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ABSTRACT In this paper, an architecture based on computational intelligence for time series modeling
is proposed to guarantee the automatic adjustability of trained models no matter the dynamic behavior of
the modeled phenomena. Time series are widely used to plan and execute operational and strategic tasks
related to the need of forecasting phenomena. Several conventional and non-conventional techniques have
been studied for time series modeling. However, the model performance and metrics are affected by non-
stationary behaviors. In addition, determining effectively when a model fails can be problematic because the
Mean Absolute Percentage Error (MAPE) metric does not necessarily reveal changes in the model predicted
curve. Therefore, a novel metric to assess the performance is proposed; and then, an effective maintenance
routine for the time-series model is properly devised. Thus, an auditor is created to identify when a model
must be updated before losing forecast performance. Hence, using the defined rMAPE performance metric,
the auditor output trustworthy detects if the updating process does not achieve better performance, and
if replacing a time-series model is required. It is important to note that the devised scheme counts with
several assemblies in a local knowledge base. The intelligent system allows building time-series models
automatically considering exogenous variables such as weather, calendar, and statistical transformations
that can lead to the number of models required for a particular application. The proposed approach has
been experimentally tested for power consumption and energy price via simulation. The forecasting results
showed an improvement in the MAPE of up to 23% in the tests performed.

INDEX TERMS Forecasting, intelligent systems, time series modeling.

I. INTRODUCTION
Time series modeling is a helpful tool to establish operative
and strategic approaches in several economic sectors like
marketing, energy, telecommunications, etc. For example,
energy demand forecasting can provide valuable informa-
tion to the different electricity-market actors (regulators and
utilities) to ease taking actions such as load balancing in elec-
trical circuits. However, if the target phenomena have a non-
stationary behavior, the time-series model can lose reliability
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due to static parameters; therefore, the performance of such
a model drops below a desired level, making it useless. For
example, in the case of power consumption and energy price,
it can be identified that the time series have non-stationary
characteristics that impose the integration of multiple statis-
tical techniques looking to maintain the modeling dynamics.
For this purpose, several authors have proposed different
conventional and unconventional statistical modeling strate-
gies, such as the Autoregressive Integrated Mobile Average
(ARIMA) models [1], [2], [3]; however, this technique has
some limitations such as low adaptability, limited forecast
scope, and complex model-parameter setting.
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Since exogenous variables (weather, the type of day, types
of users, etc.) [4], [5], [6] can further affect power-
consumption and energy-price modeling, the literature
has suggested that integrating multiple statistical tech-
niques with computational intelligence techniques [7], [8],
[9], [10], [11], [12], [13] can be used to maintain the
model validity. Thus, power consumption and energy price
time-series modeling has been complemented using tech-
niques such as Support Vector Machines (SVM) [14], Fuzzy
Logic (FL) [15], [16], Markov Chains (MV) [17] and Artifi-
cial Neural Networks (ANN) [2], [18], [19]. Some authors
have proposed grouping techniques to create sub-profiles
that add different forecasts together to obtain more accurate
results [20], [21]. However, it still is common that state-of-
the-art models keep losing their reliability, therefore, requir-
ing retraining [22], [23], [24], [25], [26]. SVM,ANN,Regres-
sion Tree Ensembles (RTE), and some combinations with
classification techniques such as K-means, Self-Organizing
Maps (SOMs), and decision trees are commonly used to
pursue high adaptability in time-series modeling.

A performance metric is required to identify when a model
should be retrained or replaced, anticipating performance
detriment. In the case of model replacement, an indicator that
evaluates which of the available modeling techniques could
be used to recover the expected performance is also helpful.
Therefore, a comprehensive evaluation strategy is necessary
to automatically support the adaptation and maintenance of
various time-series modeling techniques.

In a previous work, the authors analyze commonly used
techniques in performance comparison of time series model-
ing for different applications [27]. However, the deficiencies
of using the performance metrics separately in the forecasting
process were evident. As a result, a performance metric capa-
ble of evaluating the capabilities of forecasting performance
using he deviation in the shape and magnitude of the forecast
should be defined.

Hence, this paper describes an architecture that allows
updating or replacing the structure and parameters of a given
time-series model before the performance decreases given
a minimum level. To devise such an architecture, first, it is
required to propose a novel forecasting performance metric
based on computational intelligence that, with a high level of
certainty, can alert and indicate when retraining or replacing
should be carried out. The metric takes advantage of the rela-
tion between correlation and MAPE to get information about
the reliability of the time series-forecasting. The devised
procedure also includes a series of models conforming a
knowledge base available for model replacement, if needed.
The proposed approach has been tailored to the energy sector
to adapt to changing behavior due to the trend, seasonality,
and stochastic nature of energy generators.

The proposed approach is presented in Section II,
while Section III describes the architecture implementation.
Section IV presents the results of the experiments and the
associated analysis. Finally, Sections IV and V present a
discussion of the results from which conclusions are drawn.

II. PROPOSED ARCHITECTURE SCHEME
The time-series modeling process requires the characteriza-
tion and selection of significant variables to describe the phe-
nomenon of interest. Once the variables have been selected,
it is necessary to define which statistical technique fits the
time-series features. Now, the scheme displayed in Figure 1 is
devised since the models are expected to deteriorate their per-
formance over time. Each of the proposed stages is described
in the following subsections: A. Time-series Data, B. Model
Assembly, C. Training Process, D. Auditor, and E. Selection
Criterion.

FIGURE 1. Proposed architecture for time-series modeling.

A. TIME-SERIES DATA
The use of time series requires data characterization to iden-
tify statistical properties that guide the selection of a proper
model. Defining stationarity1 is critical since not all statistical
modeling techniques are suitable if a non-stationary process
is at hand. If the statistical properties change, such as mean
and variance, transformation-related adjustments must be
implemented, such as differentiation and logarithmic opera-
tions. A defined trend and variance (i.e., homoscedasticity) is
a desired property in the modeling process because a stable
model behavior can be guaranteed.

Once the time series is obtained, the extraction of its
characteristics explains the associated phenomenon. The
Time-Series Data block executes the following tasks:

1) INTERDEPENDENCE OF THE TIME SERIES (PREVIOUSLY
TRANSFORMED TO STATIONARY TIME SERIES)
It includes the evaluation of the historical information
required to describe the behavior of the phenomenon. For this
case, it is important to determine the amount of historical
data needed to forecast future behavior. Total and partial
autocorrelation analysis is employed at this stage.

1Stationarity in the time series (weak sense) is a desired property since
it guarantees that the statistical properties do not change among periods.
Thus, themean and variance are constant regardless of position of the random
variable within the stochastic process.
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2) IDENTIFICATION OF EXOGENOUS VARIABLES
It is necessary to identify which variables minimize the uncer-
tainty to ease the description of the phenomenon of interest.
Usually, a correlation matrix is proposed to identify vari-
ables that provide significant information on the time-series
behavior.

3) REDUCTION OF THE CONSIDERED VARIABLES
It can be found that not all the identified variables lead to
a better description of the time series but increase its com-
plexity during modeling. Therefore, the proposed procedure
incorporates principal-component and factorial analysis for
reducing and grouping the variables.

4) IDENTIFICATION OF SIMILARITIES WITHIN THE
TIME-SERIES DATA
The needed number of models depends on the relation
between the observed variability and the complexity of the
time-series data. Data similarity is evaluated through the
Tukey-Kramer test to identify the requirement of multiple
models.

5) EVIDENCE OF PERIODICITY WITHIN THE TIME SERIES
The seasonality of the data provides information about fore-
casts. Periodicity in the time series leads to considering his-
torical information related to data with similar conditions.

6) PATTERN IDENTIFICATION IN THE TIME SERIES
It is possible to detect a diversity of behaviors that can be
grouped into small groups in the same time series. Grouping
time-series subsets with similar characteristics allows the
calculation of aggregated series that provides information
about the most representative patterns. Data classification is
carried out through decision trees. Once the data are grouped,
each aggregated series is calculated by adding the curves that
belong to the same subset.

B. MODEL ASSEMBLY
The existing energy-related time-series modeling methods
rely on statistical and computational intelligence techniques
such as SVM, FL, MV, ANN, RTE, K-means, SOMs,
among others. The proposed approach is based on combin-
ing both approaches to provide improved robustness that
enhances model functionality. It performs an hyperparameter
optimization for a Bayesian algorithm with a Support Vec-
tor Regression (SVR), a Long Short-Term Memory (LSTM)
neural network and RTE. A Multilayer Perceptron (MLP)
is trained to generalize the forecasting models. Thus, the
devised scheme comprising three stages provides stable fore-
casting with low variability. This approach is adjusted for
energy associated phenomena (i.e., load balancing, price,
etc.). Thus, the devised scheme comprising three stages pro-
vides stable forecasting with low variability. This approach
is adjusted for energy associated phenomena (i.e., load bal-
ancing, price, etc.). Thus, the first stage consists of the

implementation of an intelligent clustering technique to
obtain the shape of a typical load curve for time series data
with hourly granularity (weekdays, weekends, and holidays).
The second stage presents the base curve (i.e., the reference
curve) for each day that will be forecasted. This base curve
is done by implementing statistical techniques that use his-
torical data of time series and the typical curves obtained
in the first stage. Finally, the third stage allows correcting
the base curves considering external variables (e.g., weather
conditions). The authors explain the stages in [28].

C. TRAINING PROCESS
Two strategies for training and optimizing time-series
modeling are considered. The idea is to find the optimal
hyperparameters for Bayesian optimization [29]; and then,
experimentally iterate to identify the most significant param-
eters according to the guidelines explained by the authors
in [30]. A more detailed explanation of the two-step training
process is developed next.

1) TRAINING OPTIMIZATION–HYPERPARAMETERS–(SVR,
LSTM, AND RTE)
The use of machine-learning-based models proves to be suit-
able and adjustable due to the multiple parameter definition
and their interaction with an objective function associated
with the model precision. The backpropagation algorithm is
implemented to obtain the gradient of an objective function
for each model parameter. The training process is based on
making the right decisions that allow the functions of the
multidimensional space to be suitably integrated with an
evaluation metric that guarantees optimal learning. Once the
functions and the learning algorithm have been established
according to experience in the problem, defining a starting
point or initial values of the model parameters becomes cru-
cial. This parameter initialization is known as hyperparame-
ters optimization.

2) TRAINING OPTIMIZATION–MLP (MULTILAYER
PERCEPTRON)
The objective of this task is to find the highest level of gen-
eralization of the forecasting models. The employed metric
is based on finding the critical factors for the training and
configuration of a neural network in terms of error, that is
the MAPE.

D. AUDITOR
Time-series modeling requires a set of guidelines for analyz-
ing, debugging, and selecting variables for the trainingmodel.
However, the time-series models that apply to the considered
phenomena in this paper lose validity making them useless.
A list of facts that could lead to requiring a model update or
replacement due to loss of accuracy includes:

- Errors obtained during the training or validation process.
The profile building is used in the training stage through the
clustering process. Typically, the non-stationary time series
varies its statistical properties over time, and this is due to an
increase or a change in the consumption patterns, marketing

36006 VOLUME 11, 2023



J. J. Mares et al.: Architecture to Improve Energy-Related Time-Series Model Validity

campaigns, etc. The profiles may vary from those obtained
during the training process.

- Variations in the probability distribution functions
because of the training process. This variable works as an
indicator of the data frequency and its typical behavior in
normal conditions.

- A deviation from the training error trend to the
forecasting.

- The number of periods outside of the confidence interval
of the training error.

Some strategies can be employed to measure and reduce
the effect of the previous elements, for example:

- Employing the Dynamic TimeWarping (DTW) algorithm
to measure the similarity between the time series.

- Getting information on the time-series dynamics by deter-
mining the variation between the training and the implemen-
tation stages.

- Comparing the growth rate of error.
- Analyzing the number of periods outside the confidence

interval during the implementation stage.
Thus, a block based on computational-intelligence tech-

niques is added so that continuous performance is monitored,
and corrective action can be applied. Such an additional
block is called Auditor, and the information of the variables
required is shown in Figure 2. The Auditor will provide a
logical indicator (0 or 1) indicating the loss of validity of
the time-series models and a corrective action must be then
applied. From the Auditor point of view, the suggestion is to
retrain the system. Section III-D will explain the computa-
tional intelligence technique selected for the Auditor.

FIGURE 2. Proposed intelligent system for the Auditor.

E. SELECTION CRITERION
From Figure 1, it is possible that retraining the time-series
model does not recover the desired performance, so the output
of the Auditor will keep indicating that retraining is required.
When this situation occurs, the architecture concludes that
the initially selected model no longer represents the phe-
nomena, and replacing the model is the only way to recover
performance.

However, it has been analyzed that employing the MAPE
as a metric is not trustful to decide when this drastic decision

must be taken. The MAPE could still indicate adequate per-
formancewhen amodel has lost validity since theMAPE fails
to provide reliable information due to the shape and deviation
of the time series. Hence, this work defines a novel perfor-
mance metric called rMAPE, whose definition overcomes
where the MAPE falls short.

The rMAPE is symbolized with η (see Figure 1) and is
defined as:

rMAPE =
MAPE
rxy

, (1)

where

MAPE =
1
n

∑n

i=1

∣∣∣∣xi − yi
xi

∣∣∣∣ x100, (2)

rxy =
n

∑
xiyi −

∑
xi

∑
yi√

n
∑
x2i −

(∑
xi

)2√n∑
y2i −

(∑
yi

)2 , (3)

rxy : Sample statistic of Pearson’s correlation coefficient.
MAPE : Mean Absolute Percentage Error,
xi : actual data time series,
yi : time series forecasting,
n : number of time series data.
The metric now ranges in the −∞ ≤ rMAPE < ∞ inter-

val, and the values for this new performance metric can be
understood as described next. Figure 3 shows case examples
and compares both metrics.

FIGURE 3. Different cases showing the convenience of using rMAPE as a
performance metric over the MAPE.

If the rMAPE is close to zero (0); then, it can be concluded
that the MAPE is small but also that the correlation (rxy) is
close to one (1) (see Figure 3a). Therefore, the forecasted
time series is closer to the actual magnitude and shape. If the
rMAPE tends to infinite; then, the correlation (rxy) is close to
zero (0) no matter the MAPE behavior, which indicates that
the forecasted time series is closer to the actual magnitude,
but its shape does not fit properly (see Figure 3b and 3c).
Figure 3 shows examples of the different rMAPE values and
the associated MAPE values to exemplify how the MAPE
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can fail in providing a trustful decision for the intelligent
system. Thus, with the rMAPE it is possible to evaluate the
capabilities of forecasting performance.

The use of rMAPE does not avoid the comparison with
other works since, by transitivity, when using the rMAPE
and looking for such a metric to be low, the MAPE is also
low. That transitivity property does not apply from MAPE
to rMAPE, as shown in Figure 3. Thus, in this work, the
intelligent-system decisions are based on the rMAPE, but the
MAPE performance will be listed for fairness when compar-
isons are provided.

Figure 3 shows three comparison scenarios between the
rMAPE andMAPEmetrics. The rMAPE exhibits greater sen-
sitivity and can capturewhen the predicted curve departs from
the actual curve, andMAPEmay not detect this situation. The
rMAPE expands its range from −∞ and +∞ as reporting
any departure from the actual curve, even when the MAPE
remains stable under curve shape difference.

III. PROPOSED ARCHITECTURE-BASED TOOL
A computational tool is developed to handle the time series
while considering the different exogenous variables to ana-
lyze, debug, select, and assemble more suitable models.

The tool allows for handling weather information, the taxo-
nomic variable of the day, and calendar type. The time-series
data are requested before building the model, and the time-
series data are hourly.

A. DATA ANALYSIS
Figure 4 shows the flowchart used by computational tool
for data analysis. Although the model-building process is
automatic with minimal human intervention, the user must
upload the corresponding time-series. The tool can list
several added time series. Since the devised procedure han-
dles exogenous variables, a set of models are built for every
type of day and different weather seasons of the year for
each time series. The user can validate the assembled models,

FIGURE 4. The flow chart and steps for data analysis.

the weather-correlated variables, and lags associated with
the non-stationary time-series transformation (Autoregres-
sive process).

The user must indicate the start date and the end date to
forecast the data for the selected time series. Once the forecast
is indicated. The tool displays the historical and forecasted
data curves so that the accuracy of the used models can be
compared. Once the models are implemented, the Auditor
carries out the continuous monitoring of the model perfor-
mance; in case that retraining is detected, the Retrain will be
enabled. Thus, the user could carry out the retraining tasks
for each model.

The graphical analysis techniques provide the user tools to
understand the grouping of the different models, the detection
of stationary patterns, the identification of the amount of
prior data (lag) to generate the autoregressive process, and the
selection of the exogenous variables to explain the behavior
of the time series.

It is important for the user to establish which curves do
not represent a typical behavior as a preliminary step for
retraining and the characterization of the time-series data.
Besides, it can help to avoid the addition of values that do not
correspond with reality or add noise to the modeling process.

B. MODEL BLOCK IMPLEMENTATION
A complete description of the implementation of the atypical-
curve identification, base-curve generation, and base-curve
intelligent correction can be found in [28]. Figure 5 shows
a summary of each required stage of the forecasting models.

C. ASSEMBLED MODEL TRAINING PROCESS
1) SVM, LSTM, AND RTE TRAINING
An optimization process based on Bayesian theory is pro-
posed to train SVM, LSTM, and RTE models. Bayesian
optimization carries out the global optimization for multi-
modal functions, such as models based on computational
intelligence systems. A Bayesian hyper model represents the
data behavior and the qualitative information through the
distribution of probabilities. Figure 6 shows the flow chart
that describes each stage of the process.

Table 1 shows the factors to be considered during the
training and validation processes.

An experimental design is set to evaluate and select the
model with the best performance to train a feedforward neural
network. The factors that influence adaptability and gener-
alization in the training process, validation, and selection of
neural networks are identified according to recommendations
given by authors in [30]. Figure 7 shows the proposed train-
ing and selection stages for the best model base on neural
networks.

Next, the Bayesian optimization process algorithm is
defined as:

- Step 1: Include a prior about a phenomenon before
any evidence is presented. Since there is no knowledge
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FIGURE 5. Implementation of modeling stages for the time series.

FIGURE 6. Training process of SVR, LSTM and RTE models.

about a parameter, the prior is treated as a random variable
(e.g., Gaussian multivariable function).

- Step 2: Combine the prior distribution with some given
observations to get a posterior distribution (MAP, i.e., Maxi-
mum A Posteriori) on the target (the estimation where it has
the actual function).

TABLE 1. Initial machine learning (ML) models and their
hyperparameters settings.

- Step 3: Use the posterior distribution to evaluate the
next configuration according to an acquisition function. It is
possible to test the next configuration with the majority of the
information.

- Step 4: Evaluate the selected configuration from the
previous step.

Steps 2-4 must be iterated until the values converge [30].

FIGURE 7. Training and selection stages for the best model base on
neural networks.

D. AUDITOR CORE PROCESS
Once the variables to be considered are characterized by the
Auditor, expert knowledge is used to build a supervisedmodel
using Random Forest (RF) due to the capability to improve
the predictive accuracy and control over-fitting. A graphical
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description of the Auditor process is shown in Figure 8.
This figure shows the Auditor behavior in three stages:
1) continuouslymonitoring themodel performance, 2) detect-
ing performance detriment, and 3) providing recommenda-
tions to guarantee performance stability. According to the
description of the Auditor, the recommendation can be to
continue monitoring with or without retraining the model.

FIGURE 8. Auditor core process.

E. SELECTION CRITERION
It is necessary to train and evaluate the performance of each
model by using the rMAPEmetric to carry out the implemen-
tation of this stage. For each case, a model with the lowest
value will be selected to characterize the data from each
subgroup. Figure 9 shows a comparison between rMAPE and
MAPE where it is highlighted how rMAPE penalizes a shape
deviation of the forecasting data. This example shows how
the proposed performance metric is more sensible a variation
in a shape during the model selection.

FIGURE 9. rMAPE vs MAPE.

Figure 9 (a) and (c) show an improved rMAPE sensitivity
compared to theMAPE. It can be noticed how the rMAPE can
quantify variations in the shape of the predicted and current
curves.

IV. EXPERIMENTAL TESTING AND RESULTS
A. DATA DESCRIPTION
In this section, the comparison of the proposed approach with
other methods is carried out to demonstrate the superiority
in time-series forecasting for power consumption and energy
market. The performance contribution of each stage for the
forecasting is summarized, and Table 2 shows the dataset
summary used for the evaluation.

TABLE 2. Datasets chosen to evaluate the proposed procedure.

1) ENERGY DEMAND
Data of several energy-demand-related time series are used
for performance assessment.

Case #1. Energy demand in a building. Hourly data related
to energy demand in a building are used in training, valida-
tion, and testing for a total data equal to 2,542 days / 24 hours
per day. Data zeroes and outliers are cleaned because they add
noise to the assembled model. Dataset has non-stationarity
properties and weather seasons to modify the times-series
behavior over time. The authors thank the E-LAND project
for providing the data (see Figure 10) [31].

FIGURE 10. The energy demand of a building in the E-LAND Project.

Case #2. Energy demand in electrical markets. Energy
demand data are normalized when assembling the forecasting
models for each commercialization market (see Figure 11
and Figure 12). Historical energy demand data of two energy
commercialization markets in Colombia are used to ana-
lyze the energy demand (Market 1: State of Atlántico and
Market 2: State of Antioquia). Dataset has non-stationarity
properties to modify the times-series behavior over time.
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In addition, the time series has changing characteristics
in shape and trend due to energy consumption behav-
ior. Weather data are consulted through the website www.
accuweather.com.

FIGURE 11. The energy demand of Electrical Market # 1.

FIGURE 12. The energy demand of Electrical Market # 2.

2) ENERGY MARKET
For this case, the Hourly Energy Price (HOEP) is the basis for
regulated rates charged to residential and small business cus-
tomers. The HOEP is charged to Local Distribution Compa-
nies (LDCs) in the Independent-Electricity-System-Operator
(IESO) administered market and paid to self-scheduling gen-
erators. Customers that use more than 250,000 kWh/year pay
the HOEP (see Figure 13). The HOEP values are reported
as $/MWh.

FIGURE 13. Hourly energy price.

The models are trained on hourly data of an electricity
market. Data detailed above are provided by [32].

Data is normalized to avoid differences in data magni-
tudes that can affect the consistency of data distribution. The
normalization process is performed through Equation 4 for
each variable considered for the time-series forecasting. Data
normalized according to

Xnormalized =
X − min(X )

max (X) − min(X )
, (4)

where
Xnormalized : normalized time series,
X : original time series,
max(X) : maximum value of time series,
min(X) : minimum value of time series.

B. EXPERIMENTAL DESIGN
The following experimental design for the forecasting is car-
ried out by evaluating the rMAPE metric and the distribution
of the selected models. At the same time, it is evaluated if
there is a difference in the performance obtained by each one
of the available forecasting models.

For each time series, 70% of the data are taken for train-
ing, 15% for validation, and 15% for testing. The model
performance is validated using one of the rolling windows
with a step k that depends on the number of models for
each subset. The data separation in small subsets has been
proposed for the validation process to avoid data overlapping
during the training procedure. Hence, the models are unaware
of all the validation data. Once the training process for the
model is complete, the testing data are used to evaluate the
model performance. The training data selection takes place
randomly and follows a uniform distribution.

Therefore, the following characteristics define the experi-
ment design:
Response Variable:
1) Time-series data.
Independent Variable:
2) Time-series models:
1. ANN.
2. SVR.
3. LSTM.
4. RTE.
3) Time-series data. Electric demand and electrical market

time series.
Experimental design results are complemented with plots

that summarize the results obtained by each response vari-
able. The results describe the performance of each available
model and the suitability of each technique to be considered.

Two graphical comparisons are implemented to carry out
the statistical analysis of the proposed procedure: 1) Accumu-
lated average, and 2) Tukey-Kramer multi-comparisonmeans
test. The analysis allows the identification of the error trend
in a variable time window. Besides, the inclusion of the multi-
comparison test in the analysis brings information about the
performance of each model.

1) EXPERIMENTAL METRICS
Although this paper uses rMAPE to ensure lowMAPE values
and highly correlated models, the results presented will use
MAPE so that fair comparisons can be made with other
available state-of-the-art works.

C. EXPERIMENTAL RESULTS
1) ENERGY DEMAND
Case #1: A testing analysis is performed on time-series data
resulting in aMAPE equal to 14.49%. Figure 14 shows a time
series forecasting.

VOLUME 11, 2023 36011



J. J. Mares et al.: Architecture to Improve Energy-Related Time-Series Model Validity

FIGURE 14. Base curve, intelligent correction, and actual data of time
series of building.

Case #2: Forecasting data published on the official Colom-
bian Energy Market Regulation Agency, XM, website [33].
These data are taken as a reference to compare the results
obtained from the proposed architecture.

Figure 15 shows the forecasting of the energy demand
commercialization for the Electrical Market #1.

FIGURE 15. Base curve, intelligent correction, and actual data of time
series for Electrical Market #1.

Figure 16 shows the forecasting of the energy demand
commercialization for Electrical Market #2.

FIGURE 16. Base curve, intelligent correction, and actual data of time
series for Electrical Market #2.

Figures 17 – 18 show the performance (MAPE) of this
Proposed Architecture (PA) for the forecasting process of
Commercialization Markets 1 and 2.

Figure 19 shows the individual performance of each one
of the modeling techniques and the results from the PA for
the time series of the Electrical Market 2 for a forecasting
window (7 days forward).

2) ENERGY MARKET
The data to be used for this experiment are described in
Section IV-A1. Reference [34] is used as a comparison since

FIGURE 17. Performance comparison among the model used by the
electrical market 1 operator and the PA model.

FIGURE 18. Performance comparison among the model used by the
electrical market 2 operator and the PA model.

FIGURE 19. Cumulative average MAPE for seven days ahead forecasting.

FIGURE 20. Base curve, intelligent correction, and real data of time series
of the energy market.

an ANN has been used to compute the forecasted price in the
electricity market. The results shown in Figure 20 correspond

36012 VOLUME 11, 2023



J. J. Mares et al.: Architecture to Improve Energy-Related Time-Series Model Validity

to six months of data selected to carry out the tests. The
performance (MAPE) achieved by the test period is 14.22%.

Table 3 shows a comparative analysis of the obtained
results by the proposal and the authors work reported in [34].

TABLE 3. Performance comparison (MAPE) of the proposed architecture.

It is possible to adjust the average MAPE from Refer-
ence [34] without themonth of October to carry out a compar-
ison without extreme data, which clearly shows a very large
data error. Thus, the new MAPE would be equal to 18.07%
showing a better performance by the PA.

V. DISCUSSION AND CONCLUSION
The results and analysis carried out during this paper have
highlighted the characteristics of the devised architecture
considering the response variables discussed in Section IV-A.
The main objective is to propose a procedure that will allow
ensemble models to fit themselves into the characteristics
of different time series (the lowest MAPE) without affect-
ing their performance over time. For the forecasting of the
energy demand in a building, the achieved performance index
(MAPE) is suitable for the goals of the work.

The building of consumption profiles proved to be a proper
step towards forecasting time series. However, a preliminary
base curve does not incorporate the effect of external vari-
ables such as weather conditions. Therefore, an intelligent
correction (SVR, ANN, LSTM, and RTE) is necessary. Such
correction technique can be adjusted for each period inde-
pendently; however, it is possible to induce a ripple in the
output curve. Therefore, the intelligent correction agent is
complementedwith smoothing and outlier suppressingmech-
anisms to guarantee the best performance. LSTM and RTE
showed a better performance than SVR andANN. In addition,
adding several computational intelligence techniques within
the knowledge base allow the consideration of multiple alter-
natives for other cases where the techniques may show a
better performance.

In the forecasting process for the energy demand of Elec-
trical Markets 1 and 2, the performance achieved by the
proposed approach is superior for bothmarkets in comparison
to the models implemented by Reference [33].

Different modeling techniques allow evaluating alterna-
tives for the same time series and the different profiles

obtained in the profiling stage. The results show that the
inclusion of more than one modeling technique helps in the
process of characterization of the time series. The proposed
architecture provides the possibility to build hybrid models
in those cases where a unique technique does not guarantee
better performance.

The performance of each one of the modeling techniques
included on the knowledge base for 7 days show better perfor-
mance (accumulated average) for the LSTM and RTE. ANN
presents a poorer performance than SVR.

Implementing the Auditor module and the retraining pro-
cess help in the maintenance process of the models, minimiz-
ing the decreasing rate in the performance of the assembly
forecasting models. Once the Auditor identifies the need
for retraining, the system can evaluate the performance of
each of the available modeling techniques in the knowledge
base for the window of the time series under study. As a
result, the architecture guarantees the automatic adjustabil-
ity of trained models no matter the dynamic behavior of
the modeled phenomena using rMAPE metric. The fore-
casting results showed an improvement in the MAPE of up
to 23% in the tests performed with the proposed metric via
simulation.
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