
Received 9 March 2023, accepted 29 March 2023, date of publication 5 April 2023, date of current version 14 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3264825

A Comprehensive Survey on the Use of
Hypervisors in Safety-Critical Systems
SANTIAGO LOZANO 1,2, TAMARA LUGO1, (Member, IEEE),
AND JESÚS CARRETERO 1, (Senior Member, IEEE)
1Computer Science and Engineering Department, University Carlos III of Madrid, 28911 Leganés, Spain
2SENER Aeroespacial, Tres Cantos, 28760 Madrid, Spain

Corresponding author: Jesús Carretero (jcarrete@inf.uc3m.es)

This work was supported in part by Comunidad de Madrid Government ‘‘Nuevas Técnicas de Desarrollo de Software de Tiempo Real
Embarcado para Plataformas, MPSoC de Próxima Generación,’’ under Grant IND2019/TIC-17261.

ABSTRACT Virtualization has become one of the main tools for making efficient use of the resources
offered by multicore embedded platforms. In recent years, even sectors such as space, aviation, and
automotive, traditionally wary of adopting this type of technology due to the impact it could have on the
safety of their systems, have been forced to introduce it into their day-to-day work, as their applications are
becoming increasingly complex and demanding. This article provides a comprehensive review of the research
work that uses or considers the use of a hypervisor as the basis for building a virtualized safety-critical
embedded system. Once the hypervisors developed or adapted for this type of system have been identified,
an exhaustive qualitative comparison is made between them. an exhaustive qualitative comparison is made
between them. To the best of our knowledge, this is the first time that all this information is collected in a
single article. Therefore, the main contribution of this article is that it collects and categorizes the information
of each hypervisor and compares them with each other, so that this article can be used as a starting point
for future researchers in this area, who will be able to quickly check which hypervisor is best suited to their
research needs.

INDEX TERMS Aerospace, automotive, aviation, embedded, hypervisor, multicore, safety-critical, virtual-
ization.

I. INTRODUCTION
Virtualization is one of the most powerful tools in the present
and near future for the efficient use of modern multicore
platforms. However, although it is generally accepted that the
future of electronic systems is multicore technology, sectors
with critical security requirements (such as the space, avia-
tion, or automotive sectors) have traditionally been reluctant
to adopt this technology. For example, even though that mul-
ticore systems began to come into existence in 2005, 2008 is
the first year in which the subject is directly addressed in
two articles by the American Institute of Aeronautics and
Astronautics (AIAA): one onMultiple Levels of Independent
Security (MILS) [1] and another dealing with the future of
jet fighter mission computers [2]. Most probably, the reason

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosario Pecora .

behind this slow permeation of multicore technology in criti-
cal sectors is related to interference problems between cores
that need to consume the same resources and how this affects
the Worst-Case Execution Time (WCET) [3]. Years ago,
works such as those of Kinnan [4] and Wilhelm et al. [5]
already pointed out some of the problems of shared resources,
how they cause variability in execution times and how this
un-predictability impacts the implementation and certifica-
tion of these systems. A decade later, bounding the WCET
to obtain deterministic behaviour remains one of the main
challenges in, for example, avionics platforms, as reflected in
the work of Annighoefer et al. [6] These problems can be mit-
igated, in many cases, by intelligently planning architectures
to improve predictability, as the works of Cullman et al. [7]
and Kliem and Voigt [8] point out.

However, it is essential to address the problems that mul-
ticore processors pose, as they are becoming impossible to

36244

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0009-0001-5086-5251
https://orcid.org/0000-0002-1413-4793
https://orcid.org/0000-0001-9802-4809


S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

avoid in the present and future of critical real-time systems.
In their article [9], in which they review the challenges of the
future in terms of avionics architectures, Bieber et al. explain
how multicore architectures have been replacing monocore
architectures since the mid-2000s, so that monocore pro-
cessors are progressively less common and more expensive.
In addition to economic reasons, monocore processors have
a ceiling when it comes to computing power. It is especially
limiting the power consumption and the heat dissipated by
the processing units the more powerful they are. This means
that the future of avionics and other sectors of critical needs
inevitably pass-throughmulticore processors. For this reason,
software tools are needed to help take advantage of their
processing capacity, maintaining high levels of safety and
security. Among these tools, virtualization has emerged as
one of the most powerful, gaining popularity even in techno-
logically conservative sectors such as automotive or avionics.

To the best of our knowledge, there are not many surveys
comparing virtualization solutions for safety-critical embed-
ded systems. Gu and Zhao compared some virtualization
technologies for real-time embedded systems (including, but
not focused on, safety-critical systems) and discussed some
of their technical issues [10]. However, the review focused
heavily on work done on Xen and KVM, and it is outdated,
as the article dates from 2012. Taccari et al. did a review of
virtualization technologies for real-time embedded systems,
but with a clear focus on those running on the ARM architec-
ture [11], and the study is also rather outdated technologically
(2014).

Recently, Cinque et al. categorised the hypervisors used
in mixed-criticality systems into four groups, according to
the internal structure by which they achieve virtualization:
separation kernel hypervisors, general-purpose hypervisors,
hardware-extensions hypervisors, and lightweight hypervi-
sors [12]. For each group they mention several examples, list
some of their features, and discuss whether those make them
more or less suitable to be used in industry. However, their
work clearly differs from ours on several points. The most
important is that the work of Cinque et al. is not and does
not pretend to be exhaustive, so it does not consider all the
solutions used in industry or in research works but mentions a
few that exemplify each category. In addition, the comparison
between those solutions uses different parameters than ours,
and focuses especially on dimensions such as certification,
testing, or dependability support, in order to check the matu-
rity of each solution for use in industry. Our survey is more
exhaustive covering all hypervisors typically used in industry
and research and comparing them using criteria that are not
necessarily industry-focused, so that the survey can serve as a
starting point for future research, even if it does not deal with
certification or testing issues.

This article provides a comprehensive review of the
research work that uses, or considers the use, of a hyper-
visor as the basis for building a virtualized safety-critical
embedded system. Section III introduces the fundamen-
tals of virtualization in real-time systems and the basic of

FIGURE 1. Number of papers published each year according to the
previously defined search.

hypervisors. Section II sets out the criteria for the selection
of articles for this review. Section IV shows a study of virtu-
alization in safety-critical embedded systems, with emphasis
on aerospace and automotive industries. Sections V and VI
present a comparison of some relevant safety-critical real-
time hypervisors. Finally, Section VIII describes the main
conclusions of this work.

II. PAPER SELECTION CRITERIA
The interest of the research topic for the community of
real-time systems is undoubted. However, as we want to
restrict the overview on hypervisors to safety-critical systems,
we have searched for a term consisting of the word ‘‘hyper-
visor’’ together with different words related to industries in
which safety-critical embedded systems are developed in the
most popular and relevant databases of scientific and engi-
neering research articles: IEEE Xplore and Science Direct.
Table 1 shows the results obtained.
Note that not all the articles and books resulting from the

search are of interest to this survey, as some only mention
the hypervisor concept in a context not directly related to this
technology. However, sorting the search results in chronolog-
ical order clearly shows the upward trend in the importance
and depth of hypervisors in safety-critical embedded systems.
After eliminating duplicate results, Table 2 presents the dis-
tribution of articles and books by year and Figure 1 shows
them graphically.

These results are supplemented with searches in Google
Scholar, to complement the articles found in these two large
databases with the most relevant articles found in smaller
databases. From all these results, only journal articles and
conference proceedings are selected, discarding books, which
usually collect valuable technical information but do not
usually present new information that has not been previously
presented in articles. Finally, among the remaining articles,
a review is carried out to select only those articles that meet
one of the following criteria:

• The article deals with the use of an existing hypervisor
(open-source or proprietary licensed) in the context of a
safety-critical embedded system.

VOLUME 11, 2023 36245



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

TABLE 1. Number of papers resulting from the search of the word ‘‘hypervisor’’ and words referring to safety-critical sectors.

TABLE 2. Distribution of the results of the previous search by year.

FIGURE 2. Articles selection criteria.

• The article presents modifications made to an
open-source hypervisor for use in the context of a
safety-critical embedded system.

• The article presents the development of a new hypervisor
for use in safety-critical embedded systems.

The criteria for selecting the articles to be reviewed in this
survey are reflected graphically in Figure 2.

III. FUNDAMENTALS
A. BRIEF HISTORY OF VIRTUALIZATION
Despite being a topic that has been booming in recent years,
the roots of virtualization date back to the 1960s. Christo-
pher Strachey is considered one of the pioneers on the sub-
ject, being the first person [13] to publish an article deal-
ing with the concept of time-sharing at the International
Conference on Information Processing at UNESCO, Paris,
in June, 1959 [14]. The time-sharing technique is based on
the sharing of a computer by several users at the same time.
This technique would imply over time revolutionary changes
in the industry, including the appearance of the concept of
virtualization.

The first experimental time-shared system was accom-
plished in 1961 by a MIT group, led by Professor Fernando
J. Corbató [15]. In 1963, the same group developed an oper-
ational version for the IBM 7094 mainframe, called CTSS
(Compatible Time-Sharing System). This system would be
the basis of the renowned MIT’s Project MAC (Mathematics

and Computation, later renamed to Multiple-Access Com-
puter) [16]. One of the main objectives of the project was the
creation of a large, multiple-access computer system, avail-
able to meet the needs of a large number of users individually.
In this context, MIT contacted several computer vendors,
including GE and IBM. At the time, IBM did not consider
the demand for a time-sharing computer to be large enough
to invest in. GE, on the other hand, committed to developing
a time-sharing computer, so MIT chose GE as its supplier.
In May 1964, a GE computer was used for a demonstration
of a time-sharing system at Dartmouth College [17]. This
probably became a wake-up call for IBM, especially when
Bell Labs announced that it needed a similar system.

In response, IBM designed the CP/CMS, the first
time-sharing OS that also introduced the first full virtualiza-
tion platform [18]. The first version, CP-40 OS, provided an
environment for up to 14 simultaneous virtual machines [19].
Although this OS was never commercially distributed, it was
the forerunner of CP-67 and CP-370 versions, that were the
base for the VM/370 OS, which was used with one of IBM’s
best-known mainframes, the System/370. Virtualization and
timesharing allowed to the companies to own a single main-
frame and to provide a terminal to each employee, instead of
providing a computer to each of them [20].

A further development was the VM86 mode, a hardware
virtualization technique that allowed multiple 8086 proces-
sors to be emulated by the 386 chip, thus allowing the execu-
tion of real mode applications that are incapable of running
directly in protected mode while the processor is running a
protected mode operating system [21].

In 1974, Gerald J. Popek and Robert P. Goldberg estab-
lished the characteristics that a system had to fulfill to support
virtualization [22]. Their article described the properties and
functions of virtual machines and virtual machine monitors
that we still use today. According to its definition, a virtual
machine (VM) can virtualize any hardware resource, includ-
ing processors, memory, and network connectivity. A vir-
tual machine monitor (VMM) is the layer of software that
provides the execution environment for the virtual machine.
In their article they also described the three properties that a
VMM had to satisfy:

• Equivalence: The environment that it provides to the
virtual machinesmust be identical to the native hardware

36246 VOLUME 11, 2023



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

that the VMM runs on. Thus, a program running on the
VMMmust behave in the same way as if it was running
directly on the physical machine.

• Resource control: The VMM must have full control
over system resources.

• Efficiency: If possible, there should be no difference
between a virtual machine and a physical equivalent.

These properties are still valid today, although the term
Virtual Machine Monitor is no longer so common, being
gradually replaced by the term hypervisor.
Over time, throughout the 1980s and 1990s, as Moore’s

prediction continued to hold true [23], computers became
increasingly powerful, cheap, and small. Personal computers
appeared to replace mainframes and terminals [24], slowing
the virtualization trend for some time. However, in recent
years we have experienced another boom in virtualization
technologies due to different reasons, some of which are:

• Resource optimization: The great power of today’s
computers means that, in many cases, they are idle most
of the time since the use required of them does not
consume all their resources. Virtualization allows sev-
eral applications, each one even with different operating
systems or execution environments, to run on the same
hardware in isolation and without interaction between
them. This has allowed to optimize hardware resources
in several types of applications [25].

• Isolation as a security measure: One of the great
advantages of hypervisors is the isolation among virtual
machines so that, ideally, malicious activity on one vir-
tual machine or container does not affect the rest [26]
Also, virtualization provides a way to implement appli-
cation redundancywithout having to purchase additional
hardware. If one application fails, another application
(running on a different virtual machine) can take over.

• Physical space reduction: The fact that virtualization
makes it possible to use fewer hardware resources allows
to save physical space.

• Less power consumption: Like the previous point, this
is a direct consequence of the resource optimization. The
fact of being able to use fewer hardware resources for the
same functionality can lead to less power consumption,
and eventually to a smaller carbon footprint [27].

• Easy migration and legacy protection: Hypervisors,
by definition, decouple the OSs and applications of the
host hardware, thus benefiting the migration of virtual
machines from one host to another without disruption.
This is a great advantage when it comes to efficient
work-balancing or when designing plug-and-play sys-
tems [28].

B. HYPERVISORS
As explained above, VMMs have their origin in the 70s, and
their birth responds to very specific needs. Today, VMMs
allow us to take full advantage of the capabilities of new pro-
cessors, which are becoming more and more powerful. The
term Virtual Machine Monitor has progressively decayed,

FIGURE 3. Graphical depiction of a hypervisor.

FIGURE 4. Type I hypervisor.

and today it is much more common to refer to them as
hypervisors.

Ankita Desai et al. [29] defined a hypervisor as a thin soft-
ware layer that provides abstraction of hardware to one or sev-
eral operating systems, by allowing them to run on the same
host hardware. Indeed, as shown in figure 3, a hypervisor is a
layer of software that creates and manages virtual machines
or partitions, to which it provides abstraction of the hardware.
It is more debatable whether an operating system that uses the
hardware virtualized by the hypervisor is necessary. As we
will see later, there are hypervisors that make the virtualized
hardware directly available to users, allowing them tomanage
it as if it were real hardware. Programming an application on
these hypervisors would be equivalent to programming what
is commonly known as a ‘‘bare-metal application’’, except
that the hardware on which it runs is virtual, not real.

Hypervisors can be classified into two types depending on
the environment in which they run (see Figs. 4 and 5):

• Type I hypervisors or bare-metal hypervisors, in which
the hypervisor runs directly on top of the host hardware.
In this, the hypervisor has the responsibility of schedul-
ing and allocating system resources to each of the virtual
machines, and no operating system runs below it.

• Type II hypervisors, in which the hypervisor runs as
an application on top of a host operating system. The
host OS does not necessarily have to know about the
hypervisor, it treats it as any other process.

Hypervisors can also be roughly divided into two types
based on the type of virtualization they offer:

• Full virtualization hypervisors that allow running
unmodified guests operating systems. The hypervisor
completely emulates the physical platform it runs on,
so the operating systems running on it don’t even know

VOLUME 11, 2023 36247



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

FIGURE 5. Type II hypervisor.

they are running on a virtualized platform. The great
advantage of this approach is the flexibility it offers,
by allowing any guest OS to run. However, it tends
to carry a significant overhead, with up to 30% more
latency when compared to running directly on physical
hardware [30].

• Paravirtualization hypervisors that cannot run unmod-
ified OSs, but the guest OS must be aware that it has
been virtualized and provides special hooks to directly
take advantage of the services offered by the hypervi-
sor [31]. In other words, the hypervisor does not have to
translate the instructions of each VM, but receives direct
instructions from it, usually called hypercalls. Of course,
this alternative is much less flexible, since each guest
OS must be modified to work with the hypervisor on
which it runs, but it has the advantage of offering higher
performance in terms of access time to hardware, as the-
orized and demonstrated by Dordevic et al. in an article
comparing the two virtualization techniques [32].

Some hypervisors, such as VMware, ESXi, are able pro-
vide both features. They support paravirtualization, but they
are also able to run unmodified guests. In this case, paravirtu-
alization is regarded as a performance optimization technique
that allows significantly better performance of the guest OSs
by reducing the number of abstraction layers sitting between
a guest execution environment and the hardware [33].

Some modern processors offer hardware tools to achieve
(ideally) full virtualization, reducing the overhead of clas-
sic full virtualization. They are enabled with the mecha-
nisms to support the virtual machine environment. Intel provi
hardware-assisted virtualization mechanisms for Intel pro-
cessors. As an example, Intel VT-x provides virtualization
mechanisms for processor virtualization [34], input/output
memory management unit (IOMMU) provides memory pro-
tection from I/O devices by enabling system software to
control which areas of physical memory and I/O device may
access. [35], and Single Root I/O Virtualization (SR-IOV)
that allows an I/O device to be shared by multiple Virtual
Machines [36]. This particular case goes by different names:
Xen calls it hardware virtual machine (HVM) [37], but it is
generally referred to as hardware-assisted virtualization or
accelerated virtualization.

Sometimes, this type of virtualization continues to have a
too large overhead and is combinedwith some paravirtualized
drivers, which is why it is also referred to as hybrid virtual-
ization [38].

FIGURE 6. Federated architecture example.

Most modern hypervisors for real-time systems offer the
possibility to specify core/task affinities, using affinity masks
which specify on a per-task basis on which processors a
task may be scheduled. However, core affinities restrict task
migration, which may generate some problems in archi-
tectures providing symmetric multithreading (SMT), where
tasks are allocated to the next free core. However, even if
SMT may seem more efficient, it could lead to an increase
in cache failures and, thus, in increasing in the worst-case
execution time (WCET) of the tasks. Thus, it is still a common
practice to map hard-real time tasks to a specific core indi-
cating its affinity. This feature is needed to provide ARINC
653 partitioning model for safety-critical avionics RTOS.
However, soft real-time tasks are usually allowed to migrate
form one core to the other [39].

IV. VIRTUALIZATION IN SAFETY-CRITICAL EMBEDDED
SYSTEMS
This section shows the current state of the art of virtualization
in safety-critical embedded systems through the actual land-
scape in the major sectors using them: aviation, aerospace,
and automotive sectors.

A. VIRTUALIZATION IN THE AVIATION INDUSTRY
Traditionally, flight systems have had a federated architec-
ture, in which each function consists of a black box with
dedicated computational resources [40] (see Fig. 6).

Each of the black boxes can contain a completely different
configuration (hardware or software) inside, and they are
physically isolated from each other. Naturally, this architec-
ture is excellent in terms of fault isolation and fault tolerance,
but it presents a series of serious problems: duplication of
resources, lack of flexibility (adding a functionality requires
adding a new box) and high cost, not only economic, but also
regarding power consumption and weight. It is in this context
that the concept of Integrated Modular Avionics (IMA) was
born, in the early 1990s [41]. In an IMA architecture, the
coexistence of different avionics functions on the same plat-
form is pursued, without interference between them. For this,
the different functions share a series of hardware resources
(CPU, communications, I/O devices. . . ) and are separated by

36248 VOLUME 11, 2023



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

FIGURE 7. Graphical depiction of the ARINC 653 standard.

robust partitioning mechanisms inherent to the architecture
itself. Today, the advantages of using IMA are not discussed
in the industry and virtually every airplane model that enters
service uses this philosophy [42].

One of the key enablers for this paradigm shift was the
release of the ARINC 653 software standard in 1996. ARINC
653 is a software specification for time and space partitioning
in safety-critical real-time systems. The first draft describing
ARINC 653was published in 1996 [43], and two supplements
have since been published, the most recent being in 2007.
Originally, it defined the general structure that the operating
system of an IMA architecture should follow, but ARINC
653 can also be applied to a hypervisor, since some of its
characteristics fit even better with it. The objective of ARINC
is to specify the characteristics of a software execution envi-
ronment in which several applications can run, separated
from each other in virtual containers called partitions. Ideally,
these containers should be perfectly isolated from each other,
so that the execution or failure of one partition does not
affect any other partition. The way to achieve this isolation is
to separate the hardware resources spatially and temporally.
The similarity between ARINC 653, in this regard, with the
hypervisor concept is remarkable, and this is reflected in the
equivalence between figures 3 and 7.

In addition to defining the services to be offered, one of the
most important features of ARINC 653 is that it standardizes
the interface between the hypervisor/OS and the application
layer. This interface is called APEX (Application/Executive),
and it offers several advantages in line with the IMA philoso-
phy: portability, reusability, modularity and easy integration
of software blocks.

The services offered by ARINC 653 can be divided into
several modules:

• Partition Management: This module provides means
to modify the operating mode of partitions, and it is in
charge of scheduling the partitions.

• ProcessManagement: Each partition can have multiple
periodic or aperiodic processes. This module provides

means for modifying the operational mode of processes,
and it includes process scheduling.

• Time Management: This module ensures that hard
real-time requirements are met and provides time-
related services, such as reading time or wait/timeout
services for processes. There must be a single time
source for all partitions, regardless of their execution.

• Inter-Partition Communication: Communication
among the different partitions is carried out through
ports and channels. Conceptually, a port could be seen
as a gate at the borders of a partition, while channels link
two or more ports. The standard also defines two modes
of operation: sampling mode (oriented to fixed-size
synchronous messages) and queuing mode (oriented to
asynchronous messages of variable size).

• Intra-Partition Communication: This module is in
charge of providing communication among processes
inside a partition, which is realized through buffers
and blackboards. Events and semaphores are also used,
to provide synchronization among processes.

• Health Monitor: This module is responsible for defin-
ing, detecting, and reacting to different errors at the
process, partition or system level.

In their article VanderLeest et al. [44] make an interesting
reflection on how the ARINC 653 standard seems to prohibit
interruptions, since they can undermine the determinism of
a system, allowing one partition to steal time from others.
Indeed, most implementations of ARINC 653 do assume
that interrupts are not allowed when following the IMA
philosophy, but they reason that interrupts do not have to
involve non-determinism, and they design interrupts that offer
predictability via a decreasing time budget, so that the system
is predictable at the scale of major time frame. They also
developed a prototype to demonstrate how these interrupts
work using the Xen hypervisor, although the hypervisors used
in safety-critical use cases will be reviewed in more depth in
section V.
The hypervisor concept fits well with the IMA philosophy

and the ARINC 653 standard. Virtualization provides, by def-
inition, time and space partitioning. The rest of the functional-
ities that ARINC 653 describes (for example, health monitor-
ing or the APEX interface) must be implemented, either in the
hypervisor itself or at other levels of the software architecture
(typically, the application interfaces, such as APEX, POSIX
or OSEK are covered at OS level). In a 2015 article [45],
VanderLeest et al. conclude that hypervisors are the tool that
will allow the aviation industry to firmly adapt to multicore
systems, which are the only way to increase processor per-
formance. Moreover, ARINC 653 is also one of the most
powerful candidates to standardize the space industry as well,
as the requirements of the civil aviation world that prompted
the definition of the standard are also applicable to the space
industry. The adoption of ARINC 653 would bring benefits
in terms of cost reduction, modular certification, and less
integration effort.

VOLUME 11, 2023 36249



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

The DO-297 standard (IMA Development Guidance and
Certification Considerations) is the document used by certi-
fication authorities such as the FAA and EASA to approve
aviation IMA systems [42]. In turn, this document recom-
mends ARINC 653 to define the interfaces and specify the
behaviour of the system.

B. VIRTUALIZATION IN THE AEROSPACE INDUSTRY
The space industry has always been closely related to the
aviation industry, so it is reasonable that there are numer-
ous articles that discuss the possibility of applying aviation
standards and practices to the aerospace industry. An exam-
ple is the article by Windsor and Hjortnaes, in which they
analyze the advantages of incorporating TSP techniques into
the spacecraft avionics architectures based on the IMA aero-
nautical concept and the ARINC 653 standard [46]. They also
consider the areaswhere these techniques could have themost
impact and give different examples of use cases.

Actually, in some respects the operation of space systems
is even more delicate than that of military and commercial
aircraft. The success of space missions depends on being able
to obtain deterministic behaviour over long periods of time
and, in many cases, with very limited real-time support from
the ground operating teams. In addition, the environment in
which a space system operates can be significantly more
hostile than that of other critical real-time systems, due to
factors such as vacuum, radiation or extreme temperatures.
All of this makes the processes to design, develop and test
space equipment time-consuming and costly. Likewise, the
avionics in such equipment often consist of old and robust
components, often created specifically for use in the space
industry (such as LEON processors [47]), which have proven
their reliability over years of successful missions.

For the same reasons as in aviation (increased complex-
ity of software applications, increased processing capacity
of hardware platforms, promotion of interoperability and
reusability. . . ), in recent years there is also a trend in the
space sector towards COTS components, in order to take
advantage of the powerful resources they offer, while reduc-
ing development costs, power consumption and physical
space on the spacecraft. This has led to the emergence of
a new space market, commonly referred to by that name:
New Space [48]. This new market is based on the develop-
ment of small space platforms that have a significantly lower
associated cost than classic space missions and, therefore,
less stringent reliability requirements. Both the reduction in
cost and the openness to commercial components have led
New Space to welcome private companies [49], something
not common in the space industry, which has traditionally
been driven by public organizations. The entry of private
companies has considerably increased the number of players
in the industry, which has boosted its competitiveness and the
emergence of new low-cost, high-performance applications
such as space debris removal, Earth observation missions or
satellite-based global communication networks.

It seems clear that there is a problem in combining all
or most of the functionality of a space system on a sin-
gle high-capacity hardware platform: there are safety-critical
functionalities whose failure would have a catastrophic
impact on the mission objective, while other functionalities
are not so critical and can therefore be subject to less demand-
ing and less costly verification and validation processes.
In this context, virtualization is a key technology since it
guarantees by its inherent characteristics the temporal and
spatial separation of different software modules, so that there
is no interference between them and the failure of one does
not affect the others. When virtualization is used to deploy
functionalities of different criticality levels on the same plat-
form, the resultant systems are usually referred to as mixed-
criticality systems [50].

C. VIRTUALIZATION IN THE AUTOMOTIVE INDUSTRY
Since the appearance of the first electronic ignition systems
in the 1970s, the number of electronic components in cars
has constantly increased. Whereas previously mechanical
systems accounted for most of the complexity of cars, electri-
cal and electronic systems have become more sophisticated
over time [51]. In fact, it is currently estimated that 35%
of the cost of a vehicle corresponds to electronics, greatly
exceeding the 20% that it supposed in 2000 or the 30%
that it supposed in 2010, and it is estimated that this figure
will continue to grow up to 50% by 2030, according to the
report made by Winkelhake [52]. Today, most vehicles are
based on a powerful electrical and electronic (E/E) archi-
tecture on which the engine, braking, steering and other
comfort and safety features depend. Embedded software has
begun to gain paramount importance in automotive design
and development, and it will continue to gain importance
as companies continue to develop the technology, especially
in areas such as autonomous driving. This means that the
number of ECUs (Electronic Control Units) is increasing in
modern vehicles: a current car has more than 150 ECUs for
different purposes [53]. Faced with this challenge, diferent
solutions have been proposed in recent years. Among these,
virtualization is one of the most studied, since it would allow
combining several ECUs on the same hardware platform,
maintaining a temporal and spatial separation between them.
This separation is essential, since critical systems such as
driving assistance, which are usually managed by safety-
certified RTOSs, coexist in the same vehicle with information
and entertainment systems, which have significantly more lax
safety constraints [54]. Using virtualization, the functionality
previously distributed among many ECUs can be collected
in a smaller number of DCUs (Domain Control Units), each
system adhering to its own safety requirements [55].

Although not as direct as between the space and aviation
sectors, there are many similarities between these and the
automotive sector: Gaska and Chen [56] make an interest-
ing analogy between the architecture of an automotive sys-
tem and an IMA avionics architecture. They discuss how

36250 VOLUME 11, 2023



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

multicore processing, along with hypervisor technology, are
key enablers of the future of these types of systems, and pro-
pose various candidates for both multicore platforms (Intel
Xeon FPGA SoC, NVidia Tesla SoC or Xilinx Ultrascale+)
and hypervisors (VxWorks, Lynx or Green Hills). However,
the article does not show any type of test or deep analysis that
allows us to opt for any of the alternatives.

Cruz et al. proposed in a recent paper [57] an x86-based
virtual PLC (vPLC) architecture that decouples the logic and
control capabilities from the I/O components, while virtual-
izing the PLC logic within a real-time hypervisor. In vPLC
the dedicated PLC I/O bus is replaced by a deterministic and
high-speed networking infrastructure, using SDN to enable
the flexible creation of virtual channels on the I/O fabric.
This contribution could have significant impact in automotive
manufacturing as it allows to achieve high-speed, determin-
istic I/O communication for the hypervisors and to oversee
partition behavior by software, thus pushing virtualization of
IoT devices and their control using hypervisors.

V. HYPERVISORS FOR SAFETY-CRITICAL REAL-TIME
SYSTEMS
Having explained the basis for understanding the hypervisor
concept and some of the reasons why virtualization not only
has a place but may play a fundamental role in the future
of several safety-critical industries, the following section
reviews the scientific works that have applied virtualization
of some kind or have used hypervisors to study its impact on
space, aviation or automotive systems.

For this survey, hypervisors have been divided in pro-
prietary and open-source, following their license policy.
Section V-A will introduce some hypervisors that have great
importance and presence in the industry but, due to their
proprietary licensing and high price, are hardly studied in
academic works. Next sections are devoted to the three main
open source hypervisors, Xen, KVM, and XtratuM, because
of their importance and the greater existence of evidence both
in scientific literature or through dissemination by private
companies. Other less popular open-source hypervisors are
grouped together in section V-E.

A. PROPRIETARY HYPERVISORS
Note that although a hypervisor inherently offers TSP fea-
tures, it is not the only option to implement them.ARTOS can
offer TSP features if it is able to fully isolate software mod-
ules, so each of them can run different criticality partitions.
For example, there are several proprietary RTOS, oriented to
safety-critical real-time industrial applications, that offer TSP
features and have already been certified according to stan-
dards such as DO-178C or ISO 26262, so that the importance
of complying with them is understood when the developed
software is actually to be used in real use cases). It is the
case of WindRiver VxWorks, Green Hills Integrity, LynxOs,
SYSGO PikeOS, JetOS or DDCI Deos. In some cases, given
the increasing complexity of these types of applications
and the increase in processing power in current hardware

platforms, they have ended up including virtualization capac-
ity, or resulting in the appearance of new virtualization prod-
ucts from the companies that develop them. These products
are:

• WindRiver Helix
• Green Hills Integrity Multivisor
• LynxSecure Separation Kernel Hypervisor
• SYSGO PikeOS
• DDCI Deos
• RTS Hypervisor

These hypervisors have a proprietary license and are aimed
at critical real-time systems such as aviation or automotive,
so they are quite expensive. This makes their use confined
almost exclusively to commercial purposes, so there is little
published literature on them. Therefore, the information com-
piled in the following table, which compares each of these
options, has been compiled mainly from sources provided by
the developers themselves. In addition, it must be considered
that these hypervisors are all developed by large companies
and are direct competitors, which is why they offer similar
functionality in features such as inter-partition communica-
tion, real-time support or safety and security services. There-
fore, a comparison between the hypervisors listed above is
made below, based on criteria by which they differ:

• Hypervisor Type: As explained in section III-B, hyper-
visors can run directly on the hardware (type 1 or bare-
metal) or on an OS host (type II).

• Supported HW Architecture: Although it is not an
exhaustive analysis (the compatibility case with each
different processor or SoC could be studied), the proces-
sor architectures supported by each of the hypervisors
are listed.

• Virtualization Type: As explained in section III-B,
hypervisors use different virtualization techniques that
can be roughly grouped into two types: paravirtualiza-
tion and full-virtualization.

• Supported guest OSs: The different operating sys-
tems that can be run as guests on each of the hyper-
visors. Note that, in the cases of hypervisors that offer
full-virtualization, any operating system can be run
unmodified, although it is usually more efficient to run
a paravirtualized operating system if possible.

• Nationality of the developer: This is an important
aspect to take into account, since there may be cases in
which an original equipment manufacturer faces restric-
tive regulation when it uses the product of a company
from another country, in the event that there is competi-
tion between both countries (as sometimes happens with
the USA, Russia and many European countries).

The comparison is reflected in Table 3.

B. XEN
Xen is a type-1 hypervisor, originally developed by the Uni-
versity of Cambridge Computer Laboratory, that is now being
developed by the Linux Foundation, with support from Intel.

VOLUME 11, 2023 36251



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

TABLE 3. Proprietary hypervisors comparison.

Xen is free and is one of the few type-1 hypervisors that is
available as open-source. It is also, by far, the hypervisor
on which most literature and research are based, so this
section is dedicated to briefly describing its characteristics
and analyzing the results of the main research works with
respect to Xen, especially those related to real-time safety-
critical systems.

As other hypervisors do, Xen allows to run many instances
of an OS (or different OS) in parallel on a single machine.
A running instance of a virtual machine is called a domain or
guest. However, although the hypervisor is the first program
running after exiting the bootloader and runs directly on the
hardware, it needs a special first domain (called domain 0
or dom0) that has specific privileges and is responsible for
controlling the hypervisor and starting other guest domains.
These other domains are called domUs (because they are
unprivileged domains, in the sense they cannot control the
hypervisor ormanage other domains).Dom0 has direct access
to the hardware, so the hypervisor does not contain device
drivers. Instead, the devices are attached to dom0 and use
standard Linux drivers. Dom0 can then share these resources
with the rest of the domains. Although Xen is not as vulner-
able to single-point failures as a type II hypervisor (in which
the host OS crash automatically causes the guest OS to crash),
the fact that most physical resources reside on dom0 means
that, if there is a failure in dom0, the rest of the system will
lose communication capabilities, both externally and between
domains. Even if their functionality is degraded, the domUs
could remain operational even after the failure of dom0, but
any additional failure in the domU would be unrecoverable,
since dom0 would not be able to reboot it. You could return

the system to its initial configuration by rebooting dom0 but
obviously doing so would interrupt system availability for
mission-critical applications. There are methods to mitigate
this problem by enhancing the autonomy of domUs. For
example, a domU can be given direct hardware access through
Xen’s pass-through virtualization feature.

Xen was originally developed for x86 processors in 2003,
and for that architecture it provides both paravirtualization
and full virtualization. The porting of Xen to ARM involved
major changes in its architecture and, as a result, its code for
ARM architectures is considerably smaller than that of x86
architectures but, as a main limitation, it stands out that Xen
for ARM only supports paravirtualization [58].

After this brief explanation of Xen, the most important
works that use this hypervisor, especially those that apply it
to safety-critical embedded systems, are listed below.

VanderLeest and White [45] use Xen over the Zynq
UltraScale+ MPSoC as a case study. Although the Zynq
Ultrascale+ contains a quad-core A-53 processor, as a possi-
ble solution to the problem of shared resources, they propose
a simplification in which different partitions do not run simul-
taneously on different cores. This prevents interference in, for
example, access to the L2 cache or memory bus bandwidth.
However, this simplification does not allow the efficient use
of the Zynq Ultrascale+ large processing capacity. In the
event that more than one partition needs to access the same
I/O resource, the article proposes two ways to do it: via soft-
ware (although this can be a bottleneck, limiting bandwidth
or latency) or via hardware, implementing an arbitrator in
the FPGA of the MPSoC. It must be taken into account that
the certification of arbitration logic must be done at a level

36252 VOLUME 11, 2023



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

equivalent to the highest level of criticality of any of the
serviced guests (if implemented in software, in accordance
with the DO-178C standard; in case of being implemented
in hardware, in accordance with the DO-254 standard). The
possibility of using the LynxSecure Separation Kernel Hyper-
visor and the Mentor Graphics Multicore Framework is also
discussed in the article, although neither of these options is
analyzed in depth.

In their article [59], Daniel Sabogal and Alan D. George
explain the development of a framework called Virtualized
Space Applications (ViSA). ViSA leverages the capabili-
ties of the Xen hypervisor to provide a safe environment
(software-based fault tolerant) on the Zynq Ultrascale+ and
improve the dependability and availability of a flight system.
The framework manages to improve the system in these
aspects, but presents problems when the APU of the Zynq
Ultrascale+ is irradiated. In addition, there is work to be done
to solve one of the main problems of Xen-based systems,
which is the dependency on dom0. Currently, no article has
been published that continues this work.

In 2010, DornerWorks introduced a prototype implementa-
tion of the ARINC 653 standard, extending the Xen hypervi-
sor. In a 2013 article, VanderLeest and other DornerWorks
researchers explain these ARINC 653 extensions made on
Xen a little more in depth and name the resulting hypervi-
sor ARLX (ARINC 653 Real-time Linux on Xen). A few
years later, ARLX was renamed Virtuosity, and VanderLeest
announced that they were adapting the hypervisor to FACE
conformance [60]. Today, Virtuosity remains an open-source
hypervisor and DornerWorks benefits from it by offering
maintenance and support. Virtuosity presents the limitations
of any Xen-based hypervisor, especially in terms of certifica-
tion: m the control partition (dom0) runs Linux as a guest OS.
Despite its widespread use, it is very difficult to certify Linux
according to the most demanding aviation or automotive
standards, due to the little documentation on some of its main
components, as well as the great effort involved in certifying
an operating system so large.

Kistijantoro and Gilbran extended the ARLX partition
scheduler to use the primary-backup scheme, so that the
scheduler can guarantee certain services even in the event of
partition failure, using backup partitions [61]. Although they
demonstrated that this method improved the overall reliability
of the system, it still presented several significant problems:
it resulted in an unacceptably high maximum latency, the
scheduler was not able to autonomously detect the failure
of a partition (it depended on the partition being capable of
reporting it) and did not take into account the deadline of each
process within a partition.

Bijlsma et al. [62] propose a safety mechanism for
autonomous vehicles that, among other tools, uses Xen to
isolate software modules in the same SoC. During their
experiments, using Xen’s Null scheduler, they measured the
time it took for the hypervisor to shutdown a faulty VM,
and found that it was much longer than the time it took to
pause it, so they opted for this option. Even so, although

the mean time in 2000 experiments was 55us (acceptable to
avoid a collision and prevent the fault from propagating),
they obtained outliers of up to 1.5ms. This large variation
indicates that a more deterministic scheduling is needed in the
hypervisor, to be able to use it in such critical functionality.

Karthik et al. used Xen to offer an integrated cockpit solu-
tion, in which four different automotive systems ran on the
same heterogeneous SoC [54]. However, it should be noted
that Xen was used (on an ARM Cortex-A15 processor) only
to run three of those systems, which used Linux and Android
andwere not safety-critical. Amicrocontroller (ARMCortex-
M4) and an RTOS were used exclusively to run the other
system, which was safety-critical, without any kind of vir-
tualization.

Xen on ARM has also been used to integrate Linux with
a real-time operating system such as ERIKA OS, which
obtained the OSEK-VDX certification for automotive appli-
cations, on the same platform [63]. However, this option still
has many limitations in terms of certification: the deployment
architecture is very specific (a dual-core platform in which
each OS runs on a different core) and ERIKA OS can run
only as a guest domU, so it depends entirely on the privileged
domain dom0, which runs a general-purpose Linux. As in
previous examples, there is also the challenge of certifying
the Xen hypervisor itself, which does not seem approachable
in its current form for meeting DAL A/B/C according to the
DO-178C standard or an automotive-grade standard such as
ASIL.

Recently, Schulz and Annighöfer conducted an empirical
study to test the suitability of Xen to operate on safety-critical
real-time systems [64]. In their experiments they obtained
some promising results, but in some scenarios they observed
unpredictable behaviour in terms of latencies and execution
times. Although further research is needed, they conclude that
Xen is not realistically feasible for such systems in its current
state.

C. KVM
KVM is an open-source hypervisor originally released in
2007 for the x86 architecture and, since 2012, ported to the
ARM architecture. KVM is integrated into the Linux kernel
(since its version 2.7.20 for x86 and its version 3.9 for ARM),
so it takes advantage of a large part of its functionality, such as
memory management or CPU scheduling. In fact, as Dall and
Nieh explain [65], although in x86 KVM resides entirely in
the kernel, in ARM it is divided into two parts: one (called
Highvisor) that resides in kernel space and corresponds to
most of the hypervisor’s functionality, and another (Lowvi-
sor) that resides in Hyp mode and is in charge of enforc-
ing isolation and performing the context execution switches
between VMs and host. This is because trying to implement
KVM entirely in the host kernel would have involved a series
of modifications on the kernel that would have been negative
in terms of performance and portability. A big advantage of
this approach is that porting KVM from one ARMplatform to

VOLUME 11, 2023 36253



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

another is easier than with a bare-metal hypervisor like Xen.
Since ARM platforms are not very standardized and it is very
common for them to support a version of Linux higher than
3.9, this advantage is key when compared to Xen [58].

KVM does not offer virtualization of hardware devices
but relies on external tools that run in user space, such as
QEMU. Together, KVM and QEMU allow running unmodi-
fied guest OSs [66]. However, to avoid the overhead that full-
virtualization implies, there is also the possibility of running
paravirtualized OSs using Virtio [67].

There are numerous papers analyzing Xen and KVM per-
formance overhead on x86 architectures [68], [69] [70], but
only a few that do so on ARM architectures and using embed-
ded systems. Among them, perhaps the most complete is that
of Raho et al. [71], who make a comparison in which they
also include container technology (Docker, in particular). The
conclusion they reach is that the overhead performance of
any of the solutions is very small, with slight differences
depending on the test run. They also analyze how KVM is
more easily portable than Xen and how Docker, although fast
and easy to deploy, is a less secure alternative to hypervisors,
because hypervisors use hardware extensions to offer greater
isolation (VMs do not share kernel space, while containers
do). However, in a recent paper Müller et al. measured the
overhead of KVM on a self-driving car-oriented Nvidia Drive
AGX SoC and concluded that KVM produces too high an
overhead in this particular case, which makes it unusable in
real-world use cases [72].

D. XTRATUM
XtratuM [73] is a type-1 hypervisor originally developed
by researchers at the Universidad Politécnica de Valencia
and currently maintained by the Spanish company fentISS.
XtratuM is targeted to real-time safety-critical systems, espe-
cially in the space sector [74], being designed based on the
ARINC 653 standard. Currently, it supports Linux, RTEMS
and LithOS (an operating system from the same developers)
as paravirtualized guest OSs and allows to run bare-metal par-
titions using XRE, a minimal execution environment offered
by the hypervisor itself. Unlike Xen, it uses no control par-
tition (dom0): the hypervisor manages the partitions and its
communications, IRQs and HW I/O access. The latest ver-
sions of XtratuM support SPARCv8, ARMv7 and RISC-V
architectures [75].

XtratuM can be downloaded under the GNU General Pub-
lic License, although fentISS also offers a commercial ver-
sion called XtratuM Next Generation (XNG). This version
is currently the most widely maintained by developers and,
although it offers similar functionality to the GPL version, its
internal structure is significantly different.

ESA and CNES are two of the main promoters of XtratuM,
financing projects and research in which its development is
continued and the possibility of using it in space missions
is being evaluated [76]. However, the ARINC 653 oriented
nature of XtratuM makes it a good candidate for aviation

applications as well, although as of today the costly process
to certify it according to the corresponding safety standards
(such as DO-178C) has not started. Efforts have also been
made to use XtratuM in automotive systems,such as the work
carried out in [77] to design of criticality-aware scheduling
for advanced driver assistance systems

Although it is a hypervisor widely used in private indus-
try and, for competitive reasons, companies are sometimes
not interested in disseminating knowledge about it, there
are a few academic papers that mention or use XtratuM on
safety-critical embedded systems. These are described below:

Larrucea et al. define a series of characteristics that a
safety-critical hypervisor shouldmeet to comply with the IEC
61508 standard, defined by the International Electrotechnical
Commission, which covers the functional safety of electri-
cal, electronic and programmable electronic equipment [78].
In the same article, they map the defined features to the Xtra-
tuM capabilities, demonstrating how it successfully covers
them.

Muttillo et al. carried out a series of tests, on different
hardware platforms that used both the LEON3 and LEON4
processors, in which they demonstrated that the performance
of XtratuM competes with that of a highly proven hypervisor
like PikeOS, improving it in some aspects (such as timing and
memory access), although it is somewhat less predictable in
the overhead introduced [79].

Researchers from the Korea Aerospace Research Institute
made the effort to port a version of RTEMS that would
support Symmetric Multi-Processing (SMP) on top of Xtra-
tuM [80], [81]. Currently, fentISS has released versions of
XtratuM with which bare-metal partitions can be run on
the hypervisor in SMP, both on LEON4-based boards and
on boards based on the Zynq-7000 SoC. In addition, it is
developing a BSP that will allow to run a Linux SMP guest
OS on Zynq-7000.

Campagna et al. [82] presented a prototype of an archi-
tecture in which the XtratuM hypervisor runs on a LEON3
processor. As they describe in their article, they run three
partitions on top of XtratuM: two of them running a
number-crunching application and a checker partition that
checks the outputs produced by the other two. The purpose
of the paper is to study the solvency of their solution to the
injection of errors. The failure model they assume is Single
Event Upset (SEU), which models the impact of ionizing
radiation on the processor as a result of a memory bit flip.
They show that using a hypervisor is an effective method for
task segregation and scheduling, as well as error detection.
The use of the hypervisor has an overhead close to the mini-
mum possible overhead and it is capable of detecting 96.2%
of SEU faults.

During a study on the robustness of the separation kernels,
XtratuM was used on a LEON3 as a use case and 9 notable
vulnerabilities were discovered that had not been detected
during the validation campaigns of the hypervisor develop-
ment [83]. This not only demonstrates the effectiveness of
the error injection method used, but it was a considerable

36254 VOLUME 11, 2023



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

help to further strengthen XtratuM, as part of the hypervisor
developer team was involved in the experiment.

XtratuM is also one of the foundations of XANDAR,
a project that aims to provide a toolchain for developing
safety-critical embedded systems [84]. The toolchain, devel-
oped by a large group of partners from industry and academia,
has been tested in both avionics and automotive use cases.

Onaindia et al. propose an architecture oriented to real-time
systems that monitors and it is able to reduce system power
consumption [85]. The lowest-level component of this archi-
tecture is a hypervisor. For the prototype, because of its
features and its support for Xilinx Zynq-7000 SoCs, XtratuM
is used (and extended) as hypervisor, and the prototype is
tested on two use cases of avionics and railway systems.
XtratuM has also been used, on a representative computer
system used in avionics, as the basis for building a feedback
control mechanism implemented at the hypervisor level [86].

E. OTHER HYPERVISORS
Some research papers using or developing hypervisors other
than Xen, KVM or XtratuM are listed and briefly described
below:

Missimer et al.’sQuest-V [87] uses hardware virtualization
for safe and secure resource partitioning, offering partitions
(called sandboxes) that can run their own operating system,
called Quest, or Linux. However, the work is currently dis-
continued and does not support ARM multicore platforms
with hardware virtualization.

Rodosvisor is a type 1 hypervisor developed by Tavares
et al. It supports paravirtualization and full-virtualization and
it is inspired by the ARINC 653 standard, but it is not fully
compliant with it, since it implements the services defined by
the standard, but not strictly following the correspondingAPI.
In the experiments in the article, two bare-metal (OS-less)
partitions are deployed, and a third partition runs RODOS,
an RTOS for embedded systems. However, apart from one
article enhancing the hypervisor for integration into the POK
operating system in 2016 [88], there are no other known
articles describing a continuation of the work, porting the
hypervisor to other HW platforms, or supporting new guest
OSs.

Pinto et al. presented in 2016 a hypervisor called RTZVi-
sor (Real Time TrustZone-assisted Hypervisor) oriented to
space applications, which used the ARM TrustZone to pro-
vide virtualization on a Xilinx Zynq platform [89]. A few
months later, they introduced two extended versions of
the hypervisor, called µRTZVisor [90] and SecSSy [91],
designed to increase the safety and security of its predecessor.
These hypervisors have some interesting features, such as
the ability to run different almost unmodified guest OSs,
but they have other important limitations: they disable the
caches and MMUs of the guest OSs, they are limited to ARM
processors offering ARM TrustZone technology and, despite
being tested on a multicore platform (Zynq ZC702), they do
not support multicore processing, so they use only one of the
processor cores.

Although RTZVisor is probably the most advanced of its
kind, it is neither the only, nor the first hypervisor to be
based on ARM’s TrustZone technology. Winter proposed in
2008 a method that, using TrustZone, provided a virtual-
ization framework and implemented a prototype in which
he deployed a non-secure guest in a secure Linux environ-
ment [92]. Cereia and Cibrario carried out a similar exercise,
implementing a virtualization layer that allowed to deploy
an RTOS and a guest OS, pointing out some of the limi-
tations that ARM TrustZone imposed on them at the time:
it only allowed the execution of two OSs and, while the
guest OS did not it could access or interfere with the RTOS,
it did not work in reverse, so it would not support two
secure RTOS [93]. These limitations are shared by ARM
TrustZone-based hypervisors proposed in later work, such as
the Secure Automotive Software Platform by Kim et al. [94]
or the open-source Xvisor presented by Cicero et al. [95]
VOSYSmonitor, from Virtual Open Systems, also allows
parallel execution of a secure partition (running an RTOS)
and a partition without real-time guarantees (GPOS), but
has the particularity that it allows the non-critical partition
(GPOS) to use another hypervisor (such as Xen or KVM),
so it could be argued that it also supports multi-guest OS [96].
VOSYSmonitor gives full priority to the RTOS, allowing the
GPOS(s) to run when there are no active tasks on the RTOS.

Dasari et al. conducted a series of experiments with the
ETAS Lightweight Hypervisor (LWHVR), a commercially
viable solution in the automotive industry, which they extend
by implementing Reservation Based Scheduling (RBS) [97].
ETAS LWHVR is a hypervisor oriented to multicore micro-
controllers, with a low overhead and memory footprint. One
of the cores works as a leader, and in it runs all the SW that
has direct access to the HW. Different VMs can run in the rest
of the application cores. This architecture makes the use of
this hypervisor not viable inmonocore systems and, probably,
inefficient in the case of processors with few cores (such as
dual-core processors).

Jailhouse is a simplicity-oriented hypervisor based on
Linux. The hypervisor is implemented as a Linux kernel
module, just like Xen or KVM. As Ramsauer et al. [98]
explain, it does not perform any kind of scheduling, and
simply provides static partitioning, directly allocating hard-
ware resources to each partition. This has the advantage that
legacy applications can be run with no active hypervisor
overhead and simplifies certification efforts. For this reason,
among others, Jailhouse is the hypervisor chosen to cement
a computing platform called SELENE, which aims to serve
as a basis for developing different safety-critical applica-
tions, from flight applications to autonomous robotics [99].
However, the fact of this hypervisor being based on Linux
implies other complications in terms of safety and certifi-
cation, such as the fact that it requires other software ele-
ments (UEFI Firmware code or bootloader, for example) that
must be considered in the certification process. In addition,
it still has limitations in essential aspects such as communi-
cation between VMs, for which it does not offer end-to-end

VOLUME 11, 2023 36255



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

timing guarantees. Some of these issues may be faced during
the development of SELENE, which is scheduled to end in
December 2022. Boomerang [100] is another proposal that
leverages the features of a hypervisor to develop a system in
which to run a critical partition along with a non-critical guest
OS.

Bao [101] is also a proposal based on this concept of static
partitioning, in which the hypervisor is freed from resource
management, once the CPU cores, memory or I/O devices
have been assigned to each guest OS. One of the limitations
of this simplistic approach is that the number of guest OSs
is limited by the number of physical CPUs, unless other
virtualization technology runs on top of the static partitioning
hypervisor.

OKL4 is a popular Type I hypervisor developed by Open
Kernel Labs (the company was acquired by General Dynamic
Mission Systems in 2012, and the hypervisor is no longer
open-source), intended to be deployed in embedded sys-
tems. It is especially popular in the mobile phone industry
(estimated to have been deployed in hundreds of millions
of them [102]) and is capable of paravirtualizing various
high-end operating systems, including Linux, Windows and
VxWorks. In addition, it can offer a simple POSIX inter-
face by itself, so it is able to function as a minimal OS
for the implementation of safety or security critical applica-
tions [103]. Although it does not support full-virtualization,
OKL4 is able to take advantage of the virtualization exten-
sions of some ARM processors to reduce the effort required
to paravirtualize an OS.

seL4 is also a microkernel of the L4 family available,
at different levels of maturity, for ARM, x86 and RISC-V
architecture processors. Its development started in 2006, with
the intention of providing a basis for secure, reliable and
safe systems. The kernel is open source, available under the
GNU GPL v2 license, and most of the libraries and tools
are under the BSD 2 clause. seL4 can run standalone as an
OS with TSP capabilities, but it can also be configured as a
bare-metal hypervisor on which, in addition to running native
applications, Linux virtual machines can be deployed [104].

Another open-source hypervisor geared towards hav-
ing a small footprint for its use in embedded systems is
NOVA [105]. According to its developers, the hypervisor is
the base of every other component of a system that uses it, so it
should be as small and trusty as possible. However, unlike
OKL4, NOVA offers full virtualization, thus, as explained
above, it results in a slightly more complex and less efficient,
yet more flexible hypervisor.

ACRN [106] is a lightweight hypervisor oriented to IoT
and embedded systems. Although its architecture makes it
quite flexible and allows multiple non-safety-critical VMs to
be deployed, the number of safety-critical VMs is limited to
two at best. Another important limitation is that it is based on
Intel virtualization technology, so its supported HW is limited
to some processors from this manufacturer. Among the guest
OSs that it supports we can find Ubuntu, Android, Windows,

as well as others more interesting in terms of safety, such as
VxWorks and Zephyr.

Elektrobit also offers its hypervisor implementation, called
Corbos, of which there is not much published information.
It is known to be a microkernel-based hypervisor that allows
at least Linux partitions to be deployed alongside other
safety-critical partitions. Corbos is mentioned in an article
by Lampka and Lackorzynski, to exemplify an automotive
architecture that uses virtualization to harness the computing
power of an ECU, without sacrificing the safety and security
of the most critical software [107].

In 2014, Kim et al. introduced a hypervisor geared towards
critical real-time systems, called QPlus-Hyper [108]. This
hypervisor allowed the execution of an RTOS and a GPOS
on the same platform, using the virtualization extensions
present in some ARMv7 cores. However, there is no evidence
that the development of this hypervisor has been continued
since 2015, when this hypervisor was used to carry out a
proof of concept that investigated how a GPU that is shared
between several guest OSs could be virtualized Other than
that, it is only briefly mentioned in a 2019 article that dis-
cusses cache-interference issues on clustered multicore plat-
forms [109]. For this reason, and due to the lack of public
information on the internal structure of the hypervisor, it has
been decided not to take it into account in the comparison.

Reinhardt and Morgan evaluate a type I hypervisor called
RTA-HV, developed by ETAS Ltd and aimed at efficient use
of resources in multicore systems. In their research, they
paravirtualized guest OSs on the Infineon AURIX TC27X
platform [110]. As highlighted in the article, a non-intrusive
hypervisor has the added advantage that it acts as an abstrac-
tion layer, which encourages software reuse, facilitating port-
ing to another platform. However, in the work presented in
their article there are certain limitations, mainly due to the
low virtualization support on the part of the HW used. For
example, they did not achieve complete temporal isolation
between partitions and could only do a one-to-one mapping
between partitions and CPU cores. Despite this, they analyze
and reason that hypervisors are a good solution to the problem
of consolidating different systems in the same ECU.

Manic et al. [53] used Blackberry’s QNX hypervisor to
deploy two virtual machines, with different OSs, on the same
ECU. The objective of the experiment was, in addition to
being able to carry out independent processing in each of
these virtual machines, to demonstrate that they can share
a single graphic display without affecting either the perfor-
mance or the safety of the vehicle. QNX is a Type I hypervisor
certified to ISO 26262 ASIL D (in addition to the industry
standard IEC 61508 SIL 3). It supports both safety (QNX
Neutrino RTOS and QNX OS for Safety) and non-safety
(Linux or Android) guest OSs, and can be deployed on the
latest ARMv8 and x86-64 SoCs.

Lemerre et al., from the Atomic Energy and Alternative
Energies Commission, extended the RTOS PharOS, adding
a paravirtualization layer that allowed it to run Trampoline

36256 VOLUME 11, 2023



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

(an OSEK/VDX-compliant RTOS) partitions, which run as
time-triggered tasks within PharOS [111]. Configured in this
way, PharOS can be considered a type II hypervisor.

HTTM is a relatively recent type 2 hypervisor that offers
full virtualization on MIPS architectures, so there is no need
to use any hardware-specific extensions [112]. Its main weak-
ness in terms of its application in safety-critical systems is
that it must run on a Linux host, which limits its ability
to deliver real-time performance, and that it currently only
allows the creation of a guest VM. Even so, the work is still
evolving, and there are recent papers evaluating and trying
to improve the efficiency of HTTM [113]. Although it is
theoretically open-source, we have not been able to find the
source code in any repository and we do not know the license
under which it is distributed.

Minos is an open source type 1 hypervisor that allows
multiple VMs to be deployed on SoCs based on the ARMv8-
A architecture. Through paravirtualization, it can host several
Linux, Android and Zephyr guest VMs, and is oriented to
IoT and embedded devices. There are hardly any research
papers mentioning Minos, but details about its internal struc-
ture and source code can be consulted through its Github
repository [114].

There are a couple of initiatives that propose hypervisors
targeted at SoCs that cannot be considered Type 1 or Type 2,
since they are implemented as another hardware module
(implemented in the SoC’s FPGA), rather than as a software
layer. Developers of these hypervisors are often referred to
as type 0 hypervisors. Janssen et al. are the first to coin
this term [115], although they did not go so far as to define
a complete hypervisor, but rather a prototype running on a
Microblaze core that allows bare-metal applications to be
deployed isolated from each other. Jiang et al. developed
BlueVisor, which does achieve this ‘‘type 0 hypervisor’’ in
which all its components run in hardware, and allows par-
avirtualized guest OSs (FreeRTOS, uCOS-II and XilKernel)
to be deployed on softcore processors at the highest privileged
level [116]. However, due to the current immaturity of these
initiatives and because their nature is different from that of
the hypervisors reviewed in this survey, we leave these type 0
hypervisors out of the comparison.

VI. SAFETY-CRITICAL REAL-TIME HYPERVISORS
COMPARISON
Having analyzed the main hypervisors that have been applied
to safety-critical embedded systems, and according to the
information gathered from the cited sources (mainly aca-
demic research papers), this section compiles their charac-
teristics and compares them.

There are different characteristics according to which
hypervisors can be compared. Based on user requirements
and their knowledge of embedded systems, Hamelin et al.
propose a set of practical criteria by which any potential user
could select the most suitable one for their application or
system [117]. Since in section V virtually all hypervisors for

use in a safety-critical real-time embedded system have been
reviewed, it is interesting and potentially useful for future
research to classify these hypervisors according to some of
the parameters established by Hamelin et al:

• Hypervisor Type (type 1 or 2).
• Supported HW architectures (ARM, x86/64. . . ).
• Supported Guest OS (Linux, RTEMS, FreeRTOS. . . ).
• Communication Services (inter-partition communica-
tion).

• API (POSIX, OSEK, ARINC 653).
• License.
To these criteria we can add a few more, having reviewed

the state of the art and seen where many of the hypervisors
studied differ:

• Virtualization Type (full virtualization or paravirtual-
ization).

• Scheduling (ARINC 653, no scheduling. . . ).
• Real-time partitions support (and limitations, if any).
• Developers’ nationality/country of origin (in addition
to being of interest for analyzing the investment of each
country in this type of technology, it could have an
impact on its use in certain countries).

• Ongoing maintenance (evidence of maintenance in the
last 3 years).

• Multi-Guest OS (supports more than two operating
systems running simultaneously on different partitions).

• Multicore (runs on target hardware using more than one
CPU core).

Note that this comparison will take into account the most
prominent hypervisors in sections V-B, V-C, V-D and V-E.
Proprietary hypervisors that, due to their high price, are ori-
ented towards commercial exploitation and are not interesting
for future research, have their own comparison table accord-
ing to other criteria in section V-A.

VII. DISCUSSION
On the one hand, Tables 4 to 7 show that paravirtualization
is the most popular method of virtualization (70% of the
hypervisors analyzed offer paravirtualization), so it seems
that efficiency is usually more highly valued than the flex-
ibility of the virtualization solution. Along the same lines,
type 1 hypervisors, which are more efficient because they
have direct access to the hardware, are notably more common
than type 2 hypervisors. Although it depends on the consid-
eration given to Xen, KVM, Virtuosity or Jailhouse, which
cannot be easily classified between type 1 and type 2, only
25% of hypervisors are undoubtedly type 2: Quest-V, RTA-
LWHVR, NOVA, PharOS and HTTM.

On the other hand, we can see that Linux is clearly the
most common guest OS supported by the hypervisors ana-
lyzed. Counting hypervisors offering full virtualization, up to
85% of hypervisors support an embedded Linux distribution
as guest OS. This is not surprising in that Linux offers a
robust open-source kernel, proven over many years, has a
large community and provides access to a large number of

VOLUME 11, 2023 36257



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

TABLE 4. Hypervisors comparison (part I).

TABLE 5. Hypervisors comparison (part II).

software tools and development environments. As for real-
time operating systems, we can find that the hypervisors
analyzed support some very popular ones, such as FreeRTOS,

RTEMS, Zephyr or VxWorks. ARM is the hardware archi-
tecture on which most hypervisors can be deployed (70%
of the hypervisors analyzed have support for some ARM

36258 VOLUME 11, 2023



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

TABLE 6. Hypervisors comparison (part III).

TABLE 7. Hypervisors comparison (part IV).

architecture), followed by x86 architectures (50%) and
RISC-V architectures (25%) and PowerPC (clearly below
with 15%). The first hypervisors to adapt to the RISC-V
architecture, a modern alternative to the more classical pro-
cessors that is gaining momentum in the space, aviation, and

automotive sectors, are XtratuM, XVisor, Bao, PharOS and
seL4.

Although in the case of open source hypervisors it
is common for there to be contributions from different
developers from all over the world (this is especially notice-

VOLUME 11, 2023 36259



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

able in the larger hypervisors in terms of development time
and lines of code, such as Xen and KVM), it can be seen
that there are certain countries that stand out above the rest in
terms of the development of virtualization technologies for
embedded systems: the United States, Germany and France
alone account for 50% of the hypervisors analyzed. This
trend is even more pronounced in the case of proprietary
hypervisors with more expensive licenses: in Table 3, all
the hypervisors analyzed are American or German. In any
case, these figures are not so surprising considering that these
countries have a very strong embedded systems industry,
especially safety-critical embedded systems, such as aviation,
space, defense, or automotive. The number of Portuguese ini-
tiatives is striking, although only one of them is still actively
supported (Bao). Besides them, only China is the country of
origin of multiple (two) hypervisor development initiatives:
ACRN and Minos.

Even with all these data, it is difficult to advise or advise
against the use of one of these hypervisors over the others,
because it will depend to a large extent on the particular needs
of each investigation. As a general rule, hypervisors for which
there is no ongoing maintenance (Quest-V, Rodosvisor and
RTZVisor) should be avoided. If a low-overhead solution is
required, it is better to opt for type 1 hypervisors offering
paravirtualization, such as XtratuM, XVisor, OKL4,Minos or
seL4. If the HW platform has sufficient resources, especially
in terms of processing cores, it might be interesting to opt for
simpler solutions offering static partitioning to obtain even
lower overhead, such as Bao or Jailhouse. Even so, in the
case of Jailhouse, as in the case of Xen, KVM or Virtuosity,
it must be taken into account that their use is associated with
the mandatory deployment of at least one Linux partition,
so they might not be interesting in case the system to be
developed has real time requirements. These hypervisors,
as well as type 2 hypervisors (RTA-LWHVR, NOVA, PharOS
or HTTM) and type 1 hypervisors offering full virtualization
(Corbos and VOSYSmonitor) can be interesting in case sys-
tem resources are not a very limiting factor, and a flexible
solution is sought.

Finally, as regards their application in safety-critical sys-
tems, XtratuM, which has been applied in several aerospace
projects and research works and is in the process of certifica-
tion in some of them, as well as static partitioning solutions
(Bao and Jailhouse) for simpler systems, would be particu-
larly recommendable. In all these cases there is support for
real-time operating systems, although XtratuM would be the
most recommendable due to its API, which is much more
similar to the APEX required by the ARINC 653 standard.

VIII. CONCLUSION
This article provided a comprehensive review of hypervi-
sors, both proprietary and open-source, used as the basis for
building a virtualized safety-critical embedded system. Once
the hypervisors developed or adapted for this type of system
have been identified, an exhaustive qualitative comparison
was made made among them.

From our study we can draw several reflections, such as
that paravirtualization is the most popular method of virtual-
ization or that type 1 hypervisors are notably more common
than type 2 hypervisors. Also, we have seen that Linux is
clearly the most common guest OS supported by the hyper-
visors analyzed, that ARM is the hardware architecture on
which most hypervisors can be deployed (although RISC-
V is gaining momentum) and that, if the HW platform has
sufficient resources, especially in terms of processing cores,
it might be interesting to opt for simpler solutions offering
static partitioning.

The aim is that this survey can serve as a starting point for
future researchers in this area, who will be able to quickly
check which hypervisor is best suited to their research needs.
Experimental work is going on to study the performance
features of several open-source hypervisors while executing
safety-critical aerospace applications in an FPGA platform
using ARM architecture.

REFERENCES
[1] C. Boettcher, R. DeLong, J. Rushby, andW. Sifre, ‘‘TheMILS component

integration approach to secure information sharing,’’ in Proc. IEEE/AIAA
27th Digit. Avionics Syst. Conf., Oct. 2008, pp. 1.C.2-1–1.C.2-14.

[2] B. Sutterfield, J. A. Hoschette, and P. Anton, ‘‘Future integrated modular
avionics for jet fighter mission computers,’’ in Proc. IEEE/AIAA 27th
Digit. Avionics Syst. Conf., Oct. 2008, pp. 1.A.4-1–1.A.4-11.

[3] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, and T. Mitra, ‘‘The worst-case
execution-time problemoverview of methods and survey of tools,’’ ACM
Trans. Embedded Comput. Syst. (TECS), vol. 7, no. 3, pp. 1–53, 2008.

[4] L. M. Kinnan, ‘‘Use of multicore processors in avionics sys-
tems and its potential impact on implementation and certification,’’
in Proc. IEEE/AIAA 28th Digit. Avionics Syst. Conf., Oct. 2009,
pp. 1.E.4-1–1.E.4-6.

[5] R. Wilhelm, C. Ferdinand, C. Cullmann, D. Grund, J. Reineke, and
B. Triquet, ‘‘Designing predictable multicore architectures for avionics
and automotive systems,’’ in Proc. Workshop Reconciling Perform. With
Predictability (RePP), Oct. 2009, pp. 2–3.

[6] B. Annighoefer, M. Halle, A. Schweiger, M. Reich, C. Watkins,
S. H. VanderLeest, S. Harwarth, and P. Deiber, ‘‘Challenges and ways
forward for avionics platforms and their development in 2019,’’ in Proc.
IEEE/AIAA 38th Digit. Avionics Syst. Conf. (DASC), Sep. 2019, pp. 1–10.

[7] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke,
B. Triquet, and R. Wilhelm, ‘‘Predictability considerations in the design
of multi-core embedded systems,’’ in Proc. Embedded Real Time Softw.
Syst., May 2010, pp. 36–42.

[8] D. Kliem and S.-O. Voigt, ‘‘A multi-core FPGA-based SoC architecture
with domain segregation,’’ in Proc. Int. Conf. Reconfigurable Comput.
(FPGAs), Dec. 2012, pp. 1–7.

[9] P. Bieber, F. Boniol, M. Boyer, E. Noulard, and C. Pagetti, ‘‘New chal-
lenges for future avionic architectures,’’ Aeropsacelab J., vol. 4, p. 1,
May 2012.

[10] Z. Gu and Q. Zhao, ‘‘A state-of-the-art survey on real-time issues in
embedded systems virtualization,’’ J. Softw. Eng. Appl., vol. 5, no. 4,
pp. 277–290, 2012.

[11] G. Taccari, L. Taccari, A. Fioravanti, L. Spalazzi, andA. Claudi, ‘‘Embed-
ded real-time virtualization: State of the art and research challenges,’’ in
Proc. 16th Real-Time Linux Workshop, Oct. 2014, pp. 1–7.

[12] M. Cinque, D. Cotroneo, L. D. Simone, and S. Rosiello, ‘‘Vir-
tualizing mixed-criticality systems: A survey on industrial trends
and issues,’’ Future Gener. Comput. Syst., vol. 129, pp. 315–330,
Apr. 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X21004787

[13] J. A. N. Lee, ‘‘Claims to the term ‘time-sharing,’’’ IEEE Ann. Hist.
Comput., vol. 14, no. 1, pp. 16–54, Jan. 1992.

36260 VOLUME 11, 2023



S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

[14] C. Strachey, ‘‘Time sharing in large fast computers,’’ in Communications
of the ACM, vol. 2. New York, NY, USA: Assoc Computing Machinery
Broadway, 1959, pp. 12–13.

[15] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley, ‘‘An experimental
time-sharing system,’’ in Proc. May Spring Joint Comput. Conf. AIEE-
IRE (Spring), 1962, pp. 335–344, doi: 10.1145/1460833.1460871.

[16] J. A. N. Lee, R. M. Fano, A. L. Scherr, F. J. Corbato, and V. A. Vyssotsky,
‘‘Project MAC (time-sharing computing project),’’ IEEE Ann. Hist. Com-
put., vol. 14, no. 2, pp. 9–13, Jan. 1992.

[17] J. G. Kemeny and T. E. Kurtz, ‘‘Dartmouth time-sharing,’’ Science,
vol. 162, no. 3850, pp. 223–228, Oct. 1968.

[18] R. J. Creasy, ‘‘The origin of the VM/370 time-sharing system,’’ IBM J.
Res. Develop., vol. 25, no. 5, pp. 483–490, Sep. 1981.

[19] L. A. Belady, R. P. Parmelee, and C. A. Scalzi, ‘‘The IBM history of
memory management technology,’’ IBM J. Res. Develop., vol. 25, no. 5,
pp. 491–492, Sep. 1981.

[20] J. Siebert, ‘‘Instructional use of a mainframe interactive image analysis
system,’’ Photogramm. Eng. Remote Sens., vol. 49, no. 8, pp. 1159–1165,
1983.

[21] T. Shanley, Protected Mode Software Architecture. Oxfordshire, U.K.:
Taylor & Francis, 1996.

[22] G. J. Popek and R. P. Goldberg, ‘‘Formal requirements for virtualiz-
able third generation architectures,’’ Commun. ACM, vol. 17, no. 7,
pp. 412–421, 1974.

[23] R. R. Schaller, ‘‘Moore’s law: Past, present and future,’’ IEEE Spectr.,
vol. 34, no. 6, pp. 52–59, Jul. 1997.

[24] D. M. Lee, ‘‘Usage pattern and sources of assistance for personal com-
puter users,’’MiS Quart., vol. 10, pp. 313–325, Dec. 1986.

[25] L. Qu, C. Assi, and K. Shaban, ‘‘Delay-aware scheduling and resource
optimization with network function virtualization,’’ IEEE Trans. Com-
mun., vol. 64, no. 9, pp. 3746–3758, Sep. 2016.

[26] I. Mavridis and H. Karatza, ‘‘Combining containers and virtual
machines to enhance isolation and extend functionality on cloud
computing,’’ Future Gener. Comput. Syst., vol. 94, pp. 674–696,
May 2019.

[27] A. N. Al-Quzweeni, A. Q. Lawey, T. E. H. Elgorashi, and
J. M. H. Elmirghani, ‘‘Optimized energy aware 5G network function
virtualization,’’ IEEE Access, vol. 7, pp. 44939–44958, 2019.

[28] C.-W. Lin, B. Kim, and S. Shiraishi, ‘‘Hardware virtualization and task
allocation for plug-and-play automotive systems,’’ IEEE Design Test,
vol. 38, no. 5, pp. 65–73, Oct. 2021.

[29] A. Desai, R. Oza, P. Sharma, and B. Patel, ‘‘Hypervisor: A survey on
concepts and taxonomy,’’ Int. J. Innov. Technol. Exploring Eng., vol. 2,
no. 3, pp. 222–225, 2013.

[30] A. Carvalho, V. Silva, F. Afonso, P. Cardoso, J. Cabral, M. Ekpanyapong,
S.Montenegro, andA. Tavares, ‘‘Full virtualization on low-end hardware:
A case study,’’ in Proc. IECON 42nd Annu. Conf. IEEE Ind. Electron.
Soc., Oct. 2016, pp. 4784–4789.

[31] K. Gilles, S. Groesbrink, D. Baldin, and T. Kerstan, ‘‘Proteus hypervisor:
Full virtualization and paravirtualization for multi-core embedded sys-
tems,’’ in Proc. Int. Embedded Syst. Symp. Cham, Switzerland: Springer,
2013, pp. 293–305.

[32] B. Dordevic, V. Timcenko, S. Savic, and N. Davidovic, ‘‘Comparing
hypervisor virtualization performance with the example of citrix hyper-
visor (XenServer) and Microsoft Hyper-V,’’ in Proc. 19th Int. Symp.
INFOTEH-JAHORINA (INFOTEH), Mar. 2020, pp. 1–6.

[33] B. Djordjevic, V. Timcenko, N. Kraljevic, and N. Macek, ‘‘File sys-
tem performance comparison in full hardware virtualization with ESXi,
KVM, Hyper-V and xen hypervisors,’’ Adv. Electr. Comput. Eng., vol. 21,
no. 1, pp. 11–20, 2021.

[34] R. C. Bhushan and D. K. Yadav, ‘‘Modelling and formally verifying
Intel VT-x: Hardware assistance for processors running virtualization
platforms,’’ Int. J. Eng. Adv. Technol., vol. 8, no. 4, pp. 241–247, 2019.

[35] N. Amit, M. Ben-Yehuda, and B.-A. Yassour, ‘‘IOMMU: Strategies for
mitigating the IOTLB bottleneck,’’ in Proc. Int. Symp. Comput. Archit.,
2010, pp. 256-274.

[36] J. Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and D. K. Panda,
‘‘SR-IOV support for virtualization on InfiniBand clusters: Early experi-
ence,’’ in Proc. 13th IEEE/ACM Int. Symp. Cluster, Cloud, Grid Comput.,
May 2013, pp. 385–392.

[37] A. Chierici and R. Veraldi, ‘‘A quantitative comparison between xen and
kvm,’’ J. Phys., Conf. Ser., vol. 219, no. 4, Apr. 2010, Art. no. 042005.

[38] J. Nakajima, Q. Lin, S. Yang, M. Zhu, S. Gao, M. Xia, P. Yu, Y. Dong,
Z. Qi, K. Chen, and H. Guan, ‘‘Optimizing virtual machines using
hybrid virtualization,’’ in Proc. ACM Symp. Appl. Comput., Mar. 2011,
pp. 573–578.

[39] V. Bonifaci, B. Brandenburg, G. D’Angelo, and A. Marchetti-
Spaccamela, ‘‘Multiprocessor real-time scheduling with hierarchical
processor affinities,’’ in Proc. 28th Euromicro Conf. Real-Time Syst.
(ECRTS), Jul. 2016, pp. 237–247.

[40] M. A. Sánchez-Puebla and J. Carretero, ‘‘A new approach for distributed
computing in avionics systems,’’ in Proc. 1st Int. Symp. Inf. Commun.
Technol., 2003, pp. 579–584.

[41] P. J. Prisaznuk, ‘‘Integrated modular avionics,’’ in Proc. IEEE Nat.
Aerosp. Electron. Conf., (NAECON), May 1992, pp. 39–45.

[42] T. Gaska, C. Watkin, and Y. Chen, ‘‘Integrated modular avionics-past,
present, and future,’’ IEEE Aerosp. Electron. Syst. Mag., vol. 30, no. 9,
pp. 12–23, Sep. 2015.

[43] A. E. E. Committee, ‘‘ARINC 653: Avionics application software stan-
dard interface (draft 15),’’ Tech. Rep., 1996.

[44] S. H. VanderLeest, ‘‘Taming interrupts: Deterministic asynchronicity in
an ARINC 653 environment,’’ in Proc. IEEE/AIAA 33rd Digit. Avionics
Syst. Conf. (DASC), Oct. 2014, pp. 8A3-1–8A3-11.

[45] S. H. VanderLeest and D. White, ‘‘MPSoC hypervisor: The safe & secure
future of avionics,’’ in Proc. IEEE/AIAA 34th Digit. Avionics Syst. Conf.
(DASC), Sep. 2015, pp. 6B5-1–6B5-14.

[46] J. Windsor and K. Hjortnaes, ‘‘Time and space partitioning in spacecraft
avionics,’’ in Proc. 3rd IEEE Int. Conf. Space Mission Challenges Inf.
Technol., Jul. 2009, pp. 13–20.

[47] J. Andersson, M. Hjorth, F. Johansson, and S. Habinc, ‘‘LEON processor
devices for space missions: First 20 years of LEON in space,’’ in Proc. 6th
Int. Conf. Space Mission Challenges Inf. Technol. (SMC-IT), New York,
NY, USA, Sep. 2017, pp. 136–141.

[48] D. Paikowsky, ‘‘What is new space? The changing ecosystem of global
space activity,’’ New Space, vol. 5, no. 2, pp. 84–88, Jun. 2017.

[49] M., M. Corici, S. Covaci, and M. Guta, ‘‘5G and beyond for new space:
Vision and research challenges,’’ in Proc. Adv. Commun. Satell. Syst. 37th
Int. Commun. Satell. Syst. Conf. (ICSSC), Nov. 2019, pp. 1–16.

[50] A. Hughes and A. Awad, ‘‘Quantifying performance determinism in
virtualized mixed-criticality systems,’’ in Proc. IEEE 22nd Int. Symp.
Real-Time Distrib. Comput. (ISORC), May 2019, pp. 181–184.

[51] H. Guissouma, H. Klare, E. Sax, and E. Burger, ‘‘An empirical study
on the current and future challenges of automotive software release and
configuration management,’’ in Proc. 44th Euromicro Conf. Softw. Eng.
Adv. Appl. (SEAA), Aug. 2018, pp. 298–305.

[52] U.Winkelhake andU.Winkelhake, ‘‘Vision digitised automotive industry
2030,’’ in The Digital Transformation of the Automotive Industry: Cata-
lysts, Roadmap, Practice, 2022, pp. 85–145.

[53] M. Z. Manic, M. Z. Ponos, M. Z. Bjelica, and D. Samardzija, ‘‘Proposal
for graphics sharing in a mixed criticality automotive digital cockpit,’’ in
Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2020, pp. 1–4.

[54] S. Karthik, K. Ramanan, N. Devshatwar, S. Paul, V. Mahaveer, S. Zhao,
M. Vishwanathan, and C. Matad, ‘‘Hypervisor based approach for inte-
grated cockpit solutions,’’ in Proc. IEEE 8th Int. Conf. Consum. Electron.
Berlin (ICCE-Berlin), Sep. 2018, pp. 1–6.

[55] M. R. Kabir, N. Mishra, and S. Ray, ‘‘VIVE: Virtualization of vehicu-
lar electronics for system-level exploration,’’ in Proc. IEEE Int. Intell.
Transp. Syst. Conf. (ITSC), Sep. 2021, pp. 3307–3312.

[56] T. Gaska, Y. Chen, and D. Summerville, ‘‘Leveraging driverless car
investment in next generation integrated modular avionics (IMA),’’ in
Proc. IEEE/AIAA 35th Digital Avionics Syst. Conf. (DASC), Sep. 2016,
pp. 1–9.

[57] T. Cruz, P. Simoes, and E. Monteiro, ‘‘Virtualizing programmable logic
controllers: Toward a convergent approach,’’ IEEE Embedded Syst. Lett.,
vol. 8, no. 4, pp. 69–72, Dec. 2016.

[58] J. Knorr, ‘‘Exploring Xen/kVM in prototyping an automotive use-case,’’
Ph.D. dissertation, ISEP, Arlington, VA, USA, 2019.

[59] D. Sabogal andA.D. George, ‘‘Towards resilient spaceflight systemswith
virtualization,’’ in Proc. IEEE Aerosp. Conf., Mar. 2018, pp. 1–8.

[60] S. H. VanderLeest, ‘‘Designing a future airborne capability environment
(FACE) hypervisor for safety and security,’’ in Proc. IEEE/AIAA 36th
Digit. Avionics Syst. Conf. (DASC), Sep. 2017, pp. 1–9.

[61] A. I. Kistijantoro and A. Gilbran, ‘‘Improving ARINC 653 system relia-
bility by using fault-tolerant partition scheduling,’’ in Proc. 5th Int. Conf.
Adv. Inform., Concept Theory Appl. (ICAICTA), Aug. 2018, pp. 182–187.

VOLUME 11, 2023 36261

http://dx.doi.org/10.1145/1460833.1460871


S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

[62] T. Bijlsma, A. Buriachevskyi, A. Frigerio, Y. Fu, K. Goossens, A. O. Ors,
P. J. van der Perk, A. Terechko, and B. Vermeulen, ‘‘A distributed safety
mechanism using middleware and hypervisors for autonomous vehicles,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2020,
pp. 1175–1180.

[63] A. Avanzini, P. Valente, D. Faggioli, and P. Gai, ‘‘Integrating Linux and
the real-time ERIKAOS through the xen hypervisor,’’ in Proc. 10th IEEE
Int. Symp. Ind. Embedded Syst. (SIES), Jun. 2015, pp. 1–7.

[64] B. Schulz and B. Annighofer, ‘‘Evaluation of adaptive partitioning and
real-time capability for virtualization with xen hypervisor,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 58, no. 1, pp. 206–217, Feb. 2022.

[65] C. Dall and J. Nieh, ‘‘KVM/ARM: The design and implementation of
the Linux ARM hypervisor,’’ ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 333–348, Feb. 2014, doi: 10.1145/2644865.2541946.

[66] J.-S. Ma, H.-Y. Kim, and W. Choi, ‘‘KVM-QEMU virtualization with
ARM64bit server system,’’ in Cloud Computing, Y. Zhang, L. Peng, and
C.-H. Youn, Eds. New York, NY, USA: Springer, 2016, pp. 334–343.

[67] D. Hildenbrand and M. Schulz, ‘‘Virtio-mem: Paravirtualized memory
hot(un)plug,’’ in Proc. 17th ACM SIGPLAN/SIGOPS Int. Conf. Virtual
Execution Environments, Apr. 2021, pp. 1–14.

[68] V. K. Manik and D. Arora, ‘‘Performance comparison of commercial
VMM: ESXI, XEN, HYPER-V&KVM,’’ inProc. 3rd Int. Conf. Comput.
Sustain. Global Develop. (INDIACom). New York, NY, USA, Mar. 2016,
pp. 1771–1775.

[69] G. P. C. Tran, Y.-A. Chen, D.-I. Kang, J. P. Walters, and S. P. Crago,
‘‘Hypervisor performance analysis for real-time workloads,’’ in Proc.
IEEEHigh Perform. Extreme Comput. Conf. (HPEC), Sep. 2016, pp. 1–7.

[70] H. Shi, X. Li, and Y. Zhao, ‘‘Database performance comparison of xen,
KVM and OSv using Cassandra,’’ in Proc. 2nd IEEE Adv. Inf. Manag.,
Communicates, Electron. Autom. Control Conf. (IMCEC), May 2018,
pp. 27–30.

[71] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, ‘‘KVM, Xen and
docker: A performance analysis for ARM based NFV and cloud com-
puting,’’ in Proc. IEEE 3rd Workshop Adv. Inf., Electron. Electr. Eng.
(AIEEE), Nov. 2015, pp. 1–8.

[72] T. M’́uller, H. Askaripoor, and A. Knoll, ‘‘Performance analysis of KVM
hypervisor using a self-driving developer kit,’’ inProc. IECON48th Annu.
Conf. IEEE Ind. Electron. Soc., Oct. 2022, pp. 1–7.

[73] M.Masmano, I. Ripoll, A. Crespo, and J. Metge, ‘‘XtratuM: A hypervisor
for safety critical embedded systems,’’ in Proc. 11th Real-Time Linux
Workshop, 2009, pp. 263–272.

[74] D. Gastón Ochoa, ‘‘A study of Xtratum as a tool for space and time
partitioning in safety-critical avionics software,’’ Ph.D. dissertation,
ETSI_Sistemas_Infor, Sophia Antipolis, France, 2020.

[75] N.-J. Wessman, F. Malatesta, J. Andersson, P. Gomez, M. Masmano,
V. Nicolau, J. L. Rhun, G. Cabo, F. Bas, R. Lorenzo, O. Sala, D. Trilla, and
J. Abella, ‘‘De-RISC: The first RISC-V space-grade platform for safety-
critical systems,’’ in Proc. IEEE Space Comput. Conf. (SCC), Aug. 2021,
pp. 17–26.

[76] J. Galizzi, M. Pignol, M. Masmano, M. Munoz, J. Coronel, T. Parrain,
and P. Combettes, ‘‘Temporal duplex-triplex on COTS processors with
XtratuM,’’ in Proc. DASIA Data Syst. Aerosp., vol. 736, 2016, p. 20.

[77] J. Savithry, A. G. Ortega, A. S. Pillai, P. Balbastre, and A. Crespo,
‘‘Design of criticality-aware scheduling for advanced driver assistance
systems,’’ in Proc. 24th IEEE Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), Sep. 2019, pp. 1407–1410.

[78] A. Larrucea, J. Perez, I. Agirre, V. Brocal, and R. Obermaisser, ‘‘A modu-
lar safety case for an IEC-61508 compliant generic hypervisor,’’ in Proc.
Euromicro Conf. Digit. Syst. Design, Aug. 2015, pp. 571–574.

[79] V. Muttillo, L. Tiberi, L. Pomante, and P. Serri, ‘‘Benchmarking anal-
ysis and characterization of hypervisors for space multicore systems,’’
J. Aerosp. Inf. Syst., vol. 16, no. 11, pp. 500–511, Nov. 2019.

[80] S.-W. Kim, J.-W. Choi, J.-Y. Jeong, and B.-S. Yoo, ‘‘Development of
RTEMS SMP platform based on XtratuM virtualization environment for
satellite flight software,’’ J. Korean Soc. Aeronaut. Space Sci., vol. 48,
no. 6, pp. 467–478, Jun. 2020.

[81] S.-W. Kim, B.-S. Yoo, J.-Y. Jeong, and J.-W. Choi, ‘‘Overhead analysis
of XtratuM for space in SMP envrionment,’’ IEMEK J. Embedded Syst.
Appl., vol. 15, no. 4, pp. 177–187, 2020.

[82] S. Campagna, M. Hussain, and M. Violante, ‘‘Hypervisor-based virtual
hardware for fault tolerance in COTS processors targeting space applica-
tions,’’ in Proc. IEEE 25th Int. Symp. Defect Fault Tolerance VLSI Syst.,
Oct. 2010, pp. 44–51.

[83] S. Grixti, N. Sammut, M. Hernek, E. Carrascosa, M. Masmano, and
A. Crespo, ‘‘Separation kernel robustness testing: The XtratuM case
study,’’ in Proc. IEEE Int. Conf. Cluster Comput. (CLUSTER), Sep. 2016,
pp. 524–531.

[84] L. Masing et al., ‘‘XANDAR: Exploiting the X-by-construction paradigm
in model-based development of safety-critical systems,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 1–5.

[85] T. Poggi, P. Onaindia, M. Azkarate-askatsua, K. Gruttner, M. Fakih,
S. Peiro, and P. Balbastre, ‘‘A hypervisor architecture for low-power real-
time embedded systems,’’ in Proc. 21st Euromicro Conf. Digit. Syst.
Design (DSD), Aug. 2018, pp. 252–259.

[86] A. Crespo, P. Balbastre, J. Simo, J. Coronel, D. Gracia-Perez, and
P. Bonnot, ‘‘Hypervisor-based multicore feedback control of mixed-
criticality systems,’’ IEEE Access, vol. 6, pp. 50627–50640, 2018.

[87] E. Missimer, R. West, and Y. Li, ‘‘Distributed real-time fault tolerance on
a virtualized multi-core system,’’ in Proc. OSPERT, 2014, p. 17.

[88] A. Carvalho, F. Afons, P. Cardoso, J. Cabral, M. Ekpanyapong, S. Mon-
tenegro, and A. Tavares, ‘‘Functionality farming in POK/rodosvisor,’’ in
Proc. Int. J. Comput. Sci. Softw. Eng., vol. 5, pp. 161–174, Aug. 2016.

[89] S. Pinto, A. Tavares, and S. Montenegro, ‘‘Space and time partition-
ing with hardware support for space applications,’’ in Proc. Data Syst.
Aerosp. (DASIA), Eur. Space Agency, (Special Publication) ESA SP, 2016,
pp. 1–7.

[90] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto, ‘‘µRTZVisor:
A secure and safe real-time hypervisor,’’ Electronics, vol. 6, no. 4, p. 93,
Oct. 2017.

[91] S. Pinto, J. Martins, J. Lopes, M. Abreu, and A. Tavares, ‘‘SecSSy
hypervisor: Security-safety synergy for aerospace,’’ in Proc. DAta Syst.
Aerosp. (DASIA), Jun. 2017, pp. 1–8.

[92] J. Winter, ‘‘Trusted computing building blocks for embedded Linux-
based ARM trustzone platforms,’’ in Proc. 3rd ACM Workshop Scalable
Trusted Comput., Oct. 2008, p. 2130, doi: 10.1145/1456455.1456460.

[93] M. Cereia and I. C. Bertolotti, ‘‘Virtual machines for distributed real-
time systems,’’ Comput. Standards Interface, vol. 31, no. 1, pp. 30–39,
Jan. 2009.

[94] S. W. Kim, C. Lee, M. Jeon, H. Y. Kwon, H. W. Lee, and C. Yoo, ‘‘Secure
device access for automotive software,’’ in Proc. Int. Conf. Connected
Vehicles Expo. (ICCVE), Dec. 2013, pp. 177–181.

[95] G. Cicero, A. Biondi, G. Buttazzo, and A. Patel, ‘‘Reconciling security
with virtualization: A dual-hypervisor design for ARM TrustZone,’’ in
Proc. IEEE Int. Conf. Ind. Technol. (ICIT), Feb. 2018, pp. 1628–1633.

[96] P. Lucas, K. Chappuis, B. Boutin, J. Vetter, and D. Raho, ‘‘VOSYS-
monitor, a TrustZone-based hypervisor for ISO 26262 mixed-critical
system,’’ in Proc. 23rd Conf. Open Innov. Assoc. (FRUCT), Nov. 2018,
pp. 231–238.

[97] D. Dasari,M. Pressler, A. Hamann, D. Ziegenbein, and P. Austin, ‘‘Apply-
ing reservation-based scheduling to aµC-based hypervisor: An industrial
case study,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2020, pp. 987–990.

[98] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, ‘‘Look mum, no
VM exits! (almost),’’ 2017, arXiv:1705.06932.

[99] C. Hernandez, J. Flieh, R. Paredes, C.-A. Lefebvre, I. Allende,
J. Abella, D. Trillin, M. Matschnig, B. Fischer, K. Schwarz, J. Kiszka,
M. Ronnback, J. Klockars, N. McGuire, F. Rammerstorfer, C. Schwarzl,
F. Wartet, D. Ludemann, and M. Labayen, ‘‘SELENE: Self-monitored
dependable platform for high-performance safety-critical systems,’’ in
Proc. 23rd Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2020,
pp. 370–377.

[100] A. Golchin, S. Sinha, and R. West, ‘‘Boomerang: Real-time I/O meets
legacy systems,’’ in Proc. IEEE Real-Time Embedded Technol. Appl.
Symp. (RTAS), Apr. 2020, pp. 390–402.

[101] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto,
‘‘Bao: A lightweight static partitioning hypervisor for modern
multi-core embedded systems,’’ in Proc. Workshop Next Gener.
Real-Time Embedded Syst. (NG-RES), vol. 77, M. Bertogna and
F. Terraneo, Eds. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum Fuer Informatik, 2020, pp. 3:1–3:14. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/11779

[102] G. Heiser and B. Leslie, ‘‘The OKL4 microvisor: Convergence point of
microkernels and hypervisors,’’ in Proc. 1st ACM Asia–Pacific Workshop
Workshop Syst., Aug. 2010, p. 1924, doi: 10.1145/1851276.1851282.

[103] R. J. Wolfe, ‘‘OKL4 hypervisor software development kit plugin,’’
Tech. Rep., 2019.

36262 VOLUME 11, 2023

http://dx.doi.org/10.1145/2644865.2541946
http://dx.doi.org/10.1145/1456455.1456460
http://dx.doi.org/10.1145/1851276.1851282


S. Lozano et al.: Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems

[104] E. de Matos and M. Ahvenjärvi, ‘‘seL4 microkernel for virtualiza-
tion use-cases: Potential directions towards a standard VMM,’’ 2022,
arXiv:2210.04328.

[105] U. Steinberg and B. Kauer, ‘‘NOVA: Amicrohypervisor-based secure vir-
tualization architecture,’’ inProc. 5th Eur. Conf. Comput. Syst., Apr. 2010,
Art. no. 209222, doi: 10.1145/1755913.1755935.

[106] H. Li, X. Xu, J. Ren, and Y. Dong, ‘‘ACRN: A big little hypervisor for IoT
development,’’ in Proc. 15th ACM SIGPLAN/SIGOPS Int. Conf. Virtual
Execution Environ., Apr. 2019, p. 3144, doi: 10.1145/3313808.3313816.

[107] K. Lampka and A. Lackorzynski, ‘‘Using hypervisor technology for safe
and secure deployment of high-performancemulticore platforms in future
vehicles,’’ in Proc. 26th IEEE Int. Conf. Electron., Circuits Syst. (ICECS),
Nov. 2019, pp. 783–786.

[108] H. Joe, D. Kang, J.-A. Shin, V. Dupre, S.-Y. Kim, T. Kim, and C. Lim,
‘‘Remote graphical processing for dual display of RTOS and GPOS on an
embedded hypervisor,’’ inProc. IEEE 20thConf. Emerg. Technol. Factory
Autom. (ETFA), Sep. 2015, pp. 1–4.

[109] Y. Lim and H. Kim, ‘‘Cache-aware real-time virtualization for clustered
multi-core platforms,’’ IEEE Access, vol. 7, pp. 128628–128640, 2019.

[110] D. Reinhardt and G. Morgan, ‘‘An embedded hypervisor for safety-
relevant automotive E/E-systems,’’ in Proc. 9th IEEE Int. Symp. Ind.
Embedded Syst. (SIES), Jun. 2014, pp. 189–198.

[111] M. Lemerre, E. Ohayon, D. Chabrol,M. Jan, andM.-B. Jacques, ‘‘Method
and tools for mixed-criticality real-time applications within PharOS,’’ in
Proc. 14th IEEE Int. Symp. Object/Component/Service-Oriented Real-
Time Distrib. Comput. Workshops, Mar. 2011, pp. 41–48.

[112] Q. U. Ain, U. Anwar, M. A. Mehmood, and A. Waheed, ‘‘HTTM–design
and implementation of a type-2 hypervisor for MIPS64 based systems,’’
J. Phys., Conf. Ser., vol. 787, Jan. 2017, Art. no. 012006.

[113] Q. Ain and M. A. Mehmood, ‘‘Runtime performance evaluation and
optimization of type-2 hypervisor for MIPS64 architecture,’’ J. King
Saud Univ. Comput. Inf. Sci., vol. 34, no. 2, pp. 295–307, Feb. 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1319157819308390

[114] M. Project. (2022).Minos Flexible Virtualization Solution for Embedded
System. [Online]. Available: https://github.com/minosproject/minos

[115] B. Jansen, F. Korkmaz, H. Derya, M. Hubner, M. L. Ferreira, and
J. C. Ferreira, ‘‘Towards a type 0 hypervisor for dynamic reconfigurable
systems,’’ in Proc. Int. Conf. ReConFigurable Comput. FPGAs (ReCon-
Fig), Dec. 2017, pp. 1–7.

[116] Z. Jiang, N. C. Audsley, and P. Dong, ‘‘BlueVisor: A scalable real-
time hardware hypervisor for many-core embedded systems,’’ in Proc.
IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2018,
pp. 75–84.

[117] M. Polenov, V. Guzik, and V. Lukyanov, ‘‘Hypervisors comparison and
their performance testing,’’ in Proc. Comput. Sci. Line Conf., vol. 1.
Cham, Switzerland: Springer, Jul. 2019, pp. 148–157.

SANTIAGO LOZANO is currently pursuing the
Ph.D. degree in computer science and technology
with the University Carlos III of Madrid. He is
an Aerospace and Defense Engineer with SENER
Aeroespacial, where he participated in numerous
European projects, such as the Development of
the Vega-C Rocket Navigation Unit or the Future
Combat Air System (FCAS) Program.

TAMARA LUGO (Member, IEEE) received the
master’s degree in electronic systems and appli-
cations engineering. She is currently pursuing the
Ph.D. degree in computer science and technology
with the University Carlos III of Madrid, Spain.
She is a Telecommunications and Electronics
Engineer. Her research interest includes embedded
real-time systems applied to space systems.

JESÚS CARRETERO (Senior Member, IEEE) has
been a Full Professor of computer architecture
and technology with the University Carlos III
of Madrid, Spain, since 2002. He is currently
involved in three other EU projects, coordinating
the ADMIRE FET-HPC. His research interests
include high-performance computing systems,
large-scale distributed systems, and real-time sys-
tems. He is a Senior Member of the IEEE Com-
puter Society. He was an Action Chair of the

IC1305 COST Action ‘‘Network for Sustainable Ultrascale Computing Sys-
tems (NESUS).’’ He has been the General Chair of HPCC 2011, MUE 2012,
ISPA 2016, and CCGRID 2017.

VOLUME 11, 2023 36263

http://dx.doi.org/10.1145/1755913.1755935
http://dx.doi.org/10.1145/3313808.3313816

