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ABSTRACT In this paper, we present methods for identifying an image from a given set of Radon
projections. Given a suitably regular 2-D or 3-D function, we form a new function g from f using a linear
transformation. We show how the Radon projections of f and g can be used to determine the transformation.
The proposed algorithms introduce three major contributions: 1) Improvements on the 2-D setting using the
moments of the Radon projections with only two orthogonal projections. 2) A natural extension of the 2-D
setting to work with the 3-D setting. In particular, reducing the 3-D problem to a 2-D problem so that we
can recover a translation, a scaling, or a rotation transformation of a 3-D object in the Radon domain. 3) An
efficient method of recovering a rotation of a 3-D image around an arbitrary axis and an angle of rotation.

INDEX TERMS Digital watermarking, affine transformation, radon transform, linear transformation.

I. INTRODUCTION
One of the key imaging technologies is image registration,
which matches two or more images. Image registration estab-
lishes correspondences between different images showing
diverse views of objects or organs. These images might
have been taken at various points in time, from various
angles, from different devices or perspectives, or even reveal
various kinds of information. Many applications, including
medical image analysis, recognition, and industrial vision,
use image registration. Interestingly, there is a large number
of application areas demanding for image registration, and
image registration has impact on basically every imaging
technique [1], [2], [3], [4], [5].

Specific examples include change detection and motion
correction, data fusion, spatial normalization of data, stitch-
ing (generating a global picture from partial views), template
matching and identification, studying an inspected image,
or comparing current images with a data base. Moreover,
imaging modalities such as diffusion tensor imaging rely
on image registration. Therefore, image registration is an
important computational tool.
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Geometric transformation of an image might be classified
into two main types: linear and nonlinear transformation.
Linear transformation, which is the main subject of this
paper, includes rotation, reflection, dilation, and many other
classical linear transformations.

Over the past decades, various image registration methods
have been proposed. Among the existing methods, the
transform-based method [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], feature-
based method [23], [24], and others. The term ‘‘transform-
based methods’’ is used here in a global sense. This includes
the Radon and Fourier transform, Trace transform, and others.
Within this approach, we find different algorithms that are
based on different implementations such as the methods of
moments of the projections, correlations, the combination
of log-polar transform and 1D phase-only correlation.
The method of moments, like Zernike moments [12] and
Krawtchouk moments [13], is frequently used; in fact, many
shape descriptors that are commonly used in the literature are
based on Radon transform, including complex moments as
in [14], Zernike moments as in [15] and many others. Direct
implementation in Radon domain is presented in [6], [7],
and [8]. The Fourier phase matching method [9] is applied
on the registration of radiography and computed tomography
projections. In [10] the authors use the results obtained in [6]
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to identify the transform parameters for a fast-matching algo-
rithm. Another major approach related to Radon transform
uses invariant pattern recognition, [16], [17], [18].

A common approach to estimate the image rotation,
is to convert the rotation into a geometrical translation
and estimate the translation. For example, [17] defines the
R-transform or signature so that a rotation of the image by
an angle θ implies a translation of the R-transform by θ .
Another example is the combination of log-polar transform
and 1D phase-only correlation [21], [22]. Similarly, the
authors of [10] proposed the rotation estimation algorithm
based on Radon transform. This method converts the rotation
into the geometrical shift and estimate the shift by the phase
correlation method which is robust to noise. However, the
precision of the phase correlation method is limited to integer
precision.

In the 2D/3D image registration we are interested in
finding the optimal geometric transformation that aligns a
distorted image to a reference image. In doing so, we work
with the 2-D observations that will eventually allow us to
work with one dimensional data. A review of 2D/3D image
registration methods is given [25], [26]. For example, in [26]
the authors propose a 2D/3D image registrationmethod based
on evaluation of similarity between corresponding 3-D and
2-D gradient covariances using backprojection. In [27], the
Radon transform of the reference image and the images to be
matched is calculated first, then a certain Fourier invariant
descriptor for each 1-D projection image is computed.
Authors of [28] suggest an intensity-driven 2D/3D multires-
olution registration approach using the normalized gradient
fields distance measure. Reference [29] introduces a 2D/3D
medical image registration algorithm based on normalized
cross-correlation.

In this paper, we present methods for recovering a
transformation that relates a 2-D or 3-D input distorted image
to a known reference image. To some degree, this work is an
extension and improvement of an existing algorithms, [6], [7].
In [6], the authors addressed the problems of shifting, rotat-
ing, reflecting, dilating, and translating between a reference
image and a distorted image. The general form of the problem
is presented in [7] where the matrix of the transformation
is recovered through its singular value decomposition.
The current proposed algorithms introduce the following
contributions:

1) For the 2-D setting: we propose a solution to the non-
uniform scaling problem and we give an alternative solution
to the rotation problem using only two orthogonal projections
such as the view angles 0 and π/2.
2) For the 3-D setting: we propose a procedure to reduce

the 3-D to 2-D calculations and use it to compute the centroid
and the scaling parameters. In addition, we devise an efficient
method of recovering a rotation of a 3-D image around an
arbitrary axis and an angle of rotation.

Our work is organized as follows: in section II,
a background material is presented, this includes, the
Radon transforms, the projection’s moments, and the linear

FIGURE 1. The line L from (2) specified by the coordinates (p, ϕ).

transformation of images. In section III, the theoretical work
for the 2D/3D problem is presented. Section IV presents
validation and results discussion. Finally, our conclusion is
provided in section V.

II. BACKGROUND MATERIAL
This section presents a review of three mathematical tools
and notation that will be used in this work. These tools are:
the Radon transform, the projection’s moments, and the linear
transformation of images. Let (x, y) designate the coordinates
of points in the plane and let f be a suitably regular real valued
function on some domainD of R2. Then, the two-dimensional
Radon transform of f is the line integral along all possible
lines L, given by

f ∨
=

∫
L
f (x, y) ds (1)

As shown in Fig1, the line L depends on the values p and ϕ

and is described by the equation

x cosϕ + y sinϕ = p (2)

It is convenient to write

f
∨
ϕ (p) =

∫
∞

−∞

f (p cosϕ − t sinϕ, p sinϕ + t cosϕ)dt (3)

Using vector notation, let ξ =< cosϕ, sinϕ > be a unit vector
and let x =< x, y > be a vector with components x and y,
then f (x) means f (x, y). In this way, the line L is described by
ξ.x = x cosϕ + y sinϕ = p. Then, the transform is written as

f ∨ (p, ξ) =

∫∫
R2
f (x) δ (p− ξ.x) dx dy (4)

δ is the Dirac function.
Similarly for the three dimensional setting, (with some

changes of the notation); let ξ =< ξ1, ξ2, ξ3 > be a unit
vector and let x =< x, y, z > be a vector in R3 with
components x, y, z, and dx = dxdydz. Let F be a three
dimensional function. The equation

ξ.x = ξ1x + ξ2y+ ξ3z = q defines a plane, and the Radon
transform of F is given by

F∨ (q, ξ) =

∫∫∫
R3
F (x) δ (q− ξ.x) dxdydz (5)

The integrations here are over planes rather than lines. Here,
q is the perpendicular distance from the origin to the plane,
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and ξ is a unit vector along q that defines the orientation
of the plane. Radon showed that it is possible to recover
a suitably regular real valued function from the set of all
projections, [30], [31]. This transform found its applications
in diverse fields including medical applications, digital rock
physics, image processing, and others, see for instance [32],
[33], [34], [35], [36], [37].

Another tool to review is the projection’s moments. The nth

order moment of f (x, y) is given by

Ms,t (f ) =

∫
∞

−∞

∫
∞

−∞

xsyt f (x, y)dxdy (6)

where s, t are nonnegative integers with s+ t = n.
The nth moment of the projection f ∨

ϕ (p) is written as,

M (n)
ϕ (f ∨) :=

∫
∞

−∞

pnf ∨
ϕ (p)dp, n = 0, 1, 2, . . . ϕ ∈ [0, π]

(7)

The following known result, [38], shows to what extent the
moments of projections can determine the moments of the
function (image):

M (n)
ϕ (f ) =

∑n

l=0

(
n
l

)
cosn−l (ϕ) . sinl (ϕ)

·

∫∫
∞∞

−∞−∞

xn−lyl f (x, y)dxdy (8)

that can be written as,

M (n)
ϕ (f ∨) =

∑n

l=0

(
n
l

)
cosn−l (ϕ) . sinl (ϕ) .Mn−l,l(f ) (9)

It is possible, using (9), to show that,

M (1)
ϕ (f ∨) :=

∫
∞

−∞

pf ∨ (p, ϕ) dp

= M (1)
0 (f ∨)cosϕ +M (1)

π
2
(f ∨)sinϕ (10)

This can be written as a cosine function,

M (1)
ϕ (f ∨) = Rcos (ϕ + α);

R =

√
[M (1)

0 (f ∨)]2 + [M (1)
π
2
(f ∨) ]2, and

tan (α) =
M (1)

0 (f ∨)

M (1)
π
2
(f ∨)

(11)

Finally, we review the Radon transform of a linear trans-
formation which is presented in [20]. Let f be nonnegative
2-D function and let A be a nonsingular matrix. Consider the
transformation

g (x, y) := f (Ax), x =

(
x
y

)
(12)

Then,

g∨ (p, ξ)=1 f ∨(p,BT ξ ), where 1=|det (B)|, B=A−1

(13)

Similarly, for a 3-D function F and the transformation

G (x, y, z) := F(Ax), x =

( x
y
z

)
; we have

G∨ (q, ξ) = 1 F∨(q,BT ξ ) (14)

Define, µ = BT ξ and let the angles θ , ϕ such that
ξ =

(cosθ
sinθ

)
, and µ = BT ξ = |µ|

(cosϕ
sinϕ

)
Then, (13), (14) are written as

g∨ (p, θ) =
1

|µ|
f ∨

(
p

|µ|
, ϕ

)
(15)

G∨(q, ξ ) =
1

|µ|
F∨(

q
|µ|

,
µ

|µ|
) (16)

Consider a reference image f and an inspected image g,
where g is obtained from f by the linear transformation
(12). One efficient way to obtain the matrix of transforma-
tion is through the singular value decomposition [7], [8].
However, that approach requires the Radon projections of
all view angles. As said, the problems of shifting, uniform
scaling, rotation, reflection transformations, and others are
discussed in [6]. In particular, the centroid calculations are
as follows:

x =

∫
∞

−∞
p g∨(p, 0) dp∫

∞

−∞
g∨(p, 0) dp

, and y =

∫
∞

−∞
p g∨

(
p, π

2

)
dp∫

∞

−∞
g∨

(
p, π

2

)
dp

(17)

III. METHODOLOGY
This section proposes new ideas for solving some transfor-
mation problems that include: the 2-D non-uniform scaling,
the 2-D rotation, reducing the 3-D calculation to the 2-D
setting, the 3-D scaling, the 3-D centroid, and some 3-D
rotation problems. These ideas are presented in the following
subsections.

A. THE 2-D SCALING PROBLEM
The 2-D uniform scaling problem was solved in [6]. Here,
we consider the non-uniform scaling problem, based on only
two view angles of projections.

Suppose that the function g is obtained from the function

f by the matrix A =

[
s1 0
0 s2

]
, s1, s2 > 0 so that

g (x, y) = f (s1x, s2y) (18)

Apply (15), using the angles 0 and π
2 , we write,

g∨ (p, 0) =
1
s2
f ∨(s1p, 0), and (19)

g∨

(
p,

π

2

)
=

1
s1
f ∨(s2p,

π

2
) (20)

Direct calculations show that,

1 =
1
s1s2

=

∫
∞

−∞
g∨ (p, 0) dp∫

∞

−∞
f ∨ (p, 0) dp

(21)
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and that

s1 = 1.

∫
∞

−∞
[ f ∨

(
p, π

2

)
]2∫

∞

−∞
[ g∨

(
p, π

2

)
]2
dp,

s2 = 1.

∫
∞

−∞
[f ∨ (p, 0) ]2∫

∞

−∞
[g∨ (p, 0) ]2

dp (22)

Thus, using the angles 0 and π
2 we can apply (21) and (22) to

compute the scaling parameters s1 and s2 that link g to f . For
the case of a uniform scaling when
g (x, y) = f (sx, sy), it follows from (21) that

s =

√√√√ ∫
∞

−∞
f ∨(p, 0)dp∫

∞

−∞
g∨ (p, 0) dp

(23)

B. THE 2-D ROTATION PROBLEM
Suppose that the function g is obtained from the function f by

the real rotation parameter θ so that A =

[
cos (θ) sin (θ)

−sin (θ) cos (θ)

]
,

and

g (x, y) = f (xcosθ + ysin θ, −xsinθ + ycosθ) (24)

then, from (15) we have,

g∨ (p, ϕ) = f ∨ (p, ϕ − θ) (25)

An efficient procedure for recovering the angle of rotation
is introduced in [6]. But this method requires the Radon
projections of the inspected image for all view angles.

In the following, we devise another approach that requires
only two angles of projection. Let us apply (10) to both sides
of (25):
M (1)

ϕ (g∨) = M (1)
ϕ−θ (f

∨), equivalently,

M (1)
0 (g∨) cosϕ +M (1)

π
2
(g∨) sinϕ

= M (1)
0 (f ∨) cos (ϕ − θ ) +M (1)

π
2
(f ∨) sin (ϕ − θ ) (26)

for any angle ϕ, Since each side of (26) is a cosine function as
shown in (11), then the angle θ is simply the shift in equation
(26). Thus, we can use (26) to compute the angle of rotation
that links g to f . In this way, only two projections with angles
ϕ = 0, π

2 , are needed.

C. FROM 3-D TO 2-D
In certain parts of the discussion, we reduce the calculation
to the 2-D transform. The following elementary observation
is essential to this approach. Let f (x, y) be a 2-D function.
Then, for any ϕ we have,∫

∞

−∞

∫
∞

−∞

f (x, y)dxdy =

∫
∞

−∞

f ∨ (p, ϕ) dp (27)

In several instances of our calculations, we use the three
vectors: ξ = i =< 1, 0, 0 >, ξ = j =< 0, 1, 0 >,
or ξ = k =< 0, 0, 1 >.

Consider, for instance, the case ξ = k =< 0, 0, 1 >.
To compute F∨ (q, k) , (which is an integration over the

horizontal plane z = q); define:

f ∨

q,k (p, ϕ)=

∫
∞

−∞

F(p cosϕ−t sinϕ, p sinϕ+t cosϕ, q) dt

(28)

In other words, f ∨

q,k (p, ϕ) means the two-dimensional line
integral of F (x, y, q) on the plane z = q, defined by
p, ϕ that are given in (2-3). Using (27), it is then true that,

F∨ (q, k) =

∫
∞

−∞

∫
∞

−∞

F(x, y, q)dxdy∫
∞

−∞

f ∨

q,k (p, ϕ) dp,

for any ϕ. In particular,

F∨ (q, k) =

∫
∞

−∞

∫
∞

−∞

F(x, y, q)dxdy

=

∫
∞

−∞

f ∨

q,k (p, 0) dp (29)

Similarly,

F∨ (q, j) =

∫
∞

−∞

∫
∞

−∞

F (x, q, z) dxdz =

∫
∞

−∞

f ∨

q,j (p, ϕ) dp,

where the values p and ϕ are seated in the xz− plane.
In particular,

F∨ (q, j) =

∫
∞

−∞

∫
∞

−∞

F(x, q, z)dxdz =

∫
∞

−∞

f ∨

q,j (p, 0) dp

(30)

and,

F∨ (q, i) =

∫
∞

−∞

∫
∞

−∞

F(q, y, z)dydz =

∫
∞

−∞

f ∨

q,i (p, ϕ) dp,

values p and ϕ are seated in the yz− plane. In particular,

F∨ (q, i) =

∫
∞

−∞

∫
∞

−∞

F (x, q, z) dxdz =

∫
∞

−∞

f ∨

q,i (p, 0) dp

(31)

D. THE CENTROID OF F
Let (x, y, z) be the center of mass of the function F in the
domain E . With arguments similar to (17), we determine this
point. Observe that,

x

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞
x F(x, y, z)dxdydz∫

∞

−∞

∫
∞

−∞

∫
∞

−∞
F(x, y, z)dxdydz

=

∫
∞

−∞
x F∨(x, i) dx∫

∞

−∞
F∨(x, i) dx

(32)
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Similarly, for y and z so we can write,

x̄ =

∫
∞

−∞
qF∨(q, i)dq∫

∞

−∞
F∨(q, i)dq

ȳ =

∫
∞

−∞
qF∨(q, j)dq∫

∞

−∞
F∨(q, j)dq

z̄ =

∫
∞

−∞
qF∨(q, k)dq∫

∞

−∞
F∨(q, k)dq

(33)

E. THE 3-D SCALING PROBLEM
Suppose that the function G is obtained from the
function F by the matrix of transformation A = s1 0 0

0 s2 0
0 0 s3

 , s1, s2, s3 > 0 so that

G (x, y, z) = F(s1x, s2y, s3z) (34)

Apply (16), with the vectors i, j, k,

G∨ (q, i) =
1
s2s3

F∨(s1q, i)

G∨ (q, j) =
1
s1s3

F∨(s2q, j)

G∨ (q, k) =
1
s1s2

F∨(s3q, k) (35)

Using any of the three equations of (35), we write

1 =
1

s1s2s3
=

∫
∞

−∞
G∨ (q, k) dq∫

∞

−∞
F∨ (q, k) dq

(36)

If each of the three equations of (35) is squared and integrated
with respect to q, we obtain the following,

s2s3 = 1 .

∫
∞

−∞
[F∨ (q, i) ]2 dq∫

∞

−∞
[G∨ (q, i) ]2 dq

s1s3 = 1 .

∫
∞

−∞
[F∨ (q, j) ]2 dq∫

∞

−∞
[G∨ (q, j) ]2 dq

s1s2 = 1 .

∫
∞

−∞
[F∨ (q, k) ]2 dq∫

∞

−∞
[G∨ (q, k) ]2 dq

(37)

Thus, (36-37) determine the scaling parameters s1, s2, and s3
that linkG to F . A special case occurs when s1= s2= s3 = s.
Then, from (36) we have

s =
3

√√√√∫
∞

−∞
F∨ (q, k) dq∫

∞

−∞
G∨ (q, k) dq

(38)

F. 3-D ROTATION ABOUT THE Z- AXIS
Suppose, for instance, that the function G is obtained from
the function F by the real rotation parameter θ about the z−

axis using the matrix, A =

 cos (θ) sin (θ) 0
−sin (θ) cos (θ) 0

0 0 1

, so that

G (x, y, z) = F(xcosθ + ysinθ, −xsinθ + ycosθ, z)

(39)

We may reduce the problem of finding the angle θ by
considering the rotation of the xy− planes of both F and G.
In this way, wework with f ∨

0,k (p, ϕ) and g∨

0,k (p, ϕ) from (28).
If we choose to apply (26), then θ is the shift parameter of the
equation:

M (1)
0

[
g∨

0,k
]
cosϕ +M (1)

π
2

[
g∨

0,k
]
sinϕ

= M (1)
0 [f ∨

0,k ]cos (ϕ − θ ) +M (1)
π
2
[f ∨

0,k ]sin (ϕ − θ )

(40)

Similar arguments can be performed for the rotation about the
x or the y− axis.

G. 3-D ROTATION ABOUT AN ARBITRARY AXIS WITH
ARBITRARY ANGLE OF ROTATION
The matrix of a proper rotation by angle θ around an axis
specified by the unit vector u =< a, b, c > is given by (41),
as shown at the bottom of the page. Suppose that the function
G is obtained from the function F such that

G (x) := F(Au,θx); x =

xy
z

 (42)

Apply (14), we have

G∨ (q, ξ) = F∨(q,Au,θ ξ ) (43)

In view of these considerations, consider the upper half of the
unit sphere

U = {u =< a, b, c >, a2 + b2 + c2 = 1,

− 1 ≤ a, b ≤ 1, and 0 ≤ z ≤ 1} (44)

and the space of unit vectors

ξ = {(sin8 cos2, sin8 sin2, cos8) ,

0 ≤ 8 < π, 0 ≤ 2 < 2π} (45)

Define the objective function,

9 (u, θ) =

∫
ξ

[
∫

∞

−∞

∣∣G∨ (q, ξ) − F∨
(
q,Au,θξ

)∣∣ dq ]dξ

(46)

Au,θ =

 cos θ + a2 (1 − cosθ) ab (1 − cosθ) − csinθ ac (1 − cosθ) + bsinθ
ab (1 − cosθ) + csinθ cos θ + b2 (1 − cosθ) bc (1 − cosθ) − asinθ
ac (1 − cosθ) − bsinθ bc (1 − cosθ) + asinθ cos θ + c2 (1 − cosθ)

 (41)
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The integral dξ is with respect to the 3-dimensional Lebesgue
measure. We will numerically find u∈U , and 0 ≤ θ <

2π that minimize (46), from which, both axis and angle of
rotation are determined.

IV. DISCUSSION
We present our discussion through the following
examples.

A. EXAMPLE 1: A VALIDATION EXAMPLE
Consider the function F (x, y, z) = 1 on the region
E = {(x, y, z) : 2 ≤ x ≤ 4, 2 ≤ y ≤ 4, 0 ≤ z ≤ 2} , shown
in Fig 2a. A typical horizontal slice of this function would be
equivalent to the image in Fig 2b, in the xy− plane. Consider
(28) and (29); we calculate the following:
F∨ (q, k) =

∫ 4
2 f

∨

q,k (p, 0) dp = 4,(Area of the box in
Fig 2b), for any 0 ≤ q ≤ 2. Fig 2c shows the graph of
F∨ (q, k) , and Fig 2d shows the graph of F∨ (q, i), which
is in this example, the same for F∨ (q, j). Apply (33), we see

that, x̄ =

∫
∞

−∞
qF∨(q,i)dq∫

∞

−∞
F∨(q,i)dq

=
24
8 = 3 = ȳ =

∫
∞

−∞
qF∨(q,j)dq∫

∞

−∞
F∨(q,j)dq

and

z̄ =

∫
∞

−∞
qF∨(q,k)dq∫

∞

−∞
F∨(q,k)dq

=
8
8 = 1.

Assume now that F is subjected to a scaling transformation
so thatG from (34) is given byG (x, y, z) = F(4x, 2y, 1z) that
is shown in Fig 3.

A slice of Fig 3 parallel to the yz− plane together with
the profile G∨ (q, i) are shown in Fig 4a-b. A slice of Fig 3
parallel to the xz− plane together with the profile G∨ (q, j)
are shown in Fig 4c-d; and a slice of Fig 3 parallel to the
xy− plane with the profile G∨ (q, k) are shown
in Fig 4e-f.
In view of (36-37) we find,

1 =
1

s1s2s3
=

∫ 2
0 G∨ (q, k) dq∫ 4
2 F∨ (q, k) dq

=
1
8

s2s3 = 1.

∫ 4
2 [F∨ (q, i)]2 dq∫ 1
.5 [G

∨ (q, i)]2 dq
=

1
8
.
32
2

= 2

s1s3 = 1.

∫ 4
2 [F∨ (q, j)]2 dq∫ 2
1 [G∨ (q, j)]2 dq

=
1
8
.
32
1

= 4

s1s2 = 1.

∫
∞

−∞
[F∨ (q, k)]2 dq∫

∞

−∞
[G∨ (q, k)]2 dq

=
1
8
.
32
1
2

= 8

B. EXAMPLE 2: A 3-D ROTATION ABOUT THE z - AXIS
Suppose that the function F (x, y, z) = 1 on the region A,
shown in Fig 5a, and that G in Fig 5b is obtained from F
by a rotation about the z− axis with a rotation angle θ =

π
4 .

Fig 5 c-d display the traces of the F andG in their xy− planes.
The 2-D projections of the image (5 c) with the view angles
ϕ = 0, π

2 are shown in Fig 5e-f, and the projections of the
image (5d) with the view angles ϕ = 0, π

2 are shown in
Fig 5g-h. The angle θ is simply the shift in the cosine
functions of (40), shown in Fig 5i.

FIGURE 2. (a) Region E= {(x,y,z): 2 ≤ x ≤ 4, 2 ≤ y≤ 4,and 0 ≤ z ≤2 } on
which F(x,y,z) = 1. (b) A horizontal slice of F shown on the xy- plane. (c).
The profile F ∨

(
q, k

)
. (d) The profile F ∨

(
q, i

)
.

Further, let us solve this problem using two known
methods. First, we apply the R-Signature [17], on the pair of
images in Fig 5c-d. The R-transform or signature of f ∨ (p, ϕ)
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FIGURE 3. A scaled form G of F given by G(x,y,z) = F(4x,2y,1z).

is defined as

Rf ∨ (ϕ) =

∫
∞

−∞

[f ∨ (p, ϕ)]2 dp (47)

so that a rotation of the image by an angle θ implies
a translation of the R-transform by θ . The R-transform
signatures of images 5c-d are shown in Fig 5j, of which the
shift equals π

4 . Second, we apply the method of [6]. Let g be
a rotation of f with angle of rotation θ . To recover the angle
of rotation; [6] minimizes the function.

A (θ) =

∫ π

ϕ=0

∫
∞

p=−∞

|f ∨ (p, ϕ − θ.) − g∨ (p, ϕ) |
2dpdϕ.

(48)

A plot of A (θ) is shown in Fig 5k, of which the minimum
occurs at θ =

π
4 . The advantage of our current approach is

building the two graphs appear in Fig 5i using only two view
angles, ϕ = 0, π

2 .

C. EXAMPLE 3: A 3-D ROTATION ABOUT AN ARBITRARY
AXIS WITH ARBITRARY ANGLE OF ROTATION
Consider the function F (x, y, z) = 1 on the region E =

{(x, y, z) : 0 ≤ x ≤
1
2 , 0 ≤ y ≤

1
2 , 0 ≤ z ≤ 1 } shown

in Fig 6a. Image G in Fig 6b is obtained from F by a rotation
about the z− axis with a rotation angle θ =

π
2 . In this way,

the support of F is in the first octant while the support of G
is in the fourth octant. Traces of F and G in their xy− planes
are shown in Fig 6c-d, respectively. In other words, consider
(42)-(46): we have

u = < 0, 0, 1 >, θ =
π

2
,

Au,θ =

 0 −1 0
1 0 0
0 0 1

 ,

G (x, y, z) := F
[
Au,θx

]
,

and

G∨ (q, ξ) = F∨(q,Au,θξ )

To minimize (46), consider the discrete form:

9 (u, θ) =

∑
ξ

∑
q

∣∣G∨ (q, ξ) − F∨
(
q,Au,θξ

)∣∣ (49)

FIGURE 4. (a-b) A slices of Fig 3 parallel to the yz- plane together with
the profile G∨

(
q, i

)
. (c-d) A slices of Fig 3 parallel to the xz plane

together with the profile G∨
(
q, j

)
(e-f) a slices of Fig 3 parallel to the

xy- plane with the profile G∨
(
q, k

)
.

on some grids of the regions (44) and (45) and
values of q. We used 317 possible vectors u from
the upper half of the sphere (44), and 21 possible

34704 VOLUME 11, 2023



F. Hjouj et al.: Advancements in 2D/3D Image Registration Methods

FIGURE 5. (a) original image, (b) G obtained from F by a rotation about the z- axis with a rotation angle =π/4. (c-d) traces of the F and G in their
xy- planes. (e-f) The 2-D projections of the image (5c) with the view angles ϕ =0, π/2. (g-h) the projections of the image (5d) with the view angles
ϕ = 0, π/2. (i) Graphs of both sides of equation (40). (j) The R-signatures (47) of images 5c-d. (k) A(θ) from (48) of which the minimum occurs
at θ = π/4.

values of θ . In this way, there are 6657 evaluations
of 9 (u, θ) from (49). Finer choices of these vari-
ables and parameters are, of course, possible. For a

visual display, we show a one-dimensional plot for
the values of 9 (u, θ) against the sequential order of
iterations,as shown in Fig 6e. From Fig 6e, at the 1744th
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FIGURE 6. (a) original image, (b) G obtained from F by a rotation about
the z- axis with a rotation angle θ = π/2. (c-d) traces of F and G in their
xy- planes. (e) one dimensional plot for the values of 9(u,θ) against the
sequential order of iterations from (49).

iteration, the minimizers are u =< 0, 0, 1 > and
θ =

π
2 . Observe that if vectors u were chosen from

FIGURE 7. (a) original image f, (b) g obtained from f by a rotation with a
rotation angle θ = π/3. (c-d) projections of f with view angles ϕ = 0, π/2.
(e-f) the projections of g with view angles ϕ = 0, π/2. (g) Graphs of both
sides of equation (40).

the lower half of the sphere, then the minimizers would
be =< 0, 0, −1 > and θ =

3π
2 .

D. EXAMPLE 4: A 2-D ROTATION
In our last example, we consider a Shepp–Logan phantom f ,
of size 256 × 256. This image is shown in Fig 7a,
its rotation g with θ = π/3 is shown in Fig 7b.
In Fig 7c-d, we display the projections of f with view
angles ϕ = 0, π/2.

In Fig 7e-f, we display the projections of g with view
angles ϕ = 0, π/2. And, the graphs of both sides of
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equation (40) are shown in Fig 7g, of which the shift
equals π/3.

V. CONCLUSION
We have seen that this work improved the results of [6]
and [7]. In [6], the problems of shifting, rotating, reflecting,
dilating, and translating between a reference image and a
distorted image were addressed. In [7], the general form
of the problem is solved by recovering the singular value
decomposition of the matrix. This work introduced the
following improvements:

1) A solution to the 2-D non-uniform scaling problem.
2) An alternative solution to the 2-D rotation problem

using only two orthogonal projections such as the view
angles 0 and π/2.

3) Computing the centroid and scaling parameters in the
3-D setting by reducing the 3-D to 2-D calculations.

4) An efficient method of recovering a rotation of a 3-D
image around an arbitrary axis and an angle of rotation.
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