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ABSTRACT Since the complementarity information among multiple views has been exploited to improve
the clustering effect significantly, multi-view clustering has become a hot topic, and many multi-view
clustering methods have emerged. Most of them only consider local features in each view, ignoring the
differences in the manifold structure of the same class samples among different views. In addition, they
need to balance the importance of respective views effectively, thus ignoring the diversity among views
in the clustering process. To address these problems, we propose a new diversity multi-view clustering
method with subspace and NMF-based manifold learning. Firstly, non-negative matrix factorization and
manifold learning are used to obtain features and local geometric structures of samples. After that, the
latent space representation facilitates the transfer of manifold structural features between views and improves
the class consistency of the same sample in different views. Moreover, the Hilbert-Schmidt independence
criterion is introduced to learn diversity for mutual learning and information fusion among views. Finally,
experiments on seven datasets demonstrate the superiority of the proposed method compared to ten state-of-
the-art methods.

INDEX TERMS Multi-view latent clustering (MVLC), Hilbert Schmidt independence criterion (HSIC),
non-negative matrix factorization (NMF), manifold learning (ML).

I. INTRODUCTION
With the rapid development of big data, real-world datas
generated from different sources or observed from different
views is becoming richer in terms of semantics and structure.
For instance, image data can be represented using a hetero-
geneous set of features such as local binary patterns, colour
layout descriptors, etc. These datasets consisting of multiple
views can provide much richer information. Multi-view clus-
tering (MVC) is learning from various views simultaneously
to produce consistency and general grouping information for
datasets.

Multi-view clustering has achieved success in many fields,
such as natural language processing [1], computer vision
[2], big data [3], biomedical information analysis [4], image
classification [5], [6], [7], face clustering [8], [9], community
detection [10], [11], [12], and so on. So far, many multi-view
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clustering methods based on spectrum [13], subspace [14],
[15], and non-negative matrix factorization [16] have been
proposed. Among them, the development of methods based
on non-negative matrix factorization is remarkable. Multi-
view clustering methods using NMF have received much
attention because they can learn effective low-rank represen-
tations by mapping the original high-rank to low-rank space.

NMF generally produces inconsistent clustering results,
partly due to the inability of NMF-based methods to pre-
serve the geometric structure of the original data when map-
ping it into low-rank space [7]. In other words, adjacent
samples in the original space may not remain adjacent in
the new space. Cai et al. [17] introduced the concept of
manifold learning in single-view clustering, aiming to pre-
serve local or global geometric structure of the original data.
Zhang et al. [18], Qian et al. [19] introduced the idea of
manifold learning to multi-view clustering, combining mani-
fold learning with a non-negative matrix factorization frame-
work to explore and maintain the geometric structure of
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low-rank data. The multi-view clustering method based on
NMF and manifold learning show effectiveness against other
state-of-the-art methods. The main idea of manifold learning
is to maintain similar manifold structures of the same class
samples in low-rank space. However, another difficulty in
multi-view clustering is learning the exact consensus matrix
from multiple views and then using the valid consensus
matrix for clustering. In learning the consensus matrix, NMF-
basedmanifold learning ismore likely to use the non-negative
factorized data coefficient matrix as the consensus matrix,
which ignores different manifold structures that exist in dif-
ferent views, even for the same class samples. Therefore,
in recent years, many works have attempted to obtain more
reliable coefficient matrices in various ways. For example,
Guo et al. [20] proposed a matrix factorization LRR model
based on product Grassmann manifolds, using the kernel
norm of the matrix to obtain a low-rank representation of
the original data and a more reliable coefficient matrix.
Zhang et al. [21] attempted to fuse the clustering indica-
tor matrices of different views into the consensus matrix,
thus avoiding noise and redundancy in the original data.
Wang et al. [22] restrict the number of connected components
to be consistent with the sample categories and thus learn
a uniform similarity matrix from each view. However, these
methods may ignore the connection among the original data,
as the manifold structure of the same class samples tends
to differ among views. This difference makes the learned
consensus matrix affect the next clustering operation.

There is complementarity among multi-view datas. Data
in a single view can get more information from other views.
Zhang et al. [23] proposed to use the complementary recon-
structed data of multi-view to obtain latent representations.
They assumed that multi-view data could be composed of
exact latent representations according to different mapping
relationships. The consensus matrix formation is natural
and easy for subsequent clustering operations. In addition,
Zhang et al. [24] extended it to nonlinear mappings, which
experimentally proved simple but effective. However, this
method ignores the manifold structure between sample points
after mapping. Cao et al. [25] adopted the Hilbert-Schmidt
independence criterion(HSIC) to facilitate rich representa-
tions of other view data, specifying that the learned sub-
space representations are novel to each other. Tan et al.
[26] borrowed ideas from this and took complete account of
low-rank factorisation and noise information to achieve data
fusion.

Unlike reconstructing the latent representation in this
paper, our method is not to reconstruct the entire latent space
using prior knowledge. Firstly, our methods obtain the view
features and geometric structures from the samples in each
view using non-negative matrix factorization and then facil-
itate the interconnection of geometric structure information
among different views through the latent space. At the same
time, each sample can be considered a linear combination of
latent representations and individual view features. We use
latent representations to explore the manifold relationships

between the same class data points in different views and
combinemanifold learningwith exploring themanifold struc-
ture among data points in each view. In addition, the Hilbert
Schmidt Independence Criterion is also used for feature
learning among views. We assume that each view’s manifold
structure of the same class samples is often formed with the
exact latent feature representations. Based on this assump-
tion, we propose a new method called Diversity Multi-view
Clustering with Subspace and NMF-based Manifold Learn-
ing (DMVCSN). Using the idea of non-negative matrix
factorization, our method learns the latent features of the
manifold structure of the same class samples from the com-
plementary information of each view. Meanwhile, mani-
fold learning can maintain the manifold structure between
samples in different views. Besides, HSIC can promote the
interconnection of information among views and accelerate
mutual learning in model optimization. We use the aug-
mented Lagrangian multiplier to optimize the algorithm with
an alternating direction minimization strategy efficiently.
Finally, we conduct extensive experiments to compare our
method with the state-of-the-art method to demonstrate its
effectiveness.

The main contributions of the proposed DMVCSN algo-
rithm are as follows:

1) Based on non-negative matrix factorization with sub-
space learning, we propose a method called Diversity
Multi-view Clustering with Subspace and NMF-based-
Manifold Learning, which can learn a more reliable
coefficient matrix using the data manifold features of
multiple views.

2) Unlike latent representation learning, DMVCSN
employs data manifold feature representation to main-
tain the internal structure between data points in differ-
ent views.

3) We introduce the Hilbert-Schmidt independence cri-
terion to learn diversity for mutual learning, fuse the
information among the views to construct a unified
low-rank multi-view clustering method, and design an
alternating optimization algorithm using an augmented
Lagrangian multiplier. Experimental results show that
the proposed method is competitive with some state-of-
the-art methods.

The rest of this paper is organized as follows. We present
the related work and technical background, including multi-
view NMF, Manifold Learning, HSIC covariance constraints,
and latent subspace clustering in Section II. The proposed
method and its optimization procedure and convergence anal-
ysis are then described in Section III. The experimental
results and analysis are shown in detail in Section IV. Finally,
some conclusions are drawn in Section V.

II. RELATED WORKS
This section briefly describes the background of the tech-
niques used in our proposed method, including Non-negative
matrix factorization, Manifold learning, HSIC covariance
constraints, and latent subspace clustering.
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A. NON-NEGATIVE MATRIX FACTORIZATION (NMF)
NMF [27] is a widely popular method in multi-view learn-
ing [16], [19], which decomposes a given matrix X into a
non-negative basis matrix U, and a non-negative coefficient
matrix V, and obtains a subspace representation in the form
of a product. which is

X ≈ UVT

where X = [x1, x2, . . . , xn] ∈ Rm×n, m is the number
of sample features, n is the number of samples, and each
column of X represents one sample. The elements in both the
base matrix U =

[
uij

]
∈ Rm×l and the coefficient matrix

V =
[
vij

]
∈ Rn×l satisfy uij ≥ 0,vij ≥ 0.

To measure Euclidean distance of the following objective
functions.

O1 =

∥∥∥X− UVT
∥∥∥2
F

s.t. U ≥ 0,V ≥ 0

NMF is used as matrix factorization and the coefficient
matrix can be used for later clustering operations.

B. MANIFOLD LEARNING (ML)
The NMF method decomposes higher order data matrices
into smaller matrices while generating many approximate
solutions, often producing unstable results. It does not con-
sider the internal structure of the data matrix. Cai et al. [17]
combined manifold learning with the NMF framework,
which helps to produce data matrices that are conducive
to clustering while maintaining the original data geometry.
After, many works [22], [28] attempted to use k-nearest
neighbors to capture local similarity relationships between
data points. Based on KNN, there are three general represen-
tative methods for constructing similarity graph methods as
follows.

1) Binary weighting: When constructing a similarity
graph. wij is the weight between two nodes, which
represents the similarity between them.

2) Heat kernel weighting:

wij = e−
∥xi−xj∥

2

σ

3) Dotproduct weighting:

wij = xTj · xi

In the low-dimensional representation vj =
[
vj1,

vj2, . . . , vjl
]T of the original sample point xi. The Euclidean

distance

d(vi, vj) = ||vi − vj||2

is used to measure the difference between the two data
points relative to the original sample points. Using the above

weights, the smoothness of the low-dimensional representa-
tion can be measured using the following equation.

O2 =

n∑
i,j=1

∥∥vi − vj
∥∥2 wij

=

n∑
i=1

vTi viDii −
n∑

i,j=1

vTi vjwij

= Tr
(
VTDV

)
− Tr

(
VTWV

)
= Tr

(
VTLV

)
C. THE HILBERT SCHMIDT INDEPENDENCE CRITERION
Combining complementary information between views is a
critical way to improve clustering. The Hilbert-Schmidt inde-
pendence criterion (HSIC) allows data from other views to
be used as new features to enrich the data representation.
According to references [25], [29], the cross-covariance Cxy
can be defined as:

Cxy = Exy[(φ(x)− µx)⊗ (ϕ(y)− µy)]

where µx , µy is the expectation of x, y, i.e.,µx = E(φ(x)),
µy = E(ϕ(y)), and ⊗ represents the matrix product.
Definition 1: Given two separable reproducing kernel

Hilbert space 0, ϒ and a joint probability distribution ρxy,
we define the HSIC as the Hilbert Schmidt norm of the
associated cross-covariance operator Cxy

HSIC(ρxy, 0,ϒ) = ∥Cxy∥2HS

where ∥A∥HS denotes the Hilbert-Schmidt norm of a matrix
as:

∥A∥HS =
√∑

i,j

a2ij

However, the joint distribution ρxy is often unknown or
hard to estimate. Thus, the empirical version of HSIC is
induced as follow:
Definition 2: Consider a series of n independent observa-

tions drawn from ρxy,Z := {(x1, y1), (x2, y2), . . . , (xn, yn)} ∈
0 × ϒ , written as HSIC(Z, 0,ϒ), is given by:

HSIC(Z, 0,ϒ) = (n− 1)−2 Tr(K1HK2H)

where K1,K2 are two Gram matrices, and H is the central
matrix. For more details about HSIC, please refer to the
literature [25], [29]. In order for the data in different views
to provide more complementary interest, HSIC is used to
penalize the dependencies between the newly represented
data.

D. LATENT MULTI-VIEW SUBSPACE CLUSTERING
The complementary information in multiple views can recon-
struct the latent space, and further clustering operations can
be done in the latent space. This method assumes that the data
in different views come from the exact latent representation,
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as shown in Fig. 1. The objective function of subspace clus-
tering based on latent representation H can be defined as:

min
P,H

Lh(X(v),P(v)H)

where the individual views Xv are obtained from the shared
latent representation H = {h}ni=1 using the respective pro-
jection models {P(1), . . . ,P(nv)}. Lh(·, ·) is the loss function
associated with the latent representation. In general, by virtue
of the complementarity between the views, the latent repre-
sentation contains more comprehensive information than the
single-view representation.

FIGURE 1. Schematic demonstration of multi-view latent representation.

III. THE PROPOSED METHOD
In order to simultaneously considers both the geomet-
ric structures of the data manifold and fusion informa-
tion among views, we propose a multi-view diversity
clustering model based on non-negative matrix factoriza-
tion(DMVCSN). In this section, we present the objective
function, its optimization and solution scheme, and the con-
vergence proof.

A. OBJECTIVE FUNCTION OF DMVCSN
The data are defined as {X(1), . . . ,X(v), . . . ,X(nv)}, where nv
denotes the number of total views and X(v)

∈ Rdv×n denotes
the data in the v-th view. n is the number of sample points,
and dv is the number of features of the v-th view. U(v)

∈

Rdv×l and P(v)
∈ Rn×m are the feature matrix and projection

matrix of the v-th view respectively. And V∗ ∈ Rm×l is the
set of latent sample features, and different views share the
same matrix variable V∗. we transformed the problem into
a non-negative matrix triple factorization [30], [31], and its
objective function is

min
U≥0,P≥0,V∗≥0

nv∑
v=1

∥X(v)
− U(v)(P(v)V∗)

T
∥
2
F (1)

The above equation decomposes the original data matrixX
into three parts, where U preserves the features of individual
views, whereas matrix PV∗ preserves the structure among the
data points. Borrowing from latent space representation, the

matrixV∗ transfers the manifold structure features among the
views.
Non-negative matrix triple factorization is an approximate

process with a certain degree of error that ignores the connec-
tions between data points. We combine manifold learning to
obtain an accurate data manifold structure and a latent rep-
resentation of the data manifolds among views. Meanwhile,
to avoid the projection matrix P(v) falling into the trivial
solution, the regular term is added and the modified objective
function is as follows.

min
U≥0,P≥0,V∗≥0

nv∑
v=1

∥∥∥X(v)
− U(v)(P(v)V∗)

T
∥∥∥2
F

+ αv

nv∑
v=1

Tr((P(v)V∗)
T
L(v)
pv∗ (P

(v)V∗))

+ βv

nv∑
v=1

∥∥∥P(v)
∥∥∥2
F

(2)

where L(v)
pv∗ = D(v)

pv∗ −W(v)
pv∗ , D

(v)
pv∗ is the diagonal matrix of

the v-th view, and the elements on the diagonal are D(v)
ii =∑n

j=1 w
(v)
ij . In the second term, each view collectively main-

tains a latent data manifold representation using its own
data manifold. This method preserves the individual view
coefficient matrix manifold structure and allows the latent
data manifold space to be used to transfer manifold features
among different views.
Compared to manifold learning works [18], [19], con-

straints of the above function may be more relaxed. There-
fore, we added the Hilbert-Schmidt independence criterion to
our function and got the final objective function of DMVCSN
as follows.

min
U≥0,P≥0,V∗≥0

nv∑
v=1

∥∥∥X(v)
− U(v)(P(v)V∗)

T
∥∥∥2
F

+ αv

nv∑
v=1

Tr((P(v)V∗)
T
L(v)
pv∗ (P

(v)V∗))

+ βv

nv∑
v=1

∥∥∥P(v)
∥∥∥2
F

+ γv

nv∑
w=1,v̸=w

HSIC(P(v)V(∗),P(w)V(∗)) (3)

Refer to (3), the first term is the standard NMF factoriza-
tion. The matrix is factorized into three non-negative parts;
The second term is a smoothing term to maintain a common
manifold feature space while capturing themanifold structure
of each view itself, ensuring that adjacent samples in the
original space remain adjacent in the new low-dimensional
representation; The third term is the standard term, it is so
as not to fall into a trivial solution. The fourth term is to use
the idea of HSIC to fuse the complementarity among views
to reduce redundancy and improve the accuracy of clustering
results.

37044 VOLUME 11, 2023



J. Ding et al.: Diversity Multi-View Clustering With Subspace and NMF-Based Manifold Learning

B. MODEL OPTIMIZATION
The alternating direction multiplier can change the joint
optimization of main variables into the separate alternating
iterations, so our objective function is rewritten as (ignoring
the index of the view)

O(U,P,V∗) = Tr((X− UV∗TPT )T (X− UV∗TPT ))

+ α Tr((PV∗)TLpv∗ (PV∗))

+ β Tr(PTP)

+ γHSIC(P(v)V∗,P(w)V∗) (4)

In this paper, we use Kv
= (PvV∗)(PvV∗)T as the inner

product kernel. For the convenience of representation, the
HSIC part is represented by:

nv∑
w=1,w̸=v

HSIC(V(v),V(w))

=

nv∑
w=1,w̸=v

Tr(HK(v)HK(w))

=

nv∑
w=1,w̸=v

Tr((PvV∗)THK(w)H(PvV∗))

= Tr((PvV∗)TK (PvV∗)) (5)

where K =
nv∑

w=1,w̸=v
HK(w)H. Equation (4) can be rewritten

as

O(U,P,V∗) = Tr(XTX)− 2 Tr(XTUV∗TPT )

+ Tr((UV∗TPT )T (UV∗TPT ))

+ α Tr((PV∗)TLpv∗ (PV∗))

+ β Tr(PTP)

+ γ Tr((PvV∗)TK (PvV∗)) (6)

Notice that when we update the variables of the one view,
the parameters of the other views are fixed, and the last termK
in (6) is fixed.

To solve (6) under the given constraints, we introduced the
Lagrange multipliers to our objective function, including 8,
9 and �. So (6) is rewritten as:

L = Tr(XTX)− 2 Tr(XTUV∗TPT )

+ Tr((UV∗TPT )T (UV∗TPT ))

+ α Tr((PV∗)TLpv∗ (PV∗))

+ β Tr(PTP)+ γ Tr((PvV∗)TK (PvV∗))

− Tr(8U)− Tr(9P)− Tr(�V∗) (7)

1) UPDATING U AND P
By taking derivatives of (7) on U and P, we have

∂L
∂U
= UV ∗TPTPV ∗−XPV ∗ −8

∂L
∂P
= PV ∗UTUV ∗T + βP+ γKPV ∗V ∗T

− XTUV ∗T − αLpv∗PV ∗V ∗T −9

Combined with the Karush-Kuhn-Tucker conditions
8ijUij = 0 and 9ijPij = 0, setting ∂L

∂U = 0 and ∂L
∂P = 0 lead

to

(UV ∗TPTPV ∗−XPV ∗)ijUij = 0

(PV ∗UTUV ∗T + βP+ γKPV ∗V ∗T

− XTUV ∗T − αLpv∗PV ∗V ∗T )ijPij = 0

Combining Lpv∗ = Dpv∗ − Wpv∗ , the updating scheme is
get as following

uij← uij
(XPV ∗)ij

(UV ∗TPTPV ∗)ij
(8)

pij← pij
(XTUV ∗T+αWpv∗PV ∗V ∗T )ij

(PV ∗UTUV ∗T+αDpv∗PV ∗V ∗T+βP+γKPV ∗V ∗T )ij
(9)

2) UPDATING V ∗

By taking derivatives of (7) on V ∗,we have

∂L
∂V ∗
= PTPV ∗UTU + αPTLpv∗PV ∗ + γPTKPV ∗

− PTXTU −�

Combining Lpv∗ = Dpv∗ − Wpv∗ , the updating scheme is
get as following

v∗ij← v∗ij

∑
v (P

TXTU + αPTWpv∗PV ∗)ij∑
v (PTPV ∗UTU + αPTDpv∗PV ∗ + γPTKPV ∗)ij

(10)

The final clustering process is done by applying K-means
algorithm on PV∗.

C. CONVERGENCE ANALYSIS
In this subsection, the convergence of the Algorithm1 is
discussed. A similar proof has been given in the related lit-
erature [32] for the updating scheme (8)(9). In the following,
we provide related proof for (10).
Definition 1: Z (x, x ′) is an auxiliary function of F(x) when

the following conditions are satisfied.

Z (x, x ′) ≥ F(x) (11)

Lemma 1: F(x) is non-increasing under the updating
scheme when Z (x, x ′) is an auxiliary function of F(x).

x(t+1) = argmin
x
Z (x, x(t)) (12)

Proof. From Lemma 1 and Definition 3, we can get the
following inequalities

F(x(t+1)) ≤ Z (x(t+1), x(t)) ≤ Z (x(t), x(t)) = F(x(t)) (13)

the equality F(x(t+1)) = F(x(t)) holds only when x(t) is
local minimum of Z (x, x(t)).
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Algorithm 1 The Algorithm for DMVCSN
Require:

Multi-view dataset {X(v)
}
nv
v=1, parameters αv, βv, γv,m, l

Ensure:
[P(1)V ∗,P(2)V ∗, . . . ,P(nv)V ∗]
Initialize:Random initialize U (v),P(v),V ∗

1: while not converge do
2: for v to nv do
3: k = 0
4: for w to nv do
5: Updata kv by (5)
6: if v ̸= w then
7: k = k + kv
8: end if
9: end for
10: Updata U,P by Eq(8), Eq(9)
11: end for
12: Updata V∗ by Eq(10)
13: end while

Through continuous iterative updating (13), we can finally
converge to obtain the estimation sequence as following
inequalities:

F(xmin) ≤ · · · ≤ F(x(t)) ≤ · · · ≤ F(x(0)) (14)

In order to prove the consistency between the updating rule
(10) and (12), let Fv∗ij are related to any element v∗ij in V

∗,
we can get the following equations:

Fv∗ij (v
∗
ij) =

∥∥∥X − U (PV ∗)T
∥∥∥2
F

+ αTr((PV ∗)TLpv∗ (PV ∗))

+ γTr((PV ∗)TK (PV ∗))

F ′v∗ij
(v∗ij) =

[
∂F
∂v∗

]
ij
= [−2PTXTU + 2PTPV ∗UTU ]ij

+ [2αPTLpv∗PV ∗ + 2γPTKPV ∗]ij

F ′′v∗ij

(
v∗ij

)
= 2[PTPUTU + αPTLpv∗P+ γPTKP]ij

An auxiliary function of v∗ij is defined as following:

Z (v∗, v∗(t)ij ) = Fv∗ij (v
∗(t)
ij )+ F ′v∗ij

(v∗(t)ij )(v∗ − v∗(t)ij )

+
[PTPV ∗UTU ]ij

v∗(t)ij

(v∗ − v∗(t)ij )2

+
[αPTLpv∗PV ∗]ij

v∗(t)ij

(v∗ − v∗(t)ij )2

+
[γPTKPV ∗]ij

v∗(t)ij

(v∗ − v∗(t)ij )2 (15)

Proof. The expansion of Fv∗ij (v
∗
ij) in Taylor series is defined:

Fv∗ij (v
∗
ij) = Fv∗ij(v

∗(t)
ij )+ F ′v∗ij

(v∗(t)ij )(v∗ij − v
∗(t)
ij )

+ (PTPUTU )(v∗ij − v
∗(t)
ij )2

+ (αPTLpv∗P)(v∗ij − v
∗(t)
ij )2

+ (γPTKP)(v∗ij − v
∗(t)
ij )2 (16)

From Definition 3, we can easily see that Z (v∗, v∗) =
Fv∗ij (v

∗). Comparing the formulas (15) and (16), to prove

Z (v∗, v∗(t)ij ) ≥ Fv∗ij (v
∗
ij), we only need to prove

[PTPV ∗UTU ]ij

v∗(t)ij

≥

[
PTPUTU

]
ij

[αPTLpv∗PV ∗]ij

v∗(t)ij

≥

[
αPTLpv∗P

]
ij

[γPTKPV ∗]ij

v∗(t)ij

≥

[
γPTKP

]
ij

Based on the above inequality, we can derive the following
new inequality:[

PTPV ∗UTU
]
ij
=

∑
l

(
PTPV ∗

) (
UTU

)
≥

(
PTPV ∗

) (
UTU

)
≥

∑
l

(
PTP

)
v∗(t)

(
UTU

)
≥ v∗(t)

(
PTP

) (
UTU

)
α[PTLpv∗PV ∗]ij = α

∑
l
PTLpv∗Pv(t)

≥ αPTLpv∗Pv(t)

γ [PTKPV ∗]ij = γ
∑

l
PTKPv(t)

≥ γPTKPv(t)

Therefore Z (v∗, v∗(t)ij ) ≥ Fv∗ij (v
∗
ij). so (15) is an auxiliary

function of the variable v∗ij.

IV. EXPERIMENT AND RESULT ANALYSIS
We employ seven multi-view clustering datasets widely used
in recent work [33], [34], [35], [36] to evaluate our proposed
method fully. They cover various domains and types, such as
text, news, and facial images.

The table 1 summarizes general information and statistics
about these seven datasets.

TABLE 1. Summary of the seven datasets used in our experiments.

A. EVALUATION INDICATORS
To quantitatively assess the effect, four evaluation metrics
were used to measure the performance in the experiments:
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accuracy (ACC), normalized mutual information (NMI),
adjusted Rand index (ARI),and purity (Purity), respectively.

B. COMPARED METHODS
To quantitatively assess the effect, we used four evaluation
metrics to measure the performance in the experiments: accu-
racy (ACC), normalized mutual information (NMI), adjusted
Rand index (ARI), and purity (Purity), respectively.

GNMF [17]: The graph regularized non-negative matrix
factorization (GNMF) is a single-view clustering algorithm
with graph constraints based on NMF. In the GNMF method,
the manifold structure of similar graphs is considered.

NMFCC [37]: TheNon-negativeMatrix Factorization with
Orthogonal Constraints (NMF-CC) algorithm is an orthog-
onally constrained multi-view clustering algorithm based
on NMF.

NSGL [34]: The non-negative structural graph learning
(NSGL) algorithm directly learns structural graphs from raw
features by imposing rank constraints, while exploiting the
complementarity of multi-view features to perform adaptive
functions to select visual semantic information and guide the
graph learning process, and finally, the information is selected
by forcing the feature selectionmatrix to be sparse in the rows
that line the sparse regression.

LMSC [23]: The Multi-View Latent Representation Clus-
tering (LMSC) algorithm exploits the complementarity
between views to explore latent representations of data points,
resulting in more accurate subspace representations.

GPMVC [38]: TheGraphRegularized PartiallyMulti-View
Clustering (GPMVC) algorithm exploits the intrinsic geome-
try of the data distribution in each view as an extension of the
non-negative matrix factorization-based PVC method while
supporting graph-specific Laplacian s regularization.

MSC_IAS [36]: The Integrity-Aware Similarity Based
Multi-View Subspace Clustering (MSC_IAS) algorithm con-
structs a data similarity matrix by adaptively assigning neigh-
borhoods to each contact spatial data point based on local
connectivity.

SMVSC [39]: The Scalable Multi-View Subspace Clus-
tering with Unified Anchors (SMVSC) method is a scalable
matrix three factorization multi-view subspace clustering
algorithm model based on unified anchors.

ECMSC [40]: Based on Complementary Represen-
tation and Consistent Multi-View Subspace Clustering
Model (ECMSC), it exploits the complementary information
between different representations.

DIMSC [25]: Diversity Multi-View Subspace Clustering
(DIMSC) exploring the complementarity of multi-view rep-
resentations using theHilbert Schmidt Independence Criteria.

JSMC [41]: The subspace representation on each view is
decomposed into two matrices, the view commonality matrix
and the view inconsistency matrix. The multi-view local
structure is also used to promote the learning of the com-
mon representation. In addition, the robustness of clustering
is improved by introducing lower-order representations via
kernel parametric.

C. PARAMETER SETTING
The objective function of DMVCSN consists of many param-
eters, including parameters for manifold learning αv, regular-
ization parameters βv, parameters γv that hold the importance
of the HSICmodule, and the parametersm, l that hold the size
of the latent matrix. We also discussed the influence of these
parameters in this section.

First of all,the parameter αv is the one used to measure
the importance of manifold learning. This parameter plays a
crucial role in the manifold structure learning of the original
data in the experiment. It can be seen from in Fig. 2 that the
fluctuation range of the three evaluation metrics ACC, NMI,
and ARI on the text and image datasets 3Sources, BBCSport,
and Extended Yale-B is very small. There are similar effects
in other datasets, which means the proposed model is more
stable for this parameter. In experiments, we usually set this
parameter to 1 or 10.

The second regularization parameter βv measures the
influence of each view on the common manifold structure.
As shown in Fig. 3, this parameter has different effects on
different datasets, and it is difficult to obtain this parameter
value empirically. In experiments, we usually set this param-
eter to 1 or 10.

The third important parameter is γv, which ensures the
diversity of representations in different subspaces: the larger
the parameter’s value, the more critical the common features
among views. As shown in Fig. 4, all datasets are set to 1.

The two most important parameters are m, l. These two
parameters control the size of the consensusmatrix. As shown
in Fig. 5, the significant difference in parameter settings
between the text dataset and the image datasetmay be because
the non-negative factorization method can obtain more fea-
tures in the image dataset. Specifically, if the consensus
matrix dimension is too small, each views cannot get enough
feature information about the manifold structure from the
latent consensus representation to adjust their own manifold
structure; when the matrix dimension is too large, redundant
features will reduce the clustering effect. Following work
[32], we usually set m = l. For different dataset types, its
value is generally different. Text datasets can be obtained
between [10, 50]; for image datasets, we can accept them
between [100, 200].

D. CLUSTERING RESULTS
The clustering performance and results on seven datasets are
presented in tables 2 to 8. The proposed method outperforms
the other algorithms in most of the datasets on four evaluation
metrics. Detailed discussion is as follows:

1) Ourmethod produced significantly improved results on
several datasets, including 3Sources, BBCSport, Yale,
and Extended-YaleB. Take the evaluation metrics ACC
and NMI metrics as examples. Specifically, the ACC
metrics of our method are higher than the second-best
one by 5.33%, 5.34%, 4.87%, and 9.41% for the data
sets 3Sources, BBCSport, Yale, and Extended-YaleB,
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FIGURE 2. ACC, NMI and ARI are presented respectively according to the parameter αv .

FIGURE 3. ACC, NMI and ARI are presented respectively according to the parameter βv .

FIGURE 4. ACC, NMI and ARI are presented respectively according to the parameter γv .

FIGURE 5. Visualization for the hyperparameter m and l selection procedure on datasets 3Sources, BBCSport and Yale.

respectively, and 0.82%, 7.47%, 8.1% and 2.75% for
theNMImetrics, respectively. tables 2, 3, 7 and 8 shows
a significant improvement in our method.

2) For the image datasets Caltech101_20, Handwritten,
MSRCv1, Yale, and Extended-YaleB, tables 4, and 6, 8
show the clustering effect on the image class datasets.
According to tables 7, and 8, we can see that our

algorithm has excellent experimental results on the
Yale and Extended-YaleB datasets, especially on the
dataset Extended-YaleB, all evaluation metrics are
improved significantly, and the lowest improvement
of evaluation metrics is about 2.74%. Compared with
the graph non-negative matrix factorization method
(GNMF), the improvement in each evaluation metric
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TABLE 2. Results on the 3Sources dataset (best results in bold).

is 16.48%, 5.6%, 16.17%, and 3.81%, respectively.
According to the table 4 on the dataset Caltech101_20,
the progress of the practical effect may not be sig-
nificant and suboptimal on indicators ACC and ARI..
tables 5, and 6 show that the experimental results are
much worse than the best algorithm on the datasets
Handwritten and MSRCv1. This result may be due to
the significant differences between the data features
of different views in these datasets. The non-negative
matrix factorization is ineffective in separating the view
features and data structure manifolds, resulting in sig-
nificant differences between data manifold structures
between the same class samples of different views.
We can improve the experimental results by using
a more accurate feature extraction method, such as
the sparse matrix factorization method used in the
works [26], [42].

3) For the text datasets 3Sources and BBCSport,
tables 2, and 3 show the clustering results. Compared
with other algorithms, our proposed algorithm signifi-
cantly improves all metrics. In particular, on the dataset
BBCSport, our algorithm improves about 5.33%,
5.34%, 11.02%, and 7.77% on the four evaluation
metrics of ACC, NMI, ARI, and Purity, respectively,
compared to the suboptimal algorithm JSMC. This is
due to the strong correlation between the contexts of
text datasets, the non-negative matrix factorization can
better separate the features from the data manifolds,
and the views adjust their manifold structure using
the accurate data manifolds between them. Besides,
compared to algorithm SMVSC, although our method
uses the technique of matrix triple factorization, the
HSIC module promotes the interconnection between
different view data and enhances the mutual learning
of information. In contrast to the algorithm DIMSC,
although both adopt the HSIC module, our algorithm
improves the accuracy of clustering by combining the
idea of non-negative matrix factorization and manifold
learning to explore the manifold structure between
view data points deeply.

To better illustrate the characteristics of data manifold fea-
ture transfer in the algorithm, we show the adjacency matrix
of the PV∗ of sample points and the adjacency matrix of

TABLE 3. Results on the BBCSport dataset (best results in bold).

TABLE 4. Results on the Caltech101_20 dataset (best results in bold).

TABLE 5. Results on the Handwritten dataset (best results in bold).

TABLE 6. Results on the MSRCv1 dataset (best results in bold).

the projection matrix P for the datasets BBCSport, Yale, and
Extended-YaleB. As shown in Fig. 6, we can see that the
adjacency matrix of PV∗ of sample points and the adjacency
matrix of the projection matrix P are very similar for both
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TABLE 7. Results on the Yale dataset (best results in bold).

TABLE 8. Results on the Extended-YaleB dataset (best results in bold).

FIGURE 6. From left to right is adjacency matrix of datasets BBCSport,Yale
and Extended-YaleB; From top to button is adjacency matrix of PV∗ and P.

text-based and picture-based datasets, which is because the
combination of similar latent features often forms the man-
ifold features of the same class samples even in different
views. That is also consistent with our idea of data manifold
projection.

E. SELECTION OF SIMILARITY MATRIX
There are three ways to define similarity matrices in our
experiments: dot product weights, binary weights, and heat
kernel weights. After several experiments, the best perfor-
mance is often obtained by choosing the heat kernel weights.
Besides, as shown in Fig. 7, different numbers of nearest
neighbors tend to produce large differences in the clustering
performance. Based on the results shown in Fig. 7, we usually
choose k = 5. The clustering performance is always best
when the nearest neighbors are between 3 and 12.

FIGURE 7. The performance of DMVCSN in the BBCSports datasets. ACC,
NMI and ARI were used for comparison. k was chosen as 5.

V. SUMMARY
To exploit the complementarity information among mul-
tiple views, Besides non-negative matrix factorization to
get local geometric structure, we utilize manifold learn-
ing and latent representation to facilitate learning com-
mon geometric structures in different views. Moreover, the
Hilbert-Schmidt independence criterion is introduced to learn
diversity for mutual learning and information fusion among
views. In addition, we conduct experiments on seven multi-
view datasets, including two text datasets and five image
datasets, comparing nine multi-view clustering algorithms
and one single-view clustering algorithm. Compared to these
state-of-the-art methods, our method significantly improves
various datasets, which shows that our algorithm is quite com-
petitive. In future work, wewill extend the DMVCSNmethod
to explore the sparse representation of different views.
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