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ABSTRACT Classifying distinct human emotions, the fundamental purpose of brain-computer interface
research, is essential for providing instant personalized services and assistance to individuals. With such
emerging applications for individuals, several techniques have been proposed recently to explore interactions
between brain regions, such as correlation, synchronization, and dependence. Notably, functional and effec-
tive connectivity methods are applied to assess the relationships between different brain areas. The primary
objective of this study is to compare the frequently used functional and effective connectivity methods to
recognize emotion using Electroencephalogram (EEG) signals. This paper uses a benchmark emotional
EEG dataset consisting of 32 channels of EEG signals collected from 32 subjects while they were watching
40 emotional music videos. Specifically, correlation, phase synchronization, andmutual information are used
to measure functional brain connectivity, and transfer entropy is used to acquire effective brain connectivity.
After extracting the features, they are represented in a two-dimensional connectivity feature map (CFM). The
CFMs are then used to classify emotions by a convolutional neural network model. The results of classified
emotions are analyzed regarding compatible EEG bands, accuracy, and time. Notably, the Gamma band is
found as the most compatible band. The comparative study has demonstrated that though the connectivity
method named Pearson correlation coefficient requires less time, the normalized mutual information is the
most accurate method with advantageous detecting capability of nonlinear dependencies.

INDEX TERMS Connectivity feature, convolutional neural network, electroencephalography (EEG), emo-
tion recognition, feature extraction.

I. INTRODUCTION
Emotion recognition (ER) is the process of identifying the
current mental state of a person, and brain signals are the
best tools for recognizing emotions. ER has grown to be an
essential part of research in neurology, computer science,
medical science and cognitive science [1]. Most commonly,
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modalities such as facial images [2], speech [3], and ges-
tures [4] can be used to identify emotions. However, these
recognition approaches are not ubiquitous and have low
recognition accuracy because they depend on the person’s
age, appearance, culture, language, and habits. Additionally,
it is impossible to identify emotions from speech, gesture,
or posture for the persons who are physically incapable of
speaking or expressing their feelings through gesture or pos-
ture, such as the mentally or verbally disabled. According to

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 37809

https://orcid.org/0009-0004-3600-0237
https://orcid.org/0000-0001-5465-8519
https://orcid.org/0000-0002-2559-2781
https://orcid.org/0000-0003-3150-0510
https://orcid.org/0000-0001-5502-2264
https://orcid.org/0000-0003-2026-5666


M. A. Maria et al.: Comparative Study on Prominent Connectivity Features for ER from EEG

research in cognitive psychology and neuropsychology, the
development and evolution of emotions are strongly related to
the functioning of the central nervous system [5]. Therefore,
the brain signal is a highly reliable method of recognizing
emotions. Brain signal-based ER is being explored in recent
studies [5], [6], [7], [8] due to its prospect of being used in
different areas like entertainment, virtual worlds, e-learning,
instant messaging, online games, and e-healthcare applica-
tions [6].

The Electroencephalogram (EEG) has been increasingly
popular for researching the brain’s reactions to emotional
stimuli due to its noninvasiveness, excellent temporal resolu-
tion, portable use, and relatively inexpensive and fast [5], [6]
in comparison to alternative neuroimaging methods like
positron emission tomography [9], functional magnetic res-
onance imaging [10]. EEG is a technique for capturing the
electrical impulses generated by neuronal activities of the
brain through its small sensors (i.e., EEG channels) attached
to the brain. These signals are anticipated to provide compre-
hensive information about the emotional process. Delta (0–
3 Hz), Theta (4–7 Hz), Alpha (8–12 Hz), Beta (13–29 Hz),
and Gamma (30–50 Hz) are the five main types of brain
waves that make up the human EEG. These sub-bands may
provide more precise information about the constituent neu-
ronal processes’ activities [7], [11]. Different mental states
and activities are incorporated into the various sub-bands.
Emotion has a strong relationship with the Beta and Gamma
sub-bands, a weak relationship with the Alpha sub-band,
and a very weak relationship with the Theta and Delta sub-
bands [8].

There are two standard procedures for emotion classifi-
cation: the discrete basic emotion description method and
the dimension method. Based on the discrete basic emotion
description approach, there can be six basic emotion cate-
gories, including sadness, joy, surprise, anger, disgust, and
fear [12]. According to Russell’s model [13], emotions can be
characterized using a two-dimensional (2D) space based on
levels of Valence and Arousal for the dimension approach.
Mehrabian [14] expanded such an emotion model from 2D
to 3D, where Dominance is the name of the third dimension.
Arousal, which varies from passive (low) to active (high), and
Valence, which ranges from negative (unpleasant) to positive
(pleasant), dimensions describe how intensely a person feels
or the degree of excitement or apathy of emotion. Again,
Dominance refers to the ability of a human to exert control
over emotion. It can range from submissive (without control)
to dominant (empowered) [5], [15], [16]. Due to simplicity
and generality, the 2D model of emotion is frequently used in
the literature.

Currently, a growing number of researchers are working on
ER research. A crucial part of EEG-based ER research is fea-
ture extraction. The EEG features extracted from individual
channels, such as differential entropy (DE) [17] and power
spectral density (PSD) [18], have produced some research
results, but these techniques lack functional descriptions of

different brain areas. Features extracted from connectivity of
multiple channels based on the brain network (i.e., connectiv-
ity features) analyze the interaction between brain areas by
assessing the dependencies of brain activity, such as causal
relationships and correlation. Compared to standard EEG
features, these features offer information on the brain’s func-
tioning from a different angle [7].

Recently, EEG channel connectivity features mimicking
the relationship or connectivity between brain regions, rep-
resented in a map called connectivity feature map (CFM),
have been widely used in ER. The brain is a vast network of
neurons often exhibiting synchronous activities among neu-
rons of various regions, which can provide important infor-
mation about the neural activity of interest, known as brain
connectivity. There are three types of brain connectivity [19].
Anatomical or structural connectivity describes a network of
physical connections between groups of neurons or neural
components and has to do with the anatomical structure of
brain networks [20]. The connectivity can also be based on
the functional integration of different brain regions with the
directionality consideration. An undirected dependence is
known as functional connectivity, and a causal relationship
is known as effective connectivity [21]. While functional
connectivity assesses the temporal correlation among differ-
ent active brain regions, effective connectivity assesses how
the activity of one brain region influences the other distinct
regions [22]. Although all three of these procedures offer
valuable information about the brain connectivity behind
emotions, the existing studies mainly concentrated on meth-
ods of measuring functional and effective connectivity since
these have the greatest possibility of revealing the dynamic
processes behind emotions. The connectivity of brain regions
can be represented as a network where the vertices and
lines indicate the cerebral regions and their connections. The
weight of the lines represents the connection strength. Then,
the adjacency matrix (i.e., CFM) can be formed by taking the
strength of connections between brain regions as the elements
of the matrix. Several methods can measure the relationship
between brain regions, such as Pearson correlation coefficient
(PCC) [23], cross-correlation (XCOR), mutual information
(MI) [24], partial MI (PMI) [20], phase locking value (PLV)
[25], and transfer entropy (TE) [7]. XCOR and its variant
PCC are linear functional connectivity, MI and PLV are non-
linear functional connectivity, and TE is effective non-linear
connectivity. PCC and XCOR can detect linear dependen-
cies, MI measures shared information, PLV represents phase
synchronization, and TE measures directed information flow
between two brain regions.

This study aims to perform emotion classification from
connectivity matrices using deep learning (DL) and analyze
the results for different connectivity measures to find the
best-suited connectivity method for ER from EEG. Convo-
lutional neural network (CNN), the prominent DL method,
is used for emotion classification in the two-dimensional
Valence Arousal model as it automatically extracts internal
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features. The major contributions of the present comparative
study are summarized as follows:

1) A systematic review of ER from EEG signals has been
conducted, emphasizing connectivity feature-based
methods to narrow down the number of compatible
features targeting more close investigation.

2) Six selected connectivity feature maps are constructed
from the segmented and filtered raw EEG signals and
investigated under a suitable experimental environment
(not biased to any individual one) to expose the profi-
ciency of individual methods. The normalized mutual
information feature is found most accurate with advan-
tageous detecting capability of nonlinear dependencies
which is identified as a new finding as far our knowl-
edge.

3) A customized CNN has been designed to classify emo-
tions using the constructed CFMs. The CNN classifier
performance has been evaluated using widely accepted
evaluation matrices.

4) Aiming a profound study, rigorous comparative analy-
sis has been conducted among six CFMmethods for ER
using a benchmark DEAP dataset considering compat-
ible EEG bands, classification accuracy, and computa-
tion time to reach impactful conclusions. Achieved ER
performance from this study also compared with the
related state-of-the-art studies.

The rest of this paper is organized as follows. Section II
describes the related articles of this work. Section III presents
the overall emotion recognition process, including data pre-
processing, feature extraction, and classification. In Sec-
tion IV, the experimental setup and experimental results are
described. Section V contains some discussion on experi-
mental results. At last, Section VI concludes the paper by
discussing the limitations of this study and possible future
research.

II. LITERATURE REVIEW
EEG has been well-studied to investigate how the brain reacts
to emotional experiences. Typically, machine learning (ML)
or DL methods are used for ER using extracted features from
EEG signals. Several ER studies are available using different
feature extraction and classification techniques. The features
broadly fall under the categories of individual channel fea-
tures and connectivity features. The following subsections
review prominent ER studies categorically based on the EEG
features’ type.

A. ER USING INDIVIDUAL CHANNEL FEATURES
Individual channels are considered independent signal
sources in the respective channel feature category, and the
characteristic(s) of signal from a particular channel are
exposed as feature value(s). Generally, features are extracted
from EEG signals in the time domain (e.g., fractal dimen-
sion (FD), statistical characteristics (SC)), frequency domain
(e.g., SC, PSD), and time-frequency domain (e.g., discrete

wavelet transform, entropy). Among the features from differ-
ent domains, entropy features (e.g., sample entropy, approx-
imate entropy, DE, wavelet entropy), FD, Hjorth Parameters
(HP), Hurst exponent, Lyapunov exponent, etc., are used to
analyze the nonlinear dynamics of the EEG signals. These
features are used by some ML or DL models for classifica-
tion. The representative studies are summarized in Table 1.

Pioneer studies considered different ML methods to clas-
sify emotions from different time and frequency domain
features [18], [26], [27], [28], [29], [30]. Support vector
machine (SVM) was used by Liu et al. [18] to identify
cross-stimulus as well as within-stimulus discrete emotional
states (e.g., happiness, sadness) from PSD features selected
by SVM-recursive feature elimination (RFE) from different
frequency bands which identified that the higher frequency
band roughly occupied the larger contribution part. The
study [18] also showed that, shared non-emotional informa-
tion in the samples from the same stimuli would make the
classifier easier to recognize the testing sample accurately.
Mert and Akan [26] used the time-frequency features of
EEG signals obtained by the multivariate synchrosqueez-
ing transform (MSST) to classify emotions between the
binary states (high vs. low) of Arousal and Valence using
a fully connected neural network (FNN). In the study [26],
independent component analysis (ICA), and feature selec-
tion were applied to reduce the high dimensional 2D time-
frequency distribution. Jagodnik et al. [27] investigated corre-
lation, MI and principal component analysis (PCA), sequen-
tial backward selection (SBS), sequential forward selection
(SFS), sequential forward floating selection (SFFS) for fea-
ture selection including SC, HP, DE, band energies, power,
Wavelet entropy. They used a multi-classifier fusion method,
combining k-nearest neighbors (KNN), SVM, and random
forest (RF) for classification; and it found that MI is bet-
ter than PCA and correlation and combination of SFFS
with MI shows better than MI. To reduce the burden of
large feature set employment, HP (activity) was extracted
in frequency domain by Mehmood et al. [28], where RF
was used as a classifier. Hybrid features were extracted by
Pane et al. [29] that consist of time, frequency (PSD), and
time-frequency (wavelet) domain features. Time domain fea-
tures include signal average, band power, standard devia-
tion, kurtosis, skewness, maximum peak, and zero-crossing
number. The study [29] considered different time, frequency
and time-frequency domain features to classify emotion using
SVM, linear discriminant analysis (LDA) and RF. The study
identified that happy and relaxed are dominant in the left
hemisphere, while angry and sad emotions are better rec-
ognized from the right hemisphere. Statistical features can
be extracted in both time and frequency domains, as in the
study [30], where four emotional states were classified based
on the least square SVM and naive Bayesian (NB) classifier;
the study identified that predicting emotions for different
subjects can be incorrect without personalized EEG training
data. Subasi et al. [31] used tunable Q wavelet transform in
the feature extraction step and rotation forest ensemble (RFE)
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TABLE 1. Representative existing ER studies using individual channel feature.

classifier; the approach is lightweight and its mathematical
models are simple.

While studies mentioned above used conventional ML
models, DL methods were used in recent studies for emotion
analysis as such methods extract relevant features through
their embedded learning process. Luo et al. [16] extracted SC
(variance, mean, kurtosis, and skewness) of the EEG signal
as time domain features and used a combined CNN + sparse
autoencoder (SAE) + deep neural network (DNN) model to
classify emotions and showed that their model requires less
epochs to be trained than CNN. DE was employed with Hier-
archical CNN (HCNN) by Li et al. [17] to classify three types
of emotions (positive, neutral, and negative) and showed that
HCNN is efficient in ER especially on Beta and Gamma
waves. Moctezuma et al. [32] used Teager and instantaneous
energy, Higuchi and Petrosian FD as time domain feature
and SVM, NB, KNN, CNN as classifier for ER according
to Valence and Arousal scale from EEG channels selected
by multi-objective evolutionary algorithm. In the study, three
segmentation time windows (2, 5, and 10 s) were tested
and the best results obtained from 2s segment. Meanwhile,
Li et al. [33] designed a hybrid model incorporating recurrent
neural network (RNN) and CNN for emotion classification in
the Valence-Arousal plane by using topographies of the PSDs
of the EEG signals with different length time windows; it
was identified that a short time window provides more details
information. In the study [34], a combined CNN + SVM

model was used to classify emotions and two feature map
creation methods were proposed based on the topographic
(TOPO-FM) and holographic (HOLO-FM) representation of
different features such as FD, HP, peak-to-peak, root-mean-
square, band power, DE, and PSD features where HOLO-FM
outperformed TOPO-FM in all cases. DE feature and PSD
feature from five frequency bands were also investigated by
Song et al. [35] with dynamical graph CNN (GCNN) where
higher frequency bands were identified as better than lower
frequency bands. ER was performed using a simple recurrent
units (SRU) network and ensemble learning (EL) which has
the ability to solve the problem of long-term dependencies
occurrence in normal RNN byWei et al. [36], where the mean
absolute value, PSD, fractal dimension, and DE features were
used for the nonlinear analysis of the EEG signals. Hurst
exponent, sample entropy, HP, vector autoregression, wavelet
entropy, spectral entropy, and PSD features were extracted
by [37], where DNN was employed for ER in three dimen-
sions, i.e., Valence, Arousal, and Dominance. The overall
recognition effect on the Valence dimension was the best,
followed by Arousal, and the worst was Liking.

B. ER USING CONNECTIVITY FEATURE
EEG connectivity feature is mainly based on connections in
brain regions. However, it is widely accepted that a network
connects the brain’s regions, where the interactions between
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the network’s nodesmay interpret brain activities. Thus, emo-
tion analysis seems beneficial in measuring the relationship
between several brain areas, and several existing ER studies
have revealed the effectiveness of CFM with connectivity
features. The representative ER studies that used connectivity
features are summarized in Table 2.

Khosrowabadi et al. extracted magnitude mutual informa-
tion and squared coherence estimate (MSCE) and MI fea-
tures, where KNN and SVM classifier from where it was
identified that different kinds of functional brain connectivity
exist in different emotional states [38]. Petrantonakis and
Hadjileontiadis used SVM as classifier and a new feature
was introduced namely asymmetry index (AsI) from the
multidimensional directed information (also known as partial
transfer entropy (PTE)) of relaxed and emotional state [39]
where higher AsI values indicate more effective emotion elic-
itation trials. The feature vector set from the AsI feature was
constructed based on two methods, i.e., higher order cross-
ings (HOC) and XCOR, and the results identified that HOC
method is superior against XCOR.Gao et al. used Granger
causality (GC) and TE features, with three classifiers, SVM,
RF, and decision tree (DT) [5]; TE feature was identified as
more suitable than GC and SVM classifier was better than
RF and DT. TE feature was also used by the study [40]
and [41]. PCC, PLV and phase-amplitude synchronization
(PAC) was used by Wang [42] where brain network was
constructed by taking the cross-frequency coupling (CFC)
intensity of Theta and Gamma bands. Naser and Saha [43]
used Spearman’s rank correlationwith SVM to investigate the
influence of music liking on the induced emotions; the best
results obtained using low liking music videos for Arousal
and Dominance scales, whereas high liking data provides the
best results for Valence scale. Kılıç and Aydın used SVM
classifier with radial basis function (RBF) and Gaussian ker-
nel while PCC and Spearman correlation was used to extract
feature; better performance was obtained by RBF with longer
segmentation timewindow [44]. Zanetti et al. usedMI, partial
MI (PMI)) and entropy features inside one CFM, where the
RF was used as classifier for stress assessment [45]; the study
suggested that brain-heart interactions are less involved in
the differential characterization of mental stress compared to
a relaxed state. PCC, PLV, and MI extracted from different
sub-bands were used with SVM classifier for the binary clas-
sification of emotional states (high vs. low for Valence and
Arousal) by Chen et al. [46], where Gamma frequency band
identified as more effective for Valence levels identification.
PLV feature was also used by the study [47], [48], [49].
Khosrowabadi used three effective connectivity features (i.e.,
phase slope index (PSI), direct transfer function (DTF), and
generalized partial directed coherence (GPDC)) with KNN
and SVM classifiers; results identified that PSI is better
than DTF and GPDC [50]. Wang et al. used SVM classifier
where normalized MI (NMI) was used as feature; the CFMs
identified that wider range of activated brain regions exist
in high Arousal low Valence (HALV) state [51]. SVM was

also used in the study [52], [53], [54], [55] with PLV, local
activation features,PLV, DE, common spatial pattern features,
phase lag index (PLI), PVL, DE, PSD features, MI, spectral
power features respectively; outcomes of these study showed
that combined feature provide better results than individual
feature. The study [55] also identified RBF as better than
sigmoid kernel.

Several existing studies considered CNN and other DL
methods for ER from CFMs. Among different emotional
dimension (e.g., Valence, Arousal, Dominance, Liking, and
Familiarity), Kumagai et al. classified Familiarity with SVM
and DNN where XCOR was used as feature; results iden-
tified that SVM is better than DNN to recognize Famil-
iarity [56]. Moon et al. used PCC, PLV and PLI features,
where SVM and CNN were used as classifiers [21]. The
author of the study [21] showed that CNN could improve
classification performance in comparison to SVM and the
electrode ordering in CFM has great effect in ER. Different
ordering of electrodes was investigated in the study [7] for
emotional EEG classification with PCC, PLV and TE; data-
driven channel ordering was exposed to be better than random
ordering. Feature fusion approach was used by Guo et al.
with connectivity feature PCC and synchronization likeli-
hood (SL) where ensemble of CNN was used for classifica-
tion and higher ER accuracy obtained in Valence dimension
than Arousal dimension [57]. Wang et al. used PSI with CNN
and showed that connectivity feature shows superior perfor-
mance, compared with the input of raw EEG data [58]. Graph
neural network (GNN) was employed by Liu et al. where
weighted PLI (wPLI) was used as feature [59]. The study [59]
suggest that emotional processes may not limit to single-
frequency band communication but rely on multi-frequency
associations. Bao et al. proposed a model combining multi-
layer dynamical graph convolution network (MDGCN)with
style-based recalibration CNN (SRCNN)for classification
with PCC; the proposed model combined shallow layer and
deep layer features that improved the recognition perfor-
mance [60]. Wang et al. used a PDC with graph CNN where
recognition accuracy was higher in Valence dimension than
Arousal dimension [61]. Zheng et al. [62] used linear graph
CNN with connectivity features PCC, PLV and TE where
recognition accuracy was higher in Arousal dimension than
Valence dimension. Islam et al. [8] and Jin and Kim [63] also
used PCC feature, where CNN and long short-term memory
(LSTM) + multi-layer perceptron (MLP) were used for ER,
respectively. The CFMs from different persons presented in
the study [63] revealed that different connectivity patterns
exist in different persons even they are in the same emotion.
PDC and direct DTF (dDTF), were used in two studies [64]
and [65] by Bagherzadeh et al., where several pre-trained
CNNmodels were used as classifier. The best results attained
from Alpha frequency band with ResNet-18 and ResNet-50
in the study [64] and [65], respectively. Chao et al. [66] used
maximal information coefficient (MIC) for feature extraction,
PCA network (PCANet) based DL model was also used
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TABLE 2. Representative existing ER studies using connectivity feature.

for deep feature extraction from MIC feature; both features
were classified with SVM, the deep feature also classified
with CNN; the higher accuracy achieved with PCANet +

SVM model. Liu et al. used PCC with CNN + SAE +

DNN model and showed that the proposed model take less
epoch to be trained than the traditional CNN model [16].
Chen et al. used three functional connectivity (i.e., PCC,
COH and PLV), an effective connectivity (i.e., TE) features,
and domain adaptive residual CNN (DARCNN) was used as
classifier; the best result was achieved with PLV feature [23].
The studies of [16], [21], and [23] revealed that connectivity
features improve the performance over individual channel
features. Tang et al. used PCC and NMI to extract feature
and investigated a DL model (combining a compact convo-
lutional network and an auxiliary fully connected network)
which can effectively reconstruct high-density EEG and holds
potentials in EEG big data applications [67]. Convolutional
graph attention network was used by Li et al. [68], where PCC
was used as feature. The study [68] indicates that functional

connection strength under high Valence is higher than that
under low Valence, i.e., the positive emotion shows stronger
functional connectivity than negative emotions.

C. OBSERVATIONS FROM THE EXISTING STUDIES: STUDY
MOTIVATION
Different features extracted from individual channel, as well
as connectivity of multiple channels, have been used for
ER by a significant number of researchers recently. In the
first approach, various time domain or frequency domain
features were extracted from each channel and fed to the
ML or DL models to classify them. Among the individual
features, PSD [37], DE [17], HP [34], [37], etc., were fre-
quently used feature. Recently, EEG channel connectivity
features have been widely used in ER, and several studies
have demonstrated the effectiveness of connectivity features
for ER. Among the functional connectivity, PCC, PLV, and
MI were used frequently in the literature, such as PCC

37814 VOLUME 11, 2023



M. A. Maria et al.: Comparative Study on Prominent Connectivity Features for ER from EEG

was used by the study [7], [8], [21], [23], [42], [44], [46],
[60], [62], [63], [67], [68], PLV was used by the study [7],
[21], [23], [25], [42], [47], [48], [49], [52], [53], [54], [62] and
MIwas used by the study [24], [38], [45], [46], [55]. The EEG
connectivity features for classification are typically extracted
at the functional brain network level. A few studies used
effective connectivity for ER. Among the effective connec-
tivity, TE is the mostly used method, which was used in the
study [5], [7], [23], [40], [41], [62]. Besides, there are several
connectivity methods, such as PLI [21], PSI [50], PDC [64],
and GC [5]. Among the various classification algorithms,
CNN-based classifiers are the most popular. Several other
prominent classifiers are SVM, KNN, RF, NB, and hybrid
models. It might be interesting to investigate the performance
of the popular connectivity methods and their variants in
the same framework. This study has investigated several
popularly used connectivity strategies in ER investigations,
reflecting diverse aspects of brain connectivity. The connec-
tivity method fromwhere these popular connectivity methods
are originated and their variants are also investigated, which
are described in Table 3. Different studies investigated these
prominent connectivity features with different settings, and it
is timely demand to investigate those in a common framework
to identify individuals’ proficiency, which is the primary
motivation of this study.

III. EMOTION RECOGNITION FROM EEG USING
CONNECTIVITY FEATURE MAP AND CNN
ER from EEG signals can be summed up in three steps:
pre-processing the signals, feature extraction, and identify-
ing emotions using these features. Fig. 1 demonstrates the
ER system, where XCOR, PCC, PLV, MI, NMI, and TE
connectivity methods are considered for extracting features.
Then CNN is used for ER using the features. The following
subsections describe the major steps of the ER system.

A. BENCHMARK DATASET
In this study, the Database for Emotion Analysis using Phys-
iological Signals (DEAP) [69] is used for emotion analysis.
DEAP is one of the largest EEG database for emotion anal-
ysis. It contains EEG and peripheral physiological signals
from 32 subjects (i.e., individuals) captured while they were
watching 40 emotional music videos. In addition, subjective
scores that quantify the levels of Valence, Arousal, Liking,
and Dominance of the emotional states range between 1 to 9
(only linking ranges from 1 to 5) induced by watching the
videos are included in the database. Emotions can be majorly
categorized using a 2D space based on levels of Valence and
Arousal considering the dimension approach. Valence ranges
from unpleasant (negative) to pleasant (positive), and Arousal
ranges from passive (low) to active (high), which indicate
how strongly human feels emotions. The DEAP database
uses the BioSemi ActiveTwo system to record data. The EEG
electrodes are placed according to the 10/20 international
standard. At the time of EEG data acquisition, the electrode
has to be connected to the scalp. The name of the electrodes

originates from the names of the brain lobes [70] where the
electrode is to be placed. F stands for Frontal lobe, T for
Temporal lobe, C for Central region, P for Parietal lobe,
and O for Occipital lobe. The z (zero) refers to an electrode
position at the midline. Likewise, PO corresponds to the
electrode at the Parietal-Occipital lobe. The standard 10/20
system sets of electrodes locations on the skull is shown
in Fig. 2.

The pre-processed EEG signals provided in the database
are used in this study that had undergone downsampling
to 128 Hz, EOG artifacts were removed, a bandpass fre-
quency filter from 4.0-45.0Hz was applied and the data was
segmented into 60 second trials and a 3 second pre-trial
baseline removed. The downloaded pre-processed version of
the DEAP dataset contains 32 files for 32 participants. Each
participant file contains two arrays named data and labels as
shown in Table 4. The videos are in the order of experiment
id, so not in the order of presentation. This means the first
video is the same for each participant. There are 40 channels,
where the first 32 channels are for EEG signals, and the
rest are peripheral physiological signals. In the pre-processed
version of the dataset, the EEG channels are ordered as listed
in Table 5.

B. PRE-PROCESSING
Pre-processing is a common step in working with EEG sig-
nals, which includes filtering the signals, removing artifacts,
etc. The EOG artifacts are removed in the pre-processed ver-
sion of the DEAP dataset. Reshaping, filtering, and segmen-
tation are applied to the signals as the further pre-processing
steps.

1) RESHAPING
In the dataset, the signal length is 63 seconds: the first 3 sec-
onds of data is the pre-trial baseline, which is removed as it
doesn’t contain any information relating to emotion, and the
last 60 seconds of data is processed for this study. With the
sampling frequency 128Hz, the number of data points stands
at 60 × 128 = 7680. Among 40 channels, EEG data is con-
tained in 32 channels, which are chosen for this experiment.
After reshaping, the data format is changed from video/trial×
channel × data = 40 × 40 × 8064 to video/trial × channel ×
data = 40 × 32 × 7680.

2) FILTERING
It is reported in literature that emotion has a strong rela-
tion with the Beta and Gamma sub-bands and a weak rela-
tion with the Alpha sub-band whereas a very low relation
with the Theta and Delta sub-bands of EEG [8]. Therefore
only the Alpha, Beta and Gamma sub-bands are consid-
ered in this study and the filtering is performed to extract
these bands from EEG signal with an open-source tool-
box EEGLAB [71]. Sample of original EEG signal and its
Alpha, Beta, and Gamma sub-band signals are shown in
Fig. 3.
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TABLE 3. Prominent connectivity features and their usages statistics.

FIGURE 1. Framework of the ER system from EEG using CFM.

FIGURE 2. Standard 10/20 system sets of EEG electrodes locations on the skull: (a) Different parts of human brain [70]; (b) Electrodes for EEG
recording in different lobes according to international 10/20 electrode placement system (for 32 channel EEG system).

3) SEGMENTATION
In order to increase samples for training, signal segmentation
on four frequency bands (the three sub-bands and the full
frequency spectrum of the EEG signals) is done. For this
experiment, EEG signals are segmented using three sliding
time windows, each with 50% overlap, as shown in Fig. 4.
The window sizes are 4 seconds, 8 seconds, and 12 sec-
onds. The descriptions of the three segmentations are given
in Table 6.

As the sampling rate of the signal in the dataset 128Hz,
so there are 512 (128× 4), 1,024 (128× 8), and 1,536 (128×

12) data points in each segment of length 4-second, 8-second,
and 12-second, respectively. Since each trial is 60 seconds
long, so 29 segments are acquired using a time window
of 4-second that moved every 2 seconds, 14 segments are
obtained using a time window of 8-second that moved every
4 seconds, and 9 segments are obtained using a time window
of 12-second that moved every 6 seconds. Finally, for a total
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FIGURE 3. Main and sub-bands EEG signals of participant 1, video 1, channel 1.

FIGURE 4. Illustration of segmentation with overlapping.

TABLE 4. File description for single participant in the pre-processed
version of the dataset.

of 32 participants, 37,120 (29 × 40 × 32), 17,920 (14 ×

40 × 32), and 11,520 (9 × 40 × 32) samples are obtained
using the 4-second, 8-second, and 12-second segmentation
time windows, respectively.

4) DATASET ANNOTATION
The Valence-Arousal scale ranging from 1 (low) to 9 (high) is
employed in this study to measure emotions. The scales are
divided into two parts to construct this emotion recognition
task (binary classification). Similar to thework in [8], Valence
is divided into high (> 4.5) and low (≤4.5) according to the
Valence scale and they are termed as HV and LV respectively;
and Arousal is divided into high (> 4.5) and low ≤4.5)

TABLE 5. The channel layout in the pre-processed version of the dataset.

according to the Arousal scale and they are termed as HA
and LA respectively.

C. CONNECTIVITY FEATURE MAP (CFM) CONSTRUCTION
The feature extraction technique transforms inputs to new
dimensions, which are different (linear, non-linear, directed,
etc.) combinations of the inputs. Six types of connectivity
measures are considered in this study for connectivity feature
extraction and CFM construction. The strength of connectiv-
ity between two electrodes reflects the interaction between
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two brain regions at single experiment. This interaction might
be a direct correlation or inverse correlation, synchronization,
or asynchronization, depending on cognitive or emotional
activities. Relationships differ depending on the connectivity
types as well. The connectivity methods chosen for this study
are:

1) Linear functional connectivity methods: XCOR and its
variant PCC.

2) Non-linear functional connectivity methods: PLV,
MI and its variant NMI.

3) Non-linear effective connectivity methods: TE.
For each connectivity method, features are extracted from

the three sub-bands and full frequency spectrum of the EEG
signals. Therefore, there are four types of connectivity fea-
tures for each connectivity method. There are three segmenta-
tion time windows for each frequency band. Thus, for eight in
total, 6 × 4 × 3 = 72 different types of connectivity features
are extracted.

1) CROSS-CORRELATION (XCOR)
The XCOR function measures the linear correlation between
two signals. The equation can also be written as:

XCORXY [l] =

{∑N−l−1

t=0
Xt + lYt if l ≥ 0

XCORYX [−l] if l < 0
(1)

where l = − (N − 1) , . . . ,−2, −1, 0, 1, 2, . . . , (N − 1) .

The variable l denotes a lag or time shift parameter, and
XCORXY [l] denotes the XCOR between two signals X and
Y with lag l. For l ≥ 0, signal X (t) leads the signal Y (t)
by l positions, and for l < 0, X (t) lags behind the signal
Y (t). If N is the finite length of the signals X (t) and Y (t),
then the number of samples in the resultant XCOR sequence
is m = 2N − 1. When l = 0, PCC is recovered [20].
Several features can be extracted from the XCOR

sequence, such as mean or average, peak value, instant at
which peak occurs, standard deviation, centroid, equivalent
width, and mean square abscissa [72], [73]. The peak value
of cross-correlation (max(XCOR)) is used in this study.

2) PEARSON CORRELATION COEFFICIENT (PCC)
PCC measures the linear correlation between two signals X
and Y , which can be calculated as

PCCXY =
n

∑
XiYi −

∑
Xi

∑
Yi√

n
∑
X2
i −

(∑
Xi

)2√n∑
Y 2
i −

(∑
Yi

)2 , (2)

where n is the sample size, Xi, Yi are the individual sample
points indexed with i. The value of PCC ranges from −1 to 1,
with a PCC of 0 indicating no linear dependence between the
two signals, and a PCC of −1 or 1, respectively, denotes a
complete linear inverse correlation or complete linear direct
correlation between them.

3) PHASE LOCKING VALUE (PLV)
PLV expresses the phase synchronization between two sig-
nals, obtained as the average of the absolute phase differ-

ences, which is obtained as follows-

PLV XY =
1
T

∣∣∣∣∣
T∑
t=1

exp
{
j(ϕtX − ϕtY )

}∣∣∣∣∣ . (3)

Here, ϕt is the signal phase at time t ,X and Y denote two elec-
trodes, T is the signal time length. The value of PLV ranges
from 0 to 1, where their limits indicate that the two signals are
either entirely independent (0) or wholly synchronized (1),
respectively.

4) MUTUAL INFORMATION (MI)
The amount of information about one random variable that
may be learned from observing another is measured as MI.
The following is the definition of MI between two random
variables X and Y :

MIXY = H (X) + H (Y ) − H (X ,Y ) . (4)

In this case, H stands for Shannon entropy [74]. The marginal
entropies of the two variables X and Y are H (X) and H (Y ),
respectively, and their joint entropy is H (X ,Y ). MI is sym-
metric and nonnegative. The range of MI’s value is 0 ≤

MIXY < ∞. If MIXY is equal to 0, then X and Y are
independent. If MIXY is greater than 0, then X and Y are
dependent.

5) NORMALIZED MI (NMI)
As MIXY does not typically have definite upper bounds, it is
sometimes better to normalize this measure such thatMIXY ∈

[0, 1]. In NMI, MIXY is normalized by H (X) + H (Y ) to
provide a value between 0 (independence) and 1 (strong
dependence), with the equation being written as:

NMIXY =
H (X) + H (Y ) − H (X ,Y )

H (X) + H (Y )

= 1 −
H (X ,Y )

H (X) + H (Y )
. (5)

6) TRANSFER ENTROPY (TE)
TE measures the directed flow of information from a time
series or signal Y to another signal X . In other words,
it describes the gain obtained by knowing Y for the prediction
of X .

TEY→X = H (Xt ,Yt) − H (Xt+h,Xt ,Yt) + H (Xt+h,Yt)

−H (Xt) . (6)

Here, Xt+h is the future of Xt and h = 1 is chosen for this
study. If Xt+h = w, then TEY→X can be computed as a
combination of entropies:

TEwXY = H (w,X ) + H (X ,Y ) − H (X ) − H (w,X ,Y ). (7)

The range of TE value is 0≤ TEY→X < ∞. If TE = 0,
then there is no causal relationship between the two time
series. TE ≥ 0 indicates that, a causal relationship exists
between the two time series.
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For calculating the probability that is required to calcu-
late entropy, the fixed bin histogram approach is followed.
Sturges’ Rule is followed to select the number of bins. If n
is the number of data points in each segment, ‘Sturges’ rule
uses the following formula to determine the optimal number
of bins to use in a histogram:

Number of bins =
⌈
log2 n+ 1

⌉
. (8)

In the case of CFM, the variables are signals from individ-
ual EEG channels. The connectivity features are computed
for every pair (X ,Y ) of EEG channels. Consequently, if there
are N channels, the number of obtained features is N (N −

1)/2 for undirected connectivity and N (N − 1) for directed
connectivity. The connectivity features for all channel pairs
can be represented in a matrix (i.e., CFM) as shown in Fig. 5.
The CFMs have 32 rows and 32 columns for 32 EEG chan-
nels. Thus, the size of each connectivity matrix is 32 × 32.
The element of the matrix at position (X ,Y ) specifies the
connectivity between the EEG signals found from the X th
and Y th channels. The CFM is equivalent to the adjacency
matrix of a graph in which the EEG channels are considered
as nodes and the connectivity features as edge weights.

D. EMOTION CLASSIFICATION USING CONVOLUTIONAL
NEURAL NETWORK (CNN)
Among different DL methods, CNN is the most successful
classifier for 2D data and can implicitly extract relevant fea-
tures [75]. Since the constructed CFMs are in 2D, CNN is
chosen as a suitable classifier. In general, a CNN architecture
consists of an input layer, several convolutional-subsampling
layers, flatten layer, a fully connected layer, and an output
layer. The first operation of a CNN is convolution performed
on the input (matrix, image, or map) with its kernel, which
generates a new convolved matrix. Preceding subsampling
operation will downsize the convolved matrix with important
features. After one or more convolutional-subsampling oper-
ations through a fully connected dense layer, the output layer
categorizes the given 2D matrix as input of the CNN.

Three convolutional layers, twomax-pooling layers, flatten
layer, a dense layer, and an output layer make up the CNN
architecture employed in this study. Fig. 6 depicts the CNN
architecture used in this study. Every convolution layer used
kernels of size 3 × 3, and the stride is set to 1. Rectified
linear unit (ReLU) is used as an activation function. The
numbers of filters are 32, 64, and 128 for the 1st, 2nd, and 3rd
convolution layers, respectively. The same convolution (i.e.,
padding= 1) is used for all the convolution layers to preserve
the information of the corner pixels of the input feature map.
Fig. 6 clearly shows how many filters, strides, and padding
are included in each layer. Two max-pooling layers are used;
one is after the 1st convolution layer and another is after
the 3rd convolution layer. Every pooling layer uses kernels
whose size is 2 × 2 with stride 2. After each max-poling
layer, batch normalization is used to accelerate the model
training. After convolution and pooling operation, the feature
map is flattened to a single-column vector and fed to the dense

layer. The dense layer and output layer’s respective neuron
counts are set at 128 and 2, respectively, and the dense layer
is accompanied by a 25% dropout to minimize overfitting.
In the output layer, the ‘‘Sigmoid’’ activation function is
applied.

IV. EXPERIMENTAL STUDIES
This section describes the experimental outcomes of the
ER system for CMFs created with XCOR, PCC, PLV, MI,
NMI, and TE individually. The efficacy of these methods is
assessed based on the test set recognition accuracies.

A. EXPERIMENTAL SETUP AND EVALUATION METRIC
The CNN is trained by the Adam algorithm [74], and binary
cross-entropy is used as the loss function. The learning rate,
batch size, and epochs for the CNN are set to 0.00001, 32, and
500. A 5-fold Cross Validation (CV) is applied, where 20% of
the available data are reserved as testing set by turn. We also
considered the Training–Test split as 80% and 20%. Two DL
frameworks, Keras and Tensorflow, available in Python, are
used for implementing the CNN model for the classification
process. The P100 GPU in the Kaggle platform was used
for training the model, and MATLAB R2021a was used
for feature extraction through the device of configuration:
CPU: Intel(R) Core(TM) i5-4200 CPU @ 2.50 GHz, RAM:
4.00 GB, 64-bit windows operating system.

The performance of the model is evaluated using widely
used evaluation metric named accuracy, precision, recall (i.e.,
sensitivity and specificity), and F1 score. Accuracy can be
calculated using Equation 9. For HV or HA class, precision
(Pr+), recall (Rc+), and F1 score (F1+) are sown in Equation
10-12. Similarly, for LV or LA class, Pr−, Rc− (i.e., speci-
ficity), and F1− are also calculated.

Accuracy = (TP+ TN )/(TP+ TN + FP+ FN )

(9)

Pr+
= TP/(TP+ FP) (10)

Rc+or Sensitivity = TP/(FN + TP) (11)

F1+
= (2 × Pr+

× Rc+)/(Pr+
+ Rc+) (12)

Here, TP or true positive means the samples are labelled
originally as high, and the model also predicted those as
high. TN or true negative means the samples are labelled
originally as low, and the model also predicted those as low.
FP or false positive means the samples are labelled originally
as low, but the model predicted those as high. FN or false
negative means the samples are labelled originally as high,
but the model predicted those as low. Since only accuracy
metrics can’t show the effectiveness of deep learning models
for classification, the other performance measures are used
for extensive study. For example, the precision score (Pr+)
shows the model’s ability to avoid the false-positive measure
whereas the recall score (Rc+) signifies the model’s ability to
correctly predict the positives out of actual positives. F1 score
(F1+) is a representation of accuracy giving equal weight to
both the precision and recall.
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FIGURE 5. Sample connectivity feature map (CFM) constructed with different methods.
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FIGURE 6. Configuration of the CNN model for emotion recognition used in this study.

B. EXPERIMENTAL RESULTS
In the experiment, the connectivity features are compared
with respect to their accuracy and time. The accuracies are
calculated for four different frequency bands (Alpha, Beta,
Gamma, and full frequency) with three different segmen-
tation time windows. The time required to construct CFM
with individual connectivity methods is calculated for the
three different segmentation time windows. The training time
varying segmentation time windows are also calculated.

1) PERFORMANCE COMPARISON
Firstly, themodel’s loss and accuracy curves are compared for
the Gamma frequency band and full EEG signals. Then, the
classification accuracy, specificity, sensitivity, precision and
F1 score have been compared. The results are for 8-second
segmentation frame. Finally, the overall classification results
of all connectivity methods for all three sub-frequency bands
and for the full frequency spectrum are presented in two
modes (5-fold CV and training-test split) for all three seg-
mentations.

The model loss and accuracy curves for Valence and
Arousal classification with a data length of 8 seconds are
shown in Fig. 7-Fig. 8 for the Gamma frequency band. From
Fig. 7(a) and Fig. 8(a), it can be seen that the loss convergence
of the model for TE is slightly faster than the other feature
and the loss convergence for PCC and XCOR are slower.
Faster convergence indicates that the model can easily learn
these features. Similar characteristics can also be found in
Fig. 7(b) and Fig. 8(b), where the accuracy improvement is
faster for TE, followed by MI, NMI, PLV, and PCC, and the
accuracy improvement for XCOR is slower among all the
methods. According to Fig. 7(c) and Fig. 8(c), the accuracy
for MI-based connectivity is higher than that of others. The
accuracies of PCC and PLV are competitive and less than
that of MI-based features. The results obtained from effective
connectivity TE are less than functional connectivity (e.g.,
PCC, PLV, and MI), though effective connectivity containing
the directional information. The best result achieved in this
study is with the NMI feature.

The classification performance of the models in a train-
test split mode that used different features in the Gamma

TABLE 6. Descriptions of different segmentation.

frequency band is shown in Table 7. The table contains the
accuracy of individual classes of low and high (i.e., specificity
and sensitivity), precision, F1 score for both Valence and
Arousal and the overall accuracy of the classification. From
Table 7, it can be observed that the NMI method achieved
higher specificity, sensitivity, and accuracy in both Valence
and Arousal classification. The precision and F1 score are
also found better or comparable for NMI connectivity.

Similar to the Gamma frequency band, the loss conver-
gence of the model for the TE feature is faster than all other
features also in the full frequency spectrum of the signals,
as seen in Fig. 9(a) and Fig. 10(a), and accuracy improvement
in Fig. 9(b) and Fig.10(b). There is a slow start in decreasing
the loss and improvement in accuracy for PLV. According
to Fig. 9(c) and Fig. 10(c), the overall accuracy in the full
frequency spectrum is less than that of Gamma band. For PLV,
the test accuracy starts to increase, and after a few epochs, the
accuracy decreases both for Valence and Arousal.

The classification performance of the models in train-test
split mode that used different features in the full frequency
spectrum of the signals is shown in Table 8. The table contains
the accuracy of individual classes of low and high (i.e., speci-
ficity and sensitivity), precision, F1 score for both Valence
and Arousal and the overall accuracy of the classification.
The results are obtained with a signal length of 8 seconds
from the full frequency spectrum. Table 8 identified that the
results of the classification in the full frequency band are
similar manner as the results in the Gamma frequency band.
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FIGURE 7. Model loss and accuracy for valence classification using data with length of 8 seconds (gamma band).

FIGURE 8. Model loss and accuracy for arousal classification using data with length of 8 seconds (gamma band).

FIGURE 9. Model loss and accuracy for valence classification using data with length of 8 seconds in full frequency spectrum.

In both Valence and Arousal classification, NMI achieved
higher specificity, sensitivity, and accuracy than the other
connectivity methods. The precision and F1 score are also
found better or comparable for NMI connectivity.

The results of the Valence and Arousal classification in
training-test split mode with different connectivity methods
in four different frequency bands are shown in Fig. 11. The
results are obtained from the data segmented with a time
window of 8 seconds. As mentioned earlier, it is reported
in the literature that the sub-bands may yield more accurate
information about constituent neuronal activities [11] and

emotion is highly related with Beta and Gamma sub-band and
moderately related with Alpha sub-band. The obtained results
of this study also satisfy this observation on frequency band
compatibility for emotion recognition. We observed that the
recognition accuracy is higher in sub-bands more specifically
in Gamma sub-band rather than the other bands or full EEG.
Among all the connectivity methods, NMI achieved higher
accuracies in all four frequency bands.

Table 9 presents the test set accuracies on Valence and
Arousal classifying CFMs constructed by different feature
extraction methods for the Alpha, Beta, Gamma bands, and
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FIGURE 10. Model loss and accuracy for arousal classification using data with length of 8 seconds in full frequency spectrum.

FIGURE 11. Results valence and arousal classification in training-test split mode with different connectivity methods in different frequency
bands with data length of 8 seconds.

TABLE 7. Performance comparison of different CFM methods in train-test split mode with signal length of 8 seconds from the gamma frequency band.

full frequency spectrum signals. Results presented for the
three different segmentation time windows (i.e., 4 seconds,
8 seconds, and 12 seconds) having 50% overlap. The best
results for each individual connectivity method are marked
as bold for ease of interpretation of the results. Both 5-fold
CV and 80%-20% training-test sets split for training CNN
performance measure are presented for better observations.

For segmentation time window variations, generally, 8s and
12s are fond competitive and better than 4s. Therefore, the
following discussions are for 5-fold CV with 8s time window
for all the cases.

It is observed from Table 9 that the performance of func-
tional connectivity methods (e.g., PCC, MI) is compara-
tively better than the effective connectivity method (i.e., TE).
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As an example, XCOR shows an accuracy of 76.89% for
Valance classification with the Gamma band, whereas, for
the same Gamma band, TE shows 73.22% accuracy. Among
all the connectivity methods, TE achieved the lowest accu-
racy. Among the functional connectivity methods, non-linear
connectivity methods (e.g., MI) performed better than linear
connectivity methods (e.g., PCC), according to the results
presented in Table 9. Between linear connectivity methods,
PCC is generally better than XCOR. As an example, PCC
obtained an accuracy of 87.47% for Valance classification
with the Gamma band, whereas, for the same Gamma band,
XCOR showed 76.89% accuracy. Among the non-linear con-
nectivity methods, any MI-based method (i.e., MI or NMI)
performed better than PLV. For example, 89.98% accuracy is
achieved through theMI feature, while PLV achieved 87.56%
for Valence classification in the Gamma frequency band.
Between the two MI- based methods, NMI is better than
MI. For instance, NMI achieved 90.75% for Valence and
90.83% for Arousal, while MI achieved 89.98% for Valence
and 90.14% for Arousal.

The ER accuracy concerning the Arousal dimension is
higher than that of the Valence dimension inmost of the cases,
as seen in Table 9. For example, PCC, a functional connec-
tivity method, shows an accuracy of 81.86% for Valence and
83.68% for Arousal in the Gamma frequency band. Similarly,
TE, an effective connectivity method, achieved 73.22% for
Valence and 73.65% for Arousal in the Gamma frequency
band. For both PCC and TE, a similar scenario is observed
for other frequency bands. Among all the eight connectivity
methods and four frequency bands, only PLV in the Gamma
band and PMI in the Beta band achieved higher accuracy
in the Valence dimension (87.56% for PLV and 86.81% for
PMI) than that of Arousal (86.55% for PLV and 86.50% for
Arousal) dimension.

The higher frequency bands are more suitable for ER
for each connectivity method, as shown in Table 9. Three
sub-frequency bands are used with each connectivity method;
Alpha (8–12 Hz), Beta (13–29 Hz), and Gamma (30–50 Hz).
For all the connectivity methods, it is observed from the
table that the Gamma band provides higher classification
accuracies than the other two sub-frequency bands and the
full frequency of the signals for both Valence and Arousal.
Results from the Beta band are lower than the Gamma band,
and the Alpha band has shown the worst performance. For
example, NMI achieved 76.64%, 85.54%, and 90.75% in
Valence classification for the frequency bands Alpha, Beta,
and Gamma, respectively. According to the presented results
in Table 9, the NMI, a variant of MI, is the most effective in
terms of accuracy. At a glance NMI is the best-suited CMF
method for ER, which is significant outcome of the present
study.

2) FEATURE EXTRACTION AND TRAINING TIME
COMPARISON
Table 10 presents the time required to extract the feature with
the three segmentation time windows (i.e., 4 seconds, 8 sec-

onds, and 12 seconds) for different connectivity methods. The
feature extraction time is calculated in two different manners.
The time needed to contract a CFM and time to construct
the total CFM for one trial (i.e., a 60-second video). As the
numbers of both trials and participants are the same for each
connectivity method, a single trial is used to compare time.
The required time to train the model in different segmentation
time windows is also presented in Fig. 12.

From Table 10 it can be observed that the time needed
for feature extraction varies with the connectivity methods.
Among the connectivity methods, MI, NMI, and TE require
a relatively higher time for feature extraction than that of
XCOR, PCC, and PLV. The time needed to construct a
CFM for the data length of 8 seconds with XCOR, PCC,
and PLV are 0.26 seconds, 0.02 seconds, and 0.06 seconds,
respectively, while MI, NMI, and TE require 0.85 seconds,
0.91 seconds, and 1.27 seconds, respectively. Among all the
connectivity methods, PCC requires the lowest time, and TE
requires the highest time for feature extraction.

The feature extraction time also varies with the segmenta-
tion time window. In the shorter segment, the numbers of data
points are low, thus requiring less time to construct a CFM.
But, with a shorter segmentation time window, the numbers
of total CFMs get increased, which requires more time than a
longer segment with fewer numbers of CFM. For example,
TE requires 1.16 seconds and 1.27 seconds to construct a
CFM with a data length of 4 seconds and 8 seconds, respec-
tively. There are 4 × 128 = 512 data points in 4 seconds
segment and 8 × 128 = 1,024 data points in 8 seconds
segment, and computation requires more time for more data
points. If a complete trial is considered, there are 29 CFMs
and 14 CFMs for 4 seconds and 8 seconds time windows,
each with 50% overlap, and these require 20.86 seconds and
11.89 seconds, respectively, for the TEmethod. These similar
scenarios can be observed for each connectivity method and
for all three segmentation time windows.

The times are displayed for training up to 100 epochs
with XCOR feature in Fig. 12. According to the figure, the
time required to train the model vary with the numbers of
inputs, i.e., CFMs. The model took higher time to be trained
when the numbers of CFMs get increased. With shorter time
window, the numbers of CFMs increased and thus require
larger training time. For example, in case ofXCOR, themodel
took 325.66 seconds with 29,696 CFMs (i.e., 80% of 37,120)
and 161.67 seconds with 14,336 CFMs (i.e., 80% of 17,920)
to be trained, where the segmentation lengths are 4 seconds
and 8 seconds, respectively, which are displayed in Fig. 12.

3) COMPARISON WITH EXISTING STUDIES
Table 11 compares the Valence and Arousal classification
accuracies obtained in this study with other ER studies on
the DEAP dataset. The table also shows the length of the
segmentation time window with overlapping, classification,
and validation methods. The best result for each connectivity
method is written in bold. From the table, it can be observed
that classification accuracies vary with segmentation time
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TABLE 8. Performance comparison of different CFM methods in training-test split mode with signal length of 8 seconds from the full frequency spectrum.

FIGURE 12. Time comparison of different segmentation sizes in training the model.

and overlapping, classifier and also with validation method.
For PCC, the best accuracy was achieved by the study [21],
where segment overlapping is about 83%with CNN classifier
in 5 Fold CV mode. But the study [8] also used CNN as a
classifier and same segmentation time window but without
overlapping, and the accuracy reduces. The study [16] used
CNN to classify emotion with two segmentation time win-
dows with different overlapping. The segmentation time win-
dow is longer than that of the above-mentioned two studies.
Overlapping of 50% and 66% were used with segmentation
lengths of 8s and 12s, respectively and achieved accuracies
higher than the study [8] but lower than the study [21].
The accuracy improved when a hybrid classification model
was used. The study [16] shows that accuracy reduces with
a longer segmentation time window. The lowest accuracies
were achieved by the study [46], where SVM was used for
classification without segmentation. This study used CNN
classifier with a segmentation length of 8s and the overlap-
ping is 50%, which is the same as the study [16] and achieved
accuracies of 88.25% and 88.87% for Valence and Arousal,
respectively, with PCC that is higher than the study of [16].

The best results achieved in this study are with NMI fea-
ture, 91.26% for Valence and 91.23% for Arousal, which are

better than the traditional ML-based study [51], [55], [46]
and have shown competitive performance with a recent
study [21], [23] with other different connectivity features
and DL methods. For Valence classification, the study [21]
achieved higher accuracy, and for Arousal classification, the
study [23] achieved higher accuracy with the PLV feature.
This study with the NMI feature has shown superior to the
recent DL-based study [16], [8], where CNN is used as a
classifier, and PCC is used as a feature. Finally, the ER system
with NMI and CNN is a good EEG-based ER system.

V. DISCUSSION
In recent years, ER has achieved significant development,
and connectivity methods are widely used for feature extrac-
tion. In this investigation-type research, 2D feature maps
from EEG signals using the prominent connectivity measures
have been examined as efficient input of DL-based classi-
fiers targeting higher accuracy in emotion recognition. More
emphases have been placed on in-depth analysis from various
directions methodically to find the prominent feature map
from popular connectivity feature extraction methods where
some of the analyses and verification strategies are computa-
tion time consideration besides accuracy/loss and other com-
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TABLE 9. Classification comparison using different CFM methods.

TABLE 10. Time comparison of the CFM methods in feature extraction.

mon performance measures, frequency band superiority anal-
ysis. A customized CNNmodel has been used as classifier for
the emotions recognition task. Besides, the importance of the
gamma band of EEG has been analyzed and its superiority is
verified through experimental results and literature surveys.
Higher classification accuracy is achieved in this study in the
Gamma band using NMI connection features.

A. DISCUSSION ON PERFORMANCE OF DIFFERENT
METHODS
This study investigates several prominent connectivity meth-
ods with their variants for feature extraction from EEG
signals for ER. The connectivity features are selected from
different categories, such as linear and non-linear functional
and effective connectivity, where functional connectivity
methods are found to be better than effective connectivity
methods, and non-linear functional connectivity methods are
better than linear functional connectivity methods.

The accuracy of PCC and PLV is less competitive than
that of MI-based features. These results are consistent with
the findings of the study [46], where MI was identified as
the most informative connectivity measure. In the study [46],
three functional connectivity, PCC, PLV, and MI, were used
individually for ER. The best accuracy achieved with MI
and the results obtained from PCC and PLV were com-
petitive. Though the study [46], used SVM for classifica-
tion, the same scenarios are also observed in this study,
where CNN is used for classification. The results obtained
from TE are less than that of other connectivity methods
(e.g., PCC, PLV, and MI) though TE contains the direc-
tional information. These results are also consistent with
the study [23] and [7], where PCC, PLV, and TE were
used for emotion recognition and emotional video classifi-
cation, respectively. The results obtained in the study [23]
and [7], from TE features were less than those obtained from
PCC and PLV.
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TABLE 11. Performance comparison with other studies on the DEAP dataset.

Among the functional connectivity methods, non-linear
methods (e.g., MI) provide higher ER accuracies than linear
methods (e.g., PCC). The nervous system of Homo sapiens is
very complex. Complex nonlinear phenomena happen from
the neuron cell to the entire nervous system. However, linear
connectivity analysis methods like correlation and coherence
have been widely used over decades for their simplicity
in measuring neural connectivity and interconnections. But,
modern studies reported that these linear methods could
only deal with limited neural activities and their functional
relationships, and therefore, they cannot accurately identify
neural behaviors. Therefore, nonlinear methods are essential
to investigate neuronal processing and signal transfer more
accurately and realistically [76]. Nonlinear approaches can
promisingly provide deep insights into neurophysiological
mechanisms. Hence the nonlinear techniques have the poten-
tial to develop improved EEG-based ER systems.

B. ER PERFORMANCE IN DIFFERENT BANDS
In this study, we have designed a CNN classifier for emotion
classification. Six different connectivity features have been
inspected in three different frequency bands. The best accu-
racy is obtained in the Gamma band (91.26% for valence and
91.23% for Arousal with the NMI feature).

The cognitive, vigilance or emotional activities of brain can
be prominent in some specific frequency bands. Therefore,

EEG signals from the standard Alpha, Beta, and Gamma
bands have been used in this study to search for the most
suitable frequency band for ER and to investigate the per-
formance of connectivity methods in different bands. The
experiential results suggest that the high-frequency bands,
especially the Gamma band, are sensitive to emotion alter-
ation for each connectivity method. A significant part of the
literature agrees with these findings that the brain’s emotional
actions are associated with the Gamma band, which keeps
more trustworthy and prominent properties [36], [77], [78].
Zhuang et al. [79] used the empirical mode decomposition to
recognize the emotion types. Their results indicated that the
performance of Beta and Gamma bands are more influential
than other bands. Liu et al. [80] andChen et al. [46] performed
ER using connectivity features extracted from the different
frequency bands of the EEG signals and suggested that the
high-frequency bands were more suitable for ER. The authors
of the study [46] found that connectivity features extracted
from signals from high-frequency bands aremore informative
than signals from low-frequency bands. The study [81] also
used the DEAP dataset to classify emotion from EEG signals
from five sub-frequency bands and the full-frequency band
and showed that recognition accuracy in the Gamma band
was higher than in the full-frequency band and other lower-
frequency bands.

Emotion might create intense memories which can last
long. The emotion-stimulated memory initiates the activation

VOLUME 11, 2023 37827



M. A. Maria et al.: Comparative Study on Prominent Connectivity Features for ER from EEG

of diffusely projecting neuro-modulatory systems, which in
turn increase the consolidation of synaptic plasticity in the
activated regions. This process needs the propagation of sig-
nals between brain regions to induce long-lasting synaptic
plasticity. These requirements are satisfied by the Gamma
oscillations of EEG, which is a synchronous activity on a fast
timescale (35–120 Hz) [82]. Thus, the higher emotion recog-
nition accuracy in the Gamma frequency band is justified.

VI. CONCLUSION
This paper has presented a thorough investigation of promi-
nent connectivity features for human emotion recognition
from EEG to indicate how distinct brain connectivity is
well-informative as features for emotion classification. For
this accomplishment, brain area connectivity is assessed for
classifying emotions by using 32 channels of EEG signals.
After segmenting and filtering the data in the preprocessing
stage, features are extracted by applying six connectivity
techniques, including XCOR, PCC, PLV, MI, NMI, and TE,
which have been selected through an extensive review. Each
type of feature is represented in a 2D map individually.
Finally, a customized CNN model is used to classify the
feature maps, followed by a rigorous classification accuracy
analysis. MI-based connectivity (i.e., MI and NMI) have
been identified as the more accurate methods in the Gamma
frequency band, with accuracy percentages of 90.75% and
91.26% for valence and 91.01% and 91.23% for arousal,
respectively. It is clearly seen that the connectivity features
extracted from the higher-frequency band achieved a more
accurate results than the features extracted from the lower-
frequency band. The findings of this study are anticipated
to be helpful for the research and development of efficient
emotion recognition system.

Existing researches proposed a variety of approaches to
measure and analyze brain network connectivity. Although
six connectivity measurement methods are applied (XCOR,
PCC, PLV, MI, NMI, and TE) and compared their effec-
tiveness, consideration of more methods could enhance the
support to prominent feature findings of this study. The first-
order TE feature is used in this study without considering
the time delay. The performance of the TE feature can be
improved further if there is more freedom of parameter selec-
tion. Moreover, a CNN model is used as a classifier. Other
types of classifiers may alter the results with better accu-
racy. Here, only the inter-channel connectivity is considered.
On the other hand, the intra-channel connectivity might also
be a viable alternative for future work. Other connectivity
methods can also be used to explore the best connectivity
method.
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