, HIGGS and CIC-IDS. Tabel 4 display the classi-
fication accuracy of original tri-training, tri-training with
disagreement, tri-training in secure MPC, tri-training with
disagreement in secure MPC. The classification accuracy
reaches maximum value in each dataset with different clas-
sifiers and label ratios. This indicate that, both tri-training
in secure MPC and tri-training with disagreement in secure
MPC achieve best performance for large dataset.

2) CLASSIFICATION ACCURACY FOR ARTIFICIAL DATASETS
We evaluate the original tri-training and tri-training in secure
computation, tri-training with disagreement, and tri-training
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FIGURE 4. Comparison of classification accuracy of original and secure MPC of tri-training, tri-training with disagreement algorithm on AUSTRALIAN
dataset.

FIGURE 5. Comparison of classification accuracy of original and secure MPC of tri-training, tri-training with disagreement algorithm on WDBC dataset.

with disagreement in secure computation using artificial
datasets. We use ten samples of artificial datasets with

varying noise intensity, dimensionality, extreme outliers,
and non-uniform distribution aspect. For further evaluation,
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FIGURE 6. Comparison of classification accuracy of original and secure MPC of tri-training, tri-training with disagreement algorithm on MNIST dataset.

TABLE 4. Classification accuracy of original and secure MPC of
tri-training, tri-training with disagreement algorithm on UNSW-NB15,
HIGGS, and CIC-IDS dataset.

we examine all the algorithms with the dataset using Monte
Carlo Cross-validation. A random subset of the data is chosen
as the validation set and the model is trained on the remaining
data. The simulation is repeated a number of times, with
a different random subset chosen as the validation set each
time.

First, we evaluate the performance of the original tri-
training and tri-training in secure MPC, tri-training with
disagreement, and tri-training with disagreement in secure
MPC with varying noise intensity. Table 5 shows the accu-
racy of each algorithm for MNIST dataset generated with
Gaussian noise using different variance value. Gaussian noise
is distributed randomly and uniformly over the entire image
of MNIST dataset. As we can see for all classifiers, there
is no significant difference in the accuracy of the original
tri-training algorithm compared to the tri-training in secure
MPC. The same pattern also occurs in tri-training with dis-
agreement compared to tri-training with disagreement in
secure MPC.

As the noise intensity of the MNIST dataset increased, the
performance of all algorithms decreased due to the difficulty
in distinguishing between the true class labels and the noisy
labels.

In the second evaluation, we analyze the performance
of the original tri-training and tri-training in secure MPC,
as well as tri-training with disagreement and tri-training with
disagreement in secure MPC with non-uniform distribution
datasets. In the aspect of non-uniform distribution, Forest
Cover Type dataset and the Epileptic Seizure Recognition
dataset are two commonly used datasets in machine learn-
ing [47], [48]. Table 6 shows the accuracy of each algorithm
for the Forest Cover Type dataset and the Epileptic Seizure
Recognition dataset. For all classifiers, the performance of
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TABLE 5. Classification accuracy of original and secure MPC of tri-training, tri-training with disagreement algorithm different classifier on noisy artificial
dataset.

all the algorithms decreases as the class distribution of the
dataset becomes more non-uniform because the classifier
will have a harder time correctly classifying the minor-
ity class. As observed for all classifiers, the classification
accuracy results showed comparable performance between
the original tri-training algorithm and the tri-training in
secureMPC. Comparing tri-training with disagreement to tri-
training with disagreement in secure MPC, the same pattern
is also observed.

Next, we compare the results of the original tri-training,
tri-training in secure MPC, tri-training with disagreement,
and tri-training with disagreement in secureMPC on artificial
datasets with various dimensions. We observed how the per-
formance of all the algorithms changes as the dimensionality
of the dataset increases. Table 7 shows the accuracy of each
classifier and algorithm using artificial datasets featuring a
wide variety of dimensions. The classification accuracy of
all the algorithms decreases as the dimensionality of the
dataset increased due to the curse of dimensionality. The
classification accuracy did not differ significantly between
the original tri-training algorithm and its implementation in
secure MPC. Similarly, there was no significant difference
in classification accuracy between tri-training with disagree-
ment and its implementation in secure MPC.

Finally, we test the performance of the original tri-training
and tri-training in secureMPC, as well as tri-trainingwith dis-
agreement and tri-training with disagreement in secure MPC
using artificial datasets with extreme outliers. We observed
how the performance of all the algorithms changes as the
number of extreme outliers increase in the dataset. Table 8
shows the accuracy of each classifier and algorithm on
extreme outliers datasets. The performance of all the algo-
rithms decreases as the number of extreme outliers in the
dataset increases because the presence of extreme outliers
can have a significant impact on the classifier’s decision

boundary. The comparison between the original tri-training
and tri-training in secureMPC for extreme outlier datasets did
not reveal any significant differences. Similarly, no marked
differences were observed between tri-training with disagree-
ment and tri-training with disagreement in secure MPC.

3) TWO-GROUPS STATISTICAL TEST
To provide a comprehensive comparison of tri-training and
tri-training in secure computation, tri-training with disagree-
ment and tri-training with disagreement in secure computa-
tion we provide a statistical t-test [53] for AUSTRALIAN,
WDBC and MNIST dataset.

A t-test is an inferential statistic used to determine whether
there is a statistically significant difference between the
means of two groups that may be related in certain char-
acteristics. The t-test establishes the problem statement by
assuming that the two means are equal, using a sample from
each of the two sets. The null hypothesis is that the population
means are identical. The null hypothesis is stated as follows:
H0 :µ1 − µ2 = 0, and the alternatives hypothesis H1 :µ1 −

µ2 ̸= 0 is that the population means are not identical. µ1 and
µ2 represent the value of means from the first and second
sample, respectively.

The statistical t-test is conducted for 16 observations
in each algorithm based on the classification accuracy
value of AUSTRALIAN, WDBC and MNIST dataset in
Figure 4, 5, and 6, respectively.
Table 9 provides the t-test result for AUSTRALIAN

dataset. In the table 9(a) the mean and variance value of
tri-training is 0.836250 and 0.002972 respectively. The tri-
training in secureMPC has amean and variance 0.829375 and
0.002820, respectively. We accept the null hypothesis
H0 because the p-value (0.720358) is bigger than the level
of significance (Alpha = 0.05). The mean and variance
of original tri-training with disagreement are 0.821875 and
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TABLE 6. Classification accuracy of original and secure MPC of tri-training, tri-training with disagreement algorithm different classifier on non-uniform
distribution artificial dataset.

TABLE 7. Classification accuracy of original and secure MPC of tri-training, tri-training with disagreement algorithm different classifier on
multi-dimension artificial dataset.

TABLE 8. Classification accuracy of original and secure MPC of tri-training, tri-training with disagreement algorithm different classifier on extreme outlier
artificial dataset.

0.003683, respectively, while the mean and variance of tri-
training with disagreement in secure MPC are 0.816875 and
0.004343, respectively as presented in table 9(b). The p-value
is 0.824856, we accept null hypothesisH0 which indicates the
distribution of classification accuracy for original tri-training

with disagreement is equal to tri-training with disagreement
in secure MPC.

The results of the t-test for theWDBC dataset are presented
in Table 10. The mean and variance value of tri-training are
shown to be 0.929375 and 0.000446 in table 10(a), respec-
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TABLE 9. Comparison of Tri-training with disagreement and Tri-training
with disagreement (MPC).

TABLE 10. Comparison of Tri-training with disagreement and Tri-training
with disagreement (MPC).

tively. The mean and variance of the tri-training in secure
MPC are 0.925000 and 0.000120, respectively.We arewilling
to concede that the null hypothesis H0 is correct because the
p-value (0.467796) is greater than the level of significance
(Alpha = 0.05). According to the data presented in table
10(b), the mean and variance of original tri-training with dis-
agreement are 0.924375 and 0.000146, respectively, whereas
the mean and variance of tri-training with disagreement in
secure MPC are 0.925100 and 0.000093, respectively. We are
able to accept the null hypothesis because the p-value is
0.872771. H0 shows that the distribution of classification
accuracy for the original tri-training with disagreement is
the same as the distribution of classification accuracy for tri-
training with disagreement in secure MPC.

Table 11 shows the result of the t-test for the MNIST
dataset. In table 11(a), the mean value of tri-training is
0.948750 and the variance is 0.004172. Tri-training in secure
MPC has a mean of 0.945625 and a variance of 0.004093.
We accept the null hypothesis H0 because the p-value
(0.891555) is bigger than the level of significance (Alpha =
0.05). The mean and variance for original tri-training with

TABLE 11. Comparison of Tri-training with disagreement and Tri-training
with disagreement (MPC).

TABLE 12. Statistical t-test result with Alpha = 0.05 for comparison of the
original tri-training and tri-training (MPC), tri-training with disagreement
and tri-training with disagreement (MPC) on artificial dataset.

disagreement are 0.951875 and 0.003803, respectively. For
tri-training with disagreement in secure MPC, the mean and
variance are 0.946250 and 0.003652, as shown in table 11(b).
The p-value is 0.796183, so we accept the null hypothesis.
The t-test result means that the distribution of classification
accuracy for original tri-training with disagreement is the
same as for tri-training with disagreement in secure MPC.

To prove that the original tri-training algorithm has
similarities with tri-training in secure MPC, as well as
tri-training with disagreement and tri-training with dis-
agreement in secure MPC on artificial datasets. We com-
pare tri-training and tri-training (MPC), tri-training with
disagreement and tri-trainingwith disagreement (MPC) using
statistical test. Each test compares two groups of population
with 10 samples. Rodriguez-Fdez et al., [54] provide a web
platform for the comparison of algorithms using statistical
tests. We provide a preliminary normality and homoscedas-
ticity test on pairing between two groups. The normality of
each group was tested using a Shapiro-Wilks test with alpha
0.1 and the homoscedasticity between groups was tested
using Levene test with alpha 0.1. We use parametric t-test
paired samples based on the normality and homoscedasticity
results. Table 12 shows statistical t-test results with alpha =
0.05 for comparison of the original tri-training and tri-training
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TABLE 13. Execution time (in second) for every dataset with different classifier and label ratio = 0.2.

(MPC), tri-training with disagreement and tri-training with
disagreement. The null hypothesis H0 indicates two related
or repeated samples have identical mean values.

4) EXECUTION TIME COMPARISON
As shown in subsection V-B1, there is no significant differ-
ence in classification accuracy between original tri-training
and tri-training in secure MPC, and either original tri-training
with disagreement compared to tri-training with disagree-
ment in secure MPC for different values of label ratio.
In this subsection, we will discuss the execution time for each
dataset with different classifiers using the same value of label
ratio = 0.2. Considering label ratio = 0.2 reflects a realistic
settingÂ with a large dataset, where labeled data is limited
compared to a massive amount of unlabeled data. Moreover,
another label ratio has the same tendency to label ratio= 0.2.

CompTimeTriTrain =
TimeTriTrainMPC
TimeTriTrain

(5)

CompTimeTriDisagr =
TimeTriDisagrMPC
TimeTriDiasgr

(6)

We provide definition for execution time comparison
CompTimeTriTrain in equation (5) as comparison of execu-
tion time between tri-training in secure MPC and original tri-
training algorithm, and CompTimeTriDisagr in equation (6)
as comparison of execution time between tri-training with
disagreement in secure MPC and original tri-training with
disagreement algorithm.

Table 13 shows the execution time for every dataset with
different classifier and the value of label ratio = 0.2. For
AUSTRALIAN dataset, decision tree classifier has fastest
execution time compared to the other classifiers. The exe-
cution time of tri-training in secure MPC is 9 times longer
than original tri-training algorithm. Tri-training with dis-
agreement in secure MPC takes 6 times longer to execute
than the original tri-training with disagreement algorithm.
Naive Bayes classifier has the lowest increasing execution
time while comparing tri-training in secure MPC to orig-
inal tri-training algorithm. On average, for all classifiers
in AUSTRALIAN dataset tri-training in secure MPC takes
12 times longer than original tri-training algorithm, while
the execution time is 14 times longer for tri-tri-training with
disagreement in secureMPC compared to original tri-training
with disagreement. In the WDBC dataset, the average value
of CompTimeTriTrain and CompTimeTriDisagr is 10 and
12 respectively. The average CompTimeTriTrain value is
2 and the average CompTimeTriDisagr value is 3 for MNIST
dataset. For large datasets like UNSW-NB15, HIGGS, and
CIC-IDS the average values of CompTimeTriTrain and
CompTimeTriDisagr become smaller. UNSW-NB15 dataset
has the same average value of CompTimeTriTrain and Comp-
TimeTriDisagr, equal to 2. Both HIGGS and CIC-IDS dataset
has the average value of CompTimeTriTrain and CompTi-
meTriDisagr 3 and 4 respectively.
In all datasets we can see that tri-training in secure MPC

and tri-training with disagreement in secure MPC take longer
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execution time compared to original tri-training and tri-
training with disagreement algorithm, due to the fact that
privacy-preserving secure MPC requires higher computa-
tional time with three parties. With the increasing size of the
dataset, the average value of CompTimeTriTrain and Comp-
TimeTriDisagr decreased.

VI. CONCLUSION
In this paper, we present and analyze the privacy-preserving
distributed data mining for semi-supervised tri-training clas-
sification using secure multi-party computation. We have
evaluated our proposed application extensively using four
learning algorithms and six well-known datasets that vary
from small to extremely large dimensions. Based on the
simulation, the proposed application of tri-training in secure
MPC and tri-training with disagreement in secure MPC has
the same classification accuracy compared to the original tri-
training and tri-training with disagreement algorithm. The
result also shows a secure-MPC scheme can preserve privacy
in tri-training and tri-training with disagreement algorithm
while keeping accuracy. Moreover, we have presented the
reliability of the proposed application by calculating the
average comparison value of execution time for each. With
the increasing dataset size, the difference of execution time
decreased. This circumstance is reliable to the real-world
application which consists of a massive amount of data.
In future work, we plan to explore some possibilities to
lower the execution time by analyzing the unlabeled data, and
extending the proposed application to follow the malicious
adversaries’ security, which is beyond the scope of this work.
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