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ABSTRACT In the realm of remote sensing image classification and detection, deep learning has emerged
as a highly effective approach, owing to the remarkable advancements in object perception models and the
availability of abundant annotated data. Nevertheless, for specific remote sensing image scene classification
tasks, obtaining diverse and large amounts of data remains a daunting challenge, leading to limitations
in the applicability of trained models. Consequently, researchers are increasingly focusing on optimal
data utilization and interpretability of learning. Drawing inspiration from brain neural perception research,
researchers have proposed novel approaches for deeper interpretation and optimization of deep learning
models from diverse perspectives. In this paper, we present a brain-inspired network optimization model for
remote sensing image scene classification, which considers both shape and texture features and reconstructs
feature scaling of data through feature bias estimation. The model achieves greater robustness through
complementary training. We evaluate our optimized model on general datasets by integrating it into an
existing benchmarkmethod and compare its performancewith the original approach. Our results demonstrate
that the proposed model is highly effective, with dynamically reconstructed data leading to a significant
enhancement of model learning.

INDEX TERMS Remote sensing image, scene classification, brain-inspired learning, feature bias, data
enhancement.

I. INTRODUCTION
Remote sensing (RS) images offer a plethora of feature data
and high-quality image datasets have seen a rapid growth in
recent years. These datasets have become increasingly impor-
tant in urban planning [1], environmental monitoring [2],
and natural disaster monitoring [3]. Effective classification
of RS image data is crucial to better utilize the data, and
it is an active research area. However, classification of RS
images poses great difficulties due to the inclusion ofmultiple
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types of specific targets, different edge information, texture
information, and more within the same type of image.

RS image classification can be performed at the pixel-
level, object-level, or scene-level. Scene-level classification
has been a particularly challenging task due to the difficulty of
augmentation and the serious deformation of annotation data.
Early RS image classification methods relied on manually
designed features, such as scale invariant feature transform
(SIFT) [4], histogram of oriented gradients (HOG) [5],
histogram of colors (CH) [6]. However, manual features have
limited representation capability and weak model migration
capability, resulting in low classification efficiency.
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FIGURE 1. Visual representation of semantic representation factors of different types of features in the feature
realm. The factors of different semantic types are encoded in feature realm, and the action ratio they play in
the classifier differs due to the quantity variance between factor types (without considering the
representational capacity). Here we define ‘‘Residual’’ as all the feature types except for texture and shape
(e.g. color).

To overcome these limitations, convolutional neural net-
work (CNN) based methods have been proposed and have
shown to be more efficient than using low-level features [7].
Since then, a large number of RS image scene classification
methods based on deepCNNs have been derived [8], [9], [10].
However, deep learning-based approaches still face some
core problems when dealing with complex RS image scenes.
First, training a model with satisfactory accuracy requires a
large amount of labeled data. Second, it is difficult to know
what data features are more effective for the generalization
performance of pre-trained models.

In recent years, researchers have proposed variousmethods
to optimize the performance of the CNN model for coping
with complex RS image scenes. Chen and Zhu [11] proposed
a CNN structure based on contextual spatial attention and
dense connectivity, and a method to improve data utilization.
The model achieved a competitive classification accuracy in
the mountain scene dataset. Wang et al. [12] proposed an
adaptive learning strategy for training CNN-based models,
which mainly consists of two parts: adaptive training and
adaptive labeling. The method optimizes the pre-trained
model by adjusting the data side and achieves an effective
improvement in classification performance. Shen et al. [13]
proposed a method to combine dual model features by
bilinear fusion, which improves the scale adaptation of the
model and improves the ability of the model to resist the
effect of complex background redundancy. These innovative
classification efforts for complex scenes do optimize the
performance of the models, but there are still some potential
problems. First, the training data has difficulty in fully
covering situations with interference from factors such as
lighting, season, and visibility, which obscures features in
the images that would otherwise contribute significantly
to the classification, making it difficult for the models to
achieve accurate classification of images with drastic changes
in certain features (e.g. color). Secondly, the traditional
data augmentation methods (e.g. color transformation and
symmetry flip) have limited enhancement of texture features,
and we can hardly evaluate whether these enhancements have
made the maximum contribution to the generalization ability
of the model.

To address these issues, we try to explore a data feature
distribution that is closer to the human brain in this paper.
This research is mainly based on the premise that different
types of features do not play the same role in the classification
(or recognition) process of different scenarios (or targets),
as shown in Fig. 1. We propose the idea that by adjusting the
degree of involvement of different feature types in learning,
the model can achieve an ideal state for optimal learning.
To verify our idea concisely and precisely, shape and texture
will be the two feature types focused on in this paper.
In summary, the contributions of this paper are as follows.

(1) Proposing an optimization model that enables dynamic
reconstruction of classification data through the estimation
of feature bias, enhancing the robustness of the classification
model while mitigating potential accuracy loss for the
classifier due to the inherent feature bias of the encoder and
dataset.

(2) Studying the impact of potential semantic representa-
tions of shape and texture features in the encoded realm on
classifier training and the relationship between the number
of different semantic representation neurons (or factors) and
classifier performance. Our research provides a new opti-
mization approach to the CNN-based RS scene classification
problem and a reference idea in the interpretability problem
of deep classification model learning.

II. RELATED WORK
A. BRAIN-INSPIRED LEARNING
Brain-inspired learning emphasizes the crucial importance
of identifying the precise image features learned by con-
volutional neural networks (CNNs) during training. Despite
fundamental differences between the human brain and CNNs
in vision representation, it is widely accepted that CNNs
are the most predictive models for object recognition in the
human ventral stream [14], [15]. As a result, the brain-like
learning approach for artificial neural networks has gained
increasing attention among researchers.

Recent studies have highlighted the categorical topological
correspondence between deep CNNs and the brain [16].
Specifically, it has been demonstrated that the early visual
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cortex (V1) and early CNN layers encode shape information,
while the anterior ventral temporal cortex encodes class
information that is best correlated with the final layer of
CNNs [17]. Additionally, it has been shown that CNNs rely
on local texture and shape features rather than global shape
contours, which may explain why lower CNN layers are able
to fully capture the representation structure of real-world
object images in lower visual regions with smaller receptive
domains [18].

Pioneering research has focused on incorporating human
brain learningmechanisms into deep learning [19], [20], [21],
and on mechanistic and functional comparisons between
the two [22], [23], [24]. These studies have contributed to
a deeper understanding of the similarities and differences
between the human brain and CNNs in representing vision,
and have provided valuable insights into the development
of more effective brain-inspired learning approaches for
artificial neural networks.

B. TEXTURE AND SHAPE FEATURE BIAS
From a bio-visual perspective, shape and texture are the
two most crucial factors in determining the object class,
and they represent highly complementary forms of feature
expression for classification tasks. However, the contribution
of each feature to CNN classification results can differ
significantly across different tasks [25], a distinction that is
often overlooked during the traditional construction of CNNs.
To investigate this issue, Geirhos et al. [26] examined the
response of specific layers in ImageNet-trained CNNs to
shape and texture and found that these networks exhibit a
bias towards texture. Nevertheless, increasing shape bias can
improve the network’s accuracy and robustness, as demon-
strated by Resnet-50 training using stylized ImageNet
images where object classification performance improved
significantly.

While a suitable training dataset can overcome the texture
bias in standard CNNs and allow them to utilize more
shape cues, a recent study by Shi et al. [27] modeled a
novel dropout method for mitigating CNN texture bias and
improving the model’s robustness. It is worth noting that
CNNs with added shape bias tend to be more similar to the
human visual learning process. Furthermore, recent studies
have shown that the degree of CNN bias towards texture
depends on the training dataset and the specific learning
task [28].

Similar to the mechanism of brain neural encoding of
features, a pre-trained CNN encoder has a portion of its
neurons strongly associated with shape features, another
portion strongly associated with texture features, and a
significant portion for encoding other features. However,
unlike human visual perception, the distribution of these
features does not change after the CNN learning process
is completed, and it is difficult to intervene and adjust
manually. When the difference in the number of neurons
used to encode shape and those used to encode texture

features is too large, the texture bias of CNNs can become
a significant vulnerability to attack, and adversaries can alter
the classification results by manipulating texture [29]. This
can lead to the lack of robustness of CNNs in real-world
applications, including in critical domains such as medical
imaging, where fatal errors can occur [30], [31].

C. FEATURE FOR RS SCENE CLASSIFICATION
Texture features and shape features are crucial for RS
image classification, and can be considered as high-frequency
and low-frequency features respectively. During the CNN
forward process, high-frequency features are gradually
blurred through layered downsampling and convolution
operations. These high-frequency features are important for
capturing diversity within classes and similarity between
classes, and can effectively distinguish between different
categories. However, the impact of bias in feature frequency
is ubiquitous in classification, as scenes within the same
category often exhibit analogous feature dependencies [32].
For example, recognizing mountains and forests may benefit
from texture bias, while recognizing categories such as
roads and villages may require more support from shape
features.

To explore the solutions, researchers have conducted
innovative studies. For example, Chen et al. [33] proposed
a texture-enhanced scene classification method for texture-
rich images that improved the classification accuracy by
over 6%. Chen et al. [34] developed a visual bag-of-words
scene classifier based on regional covariance that can fuse
multiple relevant features and reduce the dimensionality of
the features. Fei et al. [35] explored the contribution of texture
features to the classification accuracy of cotton farmland, and
improved the classification efficiency using a random forest
feature filtering method. However, most of these studies
lacked quantitative estimates of features and did not progress
in interpretability.

III. PROPOSED METHOD
Researches in the field of neuroscience have demonstrated
that the human visual processing system comprises mul-
tiple distinct perceptual pathways for different types of
features [36]. In particular, the low-level visual feature-
processing regions of the human brain can automatically form
feature biases based on a priori knowledge when recognizing
objects, allowing for the quick and efficient identification
of relevant features. However, CNN-based models do not
acquire this feature bias dynamically and adaptively. To better
avoid the influence of feature bias on classification tasks,
we propose a novel classification model based on feature
bias analysis and data fusion. The model comprises several
components, including data preprocessing, a CNN-based
classifier, feature bias estimation, and data re-enhancement,
as shown in Fig. 2.

During the data preprocessing stage, the dataset is first
enhanced to bring out texture or shape features through
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FIGURE 2. The overall frame of the proposed approach.

processing, in addition to conventional data augmentation
techniques such as random flip and hue transformation.
These data with feature-highlighting properties are then
subjected to bias estimation and used as an alternate dataset to
make adjustments to the composition of the original dataset
and improve the performance of the classification model.
Furthermore, we aim to investigate the impact of particular
features in the augmented data on the model’s performance.
To this end, we follow the approach in the literature [37] and
generate two additional datasets with stylized features that
exhibit some similarity to the original dataset.

The feature bias of a CNN is mainly determined by the
dataset and the backbone network. The deeper the network
layers, the more neurons are used to represent the shape [38].
To effectively balance texture bias and shape bias in the
model, a quantitative tool is needed to accurately measure
these biases. Following the approach proposed in [38], image
pairs with similar texture and image pairs with similar shape
were respectively fed into the pre-trained CNN with weights
frozen. Then we estimate the dimensionality of semantic
concepts in a pre-trained CNN encoder E(I ) = z, where |z| is
the number of neurons (i.e. semantic factor). The main idea
is that mutual information between similar image pairs Ia

and Ib will be preserved in a particular neuron only if the
neuron encodes a particular semantic concept (i.e. feature
type). The mutual information MI(zai , z

b
i ) between neuron

pairs zai = E(Ia) and zbi = E(Ib) can be used to quantify the
extent to which a neuron encodes a specific semantic concept.
The correlation coefficient ρi is used to estimate the mutual
information MI(zai , z

b
i ) between neuron pairs, which provides

a lower bound for MI [39], [40]. Equation (1) expresses
the above relation. By statistically calculating the correlation
coefficients of the corresponding features in pairs of images
with similar texture or similar shape, we obtain the bias score,

i.e. the number of neurons characterizing a feature.
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The primary objective of estimating the bias score is to
assist in selecting more suitable data for the model, thereby
facilitating a gradual convergence towards an optimal balance
of texture and shape features. This convergence occurs
through numerous iterative tuning steps, where the dataset
configuration structure is modified to provide a better ratio of
the semantic factor that are better conducive to the model’s
classification performance. For instance, if a pre-trained
model exhibits a texture bias, the data appender can extract
shape biased images from the database and append them to
the training data for retraining. Our experience indicates that
such dynamic training is best performed after pre-training to
reduce computational costs.

In contrast to prior work, our focus is primarily on the
continuous fine-tuning of the dataset rather than fine-tuning
of the network. Our proposed approach can be applied
to most CNN-based coding and decoding structures. The
number of neurons in softmax in these methods is not
necessarily consistent, so in this paper, we set the bias ratio
γ = |ztexture|/|zshape|, and if γ > 1, a batch of shape-biased
data is randomly selected from the mixed database to add to
the training data. To balance the added data feature types,
10% of texture-biased data is also included in the batch.
Conversely, if γ < 1, the appended data for retraining is
mainly texture-biased. The number of images k in each batch
can be adjusted based on (2), where η is the decay factor
(initial value is less than 0.5, decaying once every m training
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epochs), N is the number of images in the original training
set, and ‘‘⌊ ⌋’’ denotes rounding down.

k =

⌊
ηN

∣∣ztexture − zshape
∣∣

ztexture + zshape

⌋
(2)

As retraining progresses, data with feature bias are
gradually incorporated into the training set in a stepwise
manner, as the number of images needed to achieve a
relatively optimal state with respect to feature bias cannot
be predetermined. Ultimately, this allows us to obtain a new
dataset, thus mitigating the impact of feature bias on the
classifier’s performance from the data side and significantly
improving its robustness for complex scenes.

IV. EXPERIMENT
A. DATASET DESCRIPTION AND DATA AUGMENTATION
In this paper, we validate and test our method using the
Aerial Image dataset (AID) [41] and the NWPU-RESISC45
dataset [42], both of which are specifically designed for RS
image scene classification with a moderate amount of data,
making them well-suited for our focus on feature bias. AID
is a large-scale dataset collected by Google Earth, consisting
of 10,000 images with a resolution between 0.5 and 8 m, each
measuring 600 × 600 pixels. The NWPU-RESISC45 dataset
includes 31,500 images covering 45 land scene categories,
with each class containing 700 images ranging in size from
0.2m to 30m and with a resolution of 256 × 256 pixels.
Unlike the data used for the detection task, each class of data
in AID and NWPU-RESISC45 can be viewed as a separate
set, all resulting in feature bias. To design the experiments
in a concise and clear manner, we focus on the classification
performance of three categories: forest, harbor and residential
area in the experimental results. In the data preparation
stage, we use three ways to augment: symmetric flip, hue
transformation, and mixup.

B. EXPERIMENTAL SETUP
The experimental section of this study does not aim to
present the latest or most advanced CNN encoder scheme.
Instead, the focus is primarily on verifying the data appending
and robust enhancement strategy. Therefore, the D-CNN
framework [43], which handles intra-class diversity and
inter-class similarity problems effectively, is utilized as the
CNN-based classifier in the full-class experiments. In the
single-class experiments, VGG-16, ResNet50, D-CNNs, and
SCCov [44] are selected as the CNN-based classifier, with
the latter two backbone networks uniformly using VGG-16.
In the AID dataset, the data is divided into 20% and 50%
for training and 80% and 50% for testing, respectively.
In the NWPU-RESISC45 dataset, the training set is set
to 10% and 20%, while the remaining 90% and 80%
are used for testing (the training rate is denoted as Tr).
The experiments are conducted using Pytorch with an
Intel(R) Core(TM) i7-10700KCPU, 64GBRAM, and Nvidia
GeForce RTX 3080 GPU. For the training parameters, the

batch size is set to 64, the learning rate is 0.001, and the
learning rate decays to half of the original value every
10 epochs. The decay factor η is set to 0.1, and the decay
period of retraining m is set to 10.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) SINGLE CLASS CLASSIFICATION EXPERIMENT
When distinguishing between different RS scenes, our
reliance on texture versus shape information varies. To inves-
tigate this, we conducted experiments using three single-class
scenes, specifically forests, ports, and residential areas, which
were trained separately for classification. Since the data
feed for each training are the same class data, the similarity
between classes in the test data may lead to a loss of accuracy
in this part of the experiments. Therefore, we focused on the
change in model performance during retraining and did not
consider the accuracy loss in the individual class experiments.

Before conducting the experiments, we trained the classi-
fier using the original data from a single class, and after train-
ing until convergence, we froze all parameters and examined
the proportion of texture features and shape features among
the high-level features extracted by CNN. The estimated
results of the potential representational semantic factor |zi| in
the fifth stage of the CNN for the AID andNWPU-RESISC45
datasets are shown in Tables 1 and 2, respectively, where Tr
is 50% and 20%. The total dimensionality of most potential
representation |z| is 2048 (2048 × 3 for SCCov). In addition
to the estimated representations of texture and shape, the
remaining dimensions may serve as potential representations
of other features. The tables demonstrate that the CNN
encoder in all four methods exhibits some feature bias, with
texture bias being prevalent. However, the specific estimates
differ due to the fine-tuning variations of the encoder and
structural differences in the algorithm. As shown in the tables,
the CNN encoder in all four methods has some feature
bias, and almost all of them exhibit texture bias. However,
the specific estimated values differ, mainly due to the fine-
tuning variation of the encoder and the algorithm structure
variation.

The model was retrained based on feature bias estima-
tion, and its performance during retraining was recorded,
as depicted in Fig. 2. We monitored and updated the accuracy
information of the model every m epochs throughout
the retraining process. The figure reveals that he model
does not produce accuracy improvement when the training
data is updated in a few cases, which can primarily be
attributed to the randomness of the added data. As we
continued to update the training data, the additional data’s
volume gradually decreased, and the classification accuracy
eventually stabilized at a certain level. Notably, under equal
conditions, the final stable values of the smaller Tr curves
exceeded the initial values of the larger Tr curves, thereby
demonstrating that the proposed method in this paper offers
a better classification performance gain than simply adding
more data.
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TABLE 1. An estimation of the proportion of latent semantic representation factors for forest, harbor, and residential area in the trained CNN encoder on
AID dataset. (Tr = 50%).

TABLE 2. An estimation of the proportion of latent semantic representation factors for forest, harbor, and residential area in the trained CNN encoder on
NWPU-RESISC45 dataset. (Tr = 20%).

FIGURE 3. For every m epochs (m = 10), the performance changes of various baseline models during the retraining process were recorded (forest,
harbor, and residential class only). Specifically, data for (a), (b), and (c) were from AID dataset, while data for (d), (e), and (f) were from NWPU-RESISC45
dataset.

Although the change in retraining accuracy is relatively
flat compared to the early training phase, the models’
classification performance improved to some extent after
several data increments. Moreover, SCCov’s CNN encoder
structure’s cross-layer design helped to preserve the local
texture features in the early convolutional layers, but the total

feature dimension increased after feature stitching, leading to
a flatter change in accuracy during retraining.

2) FULL-CLASS CLASSIFICATION EXPERIMENT
In the full-class classification experiments, it is difficult to
accurately estimate the proportion of semantic representation
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FIGURE 4. The accuracy changes of the proposed model during retraining
on AID dataset (a) and NWPU-RESISC45 dataset (b).

factors for both shape and texture on each class when the
model proposed in this paper is applied. Thus, we adopted a
similar strategy as in the previous section, where we combine
all the generated stylized data in an unordered manner and
only estimate the feature bias of all the data as a whole. Fig. 3
displays the performance variation of the proposed model
retrained on the AID and NWPU-RESISC45 datasets. It can
be observed from the figure that Tr is positively correlated
with model accuracy, and the curve change is flatter for larger
Tr. This is primarily because more training data can offer
richer features, which somewhat mitigates the performance
loss caused by the feature bias problem of the classifier.
The larger amount of data and smaller resolution in NWPU-
RESISC45 provide relatively weaker quality of features.
Therefore, the retraining on AID with the same Tr value of
20% is more effective than on NWPU-RESISC45, yielding a
classifier with a slightly better gain effect.

V. CONCLUSION
Designing and modifying deep learning models based on
brain-inspired principles is a key driver of their gradual
evolution. In this work, we propose a data enhancement and
retraining approach that incorporates feature bias estimation,
drawing inspiration from how the human brain perceives

different features during classification. Our approach has
demonstrated a notable positive influence on the performance
of CNN-based remote sensing scene classifiers. Nevertheless,
its constraints are apparent, particularly in scenarios where
the data volume is substantial or feature maps are spliced,
it produces quite limited improvement. Although the overall
enhancement is not a major breakthrough, it provides a new
way of thinking and direction for the problem of RS image
scene classification. Additionally, the optimized design
principles inspired by our framework can be replicated and
applied to similar tasks in other industries, such as industrial
device classification and driving scene classification. In the
following phase, we may deliberate on utilizing the backdrop
of two opposing cases with extremely limited and abundantly
ample samples to further investigate and refine the method
put forward in this paper.
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