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ABSTRACT This study addresses the human pose estimation problem on thermal images using Convo-
lutional Neural Networks and Vision Transformer architectures. To do this, eight human pose estimation
methods designed for visible images were extended to be applied in the thermal domain. Due to the lack
of large, representative datasets containing labeled thermal images, this extension requires transfer learning
between the visible and the thermal domain, and a database for fine-tuning the networks in the thermal
domain. Thus, it is proposed to train the networks using a grayscale version of the COCO dataset, and
then fine-tune them in the thermal domain. Fine-tuning is carried out using the new UCH-Thermal-Pose
database presented in this work. This database includes 600 thermal images for training, 200 for validation,
and 104 for testing, all of them fully labeled.Moreover, in the paper, a comparative study of the eight extended
deep-based methods for human pose detection is carried out. The UCH-Thermal-Pose database is available
at https://datos.uchile.cl/dataset.xhtml?persistentId=doi%3A10.34691%2FUCHILE%2F4B6NA3, and the
source code of all themethods is available at https://github.com/jsmithdlc/Thermal-Human-Pose-Estimation.

INDEX TERMS Convolutional neural networks, vision transformer, deep neural networks, human pose
estimation, thermal images.

I. INTRODUCTION
Human pose estimation consists of predicting the location of
the parts of a person’s body in an image. The parts of the body
are represented by an articulated skeleton, which is composed
of a set of joints (also named keypoints). Then, an algorithm
that performs human pose estimation receives an image as
input, on which it computes a set of keypoints, grouping them
into a skeleton. An example of a skeleton is shown in Figure 1.

Human pose estimation is normally carried out using vis-
ible images. However, the estimation of human pose in ther-
mal images is an important research topic, since (i) thermal
images can be captured in darkness as they are not affected
by illumination, which enables applications that must work
at night or inside environments with no lighting, like those
related to surveillance; (ii) the use of thermal images allows
estimating the pose of people under covers, which is impor-
tant for medical applications used for monitoring bedridden
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patients; (iii) thermal cameras are able to detect persons
despite the environment containing heavy smoke or dust,
which enables their use in applications like search and rescue;
and (iv) pose estimation in thermal images is also used in
applications that require that the identity of the people is
preserved. Some examples of human pose detection using
thermal images are shown in Figure 2.
As an example of the increasing interest in human pose

estimation in thermal images, the IEEE VIP Cup 2021
‘‘Privacy-Preserving In-BedHuman Pose Estimation’’1 looks
for ‘‘computer vision-based solutions for in-bed pose esti-
mation under the covers’’. The appropriate solution for this
challenge requires the use of thermal cameras, among other
sensors.

However, since thermal images are not as popular as stan-
dard visible images, there are almost no datasets of thermal
images with annotated human poses. This is an important
drawback for the development of human pose detectors based

1https://signalprocessingsociety.org/community-involvement/video-
image-processing-cup
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FIGURE 1. Human pose represented as a 17-keypoint skeleton.

FIGURE 2. Examples of applications of human pose estimation in thermal
images. Left column: pose detection of an in-bed person covered by a
blanket. Center column: pose detection in an application that requires
anonymity; facial landmarks are mostly undistinguishable. Right column:
pose detection in a scene with poor illumination.

on deep/machine learning, which require having annotated
images for their training.

In this context, this paper addresses the human pose esti-
mation problem using various deep learningmethods. Several
human pose estimation methods for visible images, based
on the use of Convolutional Neural Networks (CNNs) or
Vision Transformers (ViTs), are extended to be applied in
the thermal domain. This extension requires transfer learning
between the visible and the thermal domain, as well as having
a dataset for fine-tuning the networks in the thermal domain.
The work reported in this paper proposes a transfer learning
methodology, which considers training first the human pose
detectors using grayscale images of the COCO dataset [4]
before fine-tuning them in the thermal domain. The use of
grayscale images is justified because thermal images are also
monochromatic, and therefore the domain transfer is more
direct than the case when color images are used. Fine-tuning

is carried out using the new UCH-Thermal-Pose database,
presented in this work, which contains 600 images for train-
ing, 200 for validation, and 104 for testing. All database
images are labeled.

The paper presents a comparative study of eight differ-
ent methods for human pose detection, all of them built
by using the proposed training methodology: four top-down
methods: Simple Baselines [5], AlphaPose [6], RSN [7]
and ViTPose [8]; and four bottom-up methods: Bottom-Up-
HRNet [9], OpenPose [10], CenterNet [11], and PoseAE
[12]. It is worth mentioning that RSN [7] and ViTPose [8]
are state-of-the-art methods; they obtained the first and third
position in the pose estimation test-dev of the COCO (Com-
mon Objects in Context) dataset as of December 2022.2 In
addition, YOLOv7 [13], a state-of-the-art object detector,
is used for generating the bounding boxes required by the top-
down detectors.

Thus, the main contributions of the paper are:
- The extension of eight methods for human pose detec-

tion from the visible domain to the thermal domain, using a
transfer learning methodology that considers pre-training the
human pose detectors using grayscale images of the COCO
dataset before the fine-tuning in the thermal domain.

- A comparative study of eight different methods for human
pose detection, four top-down and four bottom-up; all of
them built by using the proposed transfer learning method-
ology. The comparison is useful for understanding which
network parameters and design decisions increase accuracy.
The source code of these approaches is made public for
research purposes.

- The proposal of UCH-Thermal-Pose, a new dataset for
human pose estimation in the thermal domain, whose use-
fulness is validated by training several detectors, including
two state-of-the-art methods: RSN [7] and ViTPose [8]. This
database is made public for research purposes.

This paper is organized as follows: In Section II, a general
background regarding human pose estimation, and its appli-
cations in the thermal domain, is given. Section III continues
with a description of the methods and datasets used in this
work, as well as the training methodology. Section IV covers
the experimental results obtained from the evaluation of ther-
mal images, including the precision and speed of the trained
pose detection systems. A comparison of different training
strategies and detection configurations is also provided, along
with the corresponding analysis in Section V. Challenges on
human pose estimation in the thermal domain are discussed in
Section VI. Finally, in Section VII the conclusions obtained
in this work are summarized.

II. HUMAN POSE ESTIMATION USING THERMAL IMAGES
State-of-the-art methods for human pose detection from visi-
ble images are based on using convolutional neural networks
(CNNs), or vision transformers (ViTs). These methods can
also be applied to detect human poses using thermal images.

2https://paperswithcode.com/sota/pose-estimation-on-coco-test-dev
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However, thermal images present different characteristics
compared to visible images. The invariance of thermal images
with regard to environmental illumination makes them one
of the best approaches for dealing with dark environments.
Also, people are visible in thermal images even when they
are covered, which allows for viewing bedridden people.
However, detecting people becomes more difficult when their
temperatures are close to those of their environments.

An important limitation for developing performant detec-
tors of people’s poses in the thermal domain is that labeled
datasets for thermal images are fewer by far than those of
visible images, and the available datasets have low variability
in the kind of images contained in them. This is because
visible images are abundant on the Internet, which enables
a great diversity of such datasets needed for training high-
performing detectors based on CNNs or ViTs. Thus, the lack
of abundant and diverse annotated datasets in the thermal
domain results in the detectors not being able to generalize in
the task of detecting poses of people in environments different
from the specific ones contained in these datasets.

In the following subsections, several methods for detecting
people’s poses, both on thermal and visible images, will be
described and analyzed, including the main two families of
detectors: top-down detectors, which work by first detecting
people, and then detecting keypoints for each person, and
bottom-up detectors, which detect the keypoints of all the
people present in the image, and then group them together
into various individual poses.

A. TOP-DOWN HUMAN POSE DETECTION
Top-down human pose detection works by separating the
pose detection process into two steps: detection of people,
and per-person pose estimation [9].

For detecting people, an object detector trained for the
detection of people is used. Common people detectors are
based on two-stage object detectors, such as Faster-RCNN
[14], or single-stage object detectors, such as the YOLO
object detector variants [15], [16], [17], [18], [13].

In a second step, a pose detector is used on each of the
detected bounding boxes. Popular pose detectors include
Mask-RCNN [19], Simple Baselines [5], AlphaPose [6],
HRNet [20], Residual Steps Network [7] and ViTPose [8].

Mask R-CNN detects bounding boxes of people, and then
computes a segmentation mask. This mask can be used for
representing locations for each of the joints.

Simple Baselines uses a ResNet-based architecture as a
feature extractor, modified by the addition of deconvolutional
layers in the upsampling phase.

AlphaPose is a more complex human pose estimation
approach. It comprises the use of a Symmetric Spatial Trans-
former network to detect the region of a single person in
an inaccurate bounding box detection. A Parametric Pose
Non-Maximum Suppression is used to solve redundant detec-
tions, and a Pose-Guided Proposals Generator to augment the
training data [21].

HRNet is a person pose estimator that works by generating
heat maps for each of the joints. It includes two key character-
istics: (i) Connecting the high-to-low resolution convolution
streams in parallel, and (ii) exchanging the information across
resolutions repeatedly.

Residual Steps Network (RSN) [7] is a state-of-the-art
person pose estimator based on CNNs, but it uses an attention
mechanism. It uses Residual Step Blocks (RSBs) that contain
four branches, each with a different number of 3× 3 convolu-
tional layers. The outputs from these layers are concatenated,
and then a 1 × 1 convolution is applied and followed by a
residual connection.

According to pose estimation test-dev of the COCO
dataset, the best pose detector, as of December 2022,
is ViTPose [8]. A plain, non-hierarchical visual transformer
ViT [22] is used as a backbone to extract feature maps for
the given person instances. Then, a lightweight decoder, com-
posed of two deconvolution layers and one prediction layer,
is used for generating the height maps for the keypoints.

Despite top-down methods being highly performant, their
runtime depends on the number of persons present in the
images. This is explained by a pose detector having to be
applied independently on each detected person. Thus, this
family of methods is not recommendable when the images
to be processed contain many people.

B. BOTTOM-UP HUMAN POSE DETECTION
In this approach, the keypoints of all the people present in the
image are detected in one step and then grouped together into
skeletons corresponding with each of the persons present in
the image. For detecting the keypoints, detectors that compute
heat maps per keypoint are used, and then these keypoints
are grouped based on various criteria, which depend on the
specific method being used.

Popular bottom-up human pose detection methods are
Bottom-Up-HRNet [9], OpenPose [10], and CenterNet [11]
trained for human keypoint detection. Another popular key-
point detector is PoseAE [12].

OpenPose [23] is one of the most popular Bottom-Up
detectors in the visible domain. It distinguishes itself from the
other methods explored here mainly by its use of Part Affinity
Fields (PAF) for grouping keypoint coordinates, detected via
heat maps, into the different person instances, while retaining
real-time inference.

CenterNet [11] is generally used as an object detection
technique. Nevertheless, as the authors showed, the model
can also be extended to solve other tasks, such as human pose
estimation. As a Bottom-Up human pose detector, it presents
a unique method for grouping the keypoints into final poses,
in which a regression from the person’s center is used to
localize keypoints initially. Then, the keypoints are further
corrected by regressing an offset for their position.

PoseAE [12] also detects keypoints through heat maps
and so-called associative embeddings for each predicted
keypoint. These embeddings serve as grouping cues, where
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keypoints that belong to the same person should have a small
distance between them.

Bottom-Up HRNet [9] uses the same keypoint grouping
technique as CenterNet, but, at the regression head, combines
the predicted keypoint heat maps with the feature map gen-
erated by the backbone architecture to produce better results.
The keypoint coordinate predictions are further refined using
a Spatial Transformer Network (SPN).

In general, bottom-up human pose detectors are faster than
top-down ones. This runtime difference becomes larger when
several persons are present in the images. However, bottom-
up detectors in general are less performant than top-down
ones.

C. HUMAN POSE DETECTION USING THERMAL IMAGES
Methods for detecting human pose over thermal images
hardly appear in the literature [25], [26], [2], [27]. One of the
main reasons is the lack of databases of thermal images with
annotated poses of humans.

A relevant application of human pose detection in ther-
mal images is detecting bedridden people, which has the
potential to be used in healthcare applications. A system that
can recover poses of covered human bodies from thermal
images is proposed in [1]. It is stated that the main dif-
ficulty to deal with people under covers is heat diffusion,
which causes the heat on the cover to be different from
that of the uncovered person. In addition, a dataset named
SLP was created. It contains visible, thermal, depth, and
pressure map images, captured from 109 in-bed participants.
The participants change their poses randomly from the three
main categories of supine, left side, and right side. For each
category, 15 poses are collected. Also, three cover categories
(uncovered, thin cover, and thick cover) are included. The
result is a total number of 14,715 images. This dataset is used
for training stacked hourglass networks [24] for detecting
poses of people, both in visible and in thermal images. The
results show that, while pose detection using visible images
from uncovered persons is very performant, it has a large
performance drop on covered persons, making use of thermal
images most suited to this condition. Note that despite the
dataset used being large, its images have low variability since
all the people are captured on the same bed, with the same
sensor configuration. Therefore, this dataset is useful only for
training pose detectors of bedridden people.

The use of multiple sensing modalities benefits from the
advantages related to each of the sensors. In [25], the pre-
vious work reported in [1] is extended. Several person pose
detectors are trained on the SLP dataset [1], and different
combinations of input modalities (visible, thermal, depth, and
pressure maps) are tested and compared. That work is aimed
only at detecting the poses of people in bed because the SLP
dataset has low variability, as mentioned previously. Thus,
it cannot be extended to other applications in which thermal
images can be used.

The lack of large datasets containing thermal images of
people is an obstacle to achieving high performance in

detectors. A dataset containing paired visible and thermal
images is introduced in [26], as well as a new network
architecture for detecting people in the thermal domain. The
dataset contains 24,000 pairs of thermal and visible images,
captured in indoor environments. The visible images have a
resolution of 1920 × 1080, while the thermal images have
a much lower resolution of 80 × 60. Some of the visible
images were captured with low illumination, which impairs
person detectors based on visible images. The ground truth
for the training subset is based on the detection of people on
the visible images, using OpenPose [10]. The test subset is
formed by 1,000 pairs captured with good illumination, and
1,000 pairs captured in darkness. The ground truth for the test
subset is labeled manually by using visible images in scenes
with good illumination, but by using thermal images in set-
tings in darkness. Here, a network named ThermalPose, based
on OpenPose is introduced. This network is trained by using
thermal images from the training subset. It is shown from the
results of this work that, on images with good illumination,
person detectors based on visible images beat ThermalPose.
However, in scenes with predominant darkness, ThermalPose
behaves better than all the networks tested based on visible
images, as the latter are unable to detect people. While the
dataset used in this work is large, only 2,000 image pairs were
labeled manually (i.e. the test subset). Furthermore, all the
images were captured in indoor environments with very low
variability.

Datasets containing labeled visible images are by far more
abundant and diverse than those of thermal images, but meth-
ods that can translate visible images into thermal images have
the potential of helping to overcome this situation. The devel-
opment and testing of an algorithm named ThermalGAN is
reported in [2]. It works by training a GAN for translating
visible images into thermal images, and it is aimed at the
re-identification of people in thermal images. For improving
the predicted temperature of the objects, segmentation masks
of objects are used for computing per object average temper-
atures, and then the temperature variations inside each object
are predicted. A dataset named ThermalWorld is generated,
which contains 15,118 pairs of visible + thermal images,
including annotated masks per object. This dataset is com-
posed of two splits: the first one includes cropped persons
(used for reidentification) and the second one contains images
containing ten object categories (used for object detection).
Despite this work being able to translate images, the quantita-
tive evaluation of thermal object detection is based on humans
indicating whether or not the translated images are real. Thus,
the dataset is not used for evaluating the performance of the
translation quantitatively.

The use of both thermal and visible images has the poten-
tial of improving the performance obtained by using only one
of them. The creation of a dataset containing both thermal
and depth images is reported in [27]. It contains 700 labeled
thermal + depth images for training, 100 for validation, and
200 for testing. A variant of a part affinity fields detector
[20] is used for testing pose detection on this dataset, and the
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use of thermal + depth images improves when using only
thermal images. Despite this dataset being labeled manually,
it considers only five keypoints, which is a number much
smaller than that used in most pose detectors.

III. EXTENDING HUMAN POSE ESTIMATION METHODS
FROM THE VISIBLE TO THE THERMAL DOMAIN
Selected pose detection methods are extended to estimate
human pose in thermal images, taking successful top-down
and bottom-up methods used for human pose estimation in
visible images as a base. In addition, the performance of
these methods is analyzed under different criteria using a
new database, UCH-Thermal-Pose. Each method is trained
to detect 17 keypoints of the human body: nose, eyes,
ears, shoulders, elbows, wrists, hips, knees, and ankles,
the same ones specified in the Microsoft COCO Keypoints
challenge [4].

A. DATASETS
The Microsoft COCO 2017 dataset [4] was used for the
pre-training of the models. This dataset is regarded as a
common training and evaluation benchmark for human pose
estimation methods in the visible domain. It provides nearly
200k visible images for training, with almost 250k person
instances labeled with their keypoints in various types of
contexts. There is a total of 17 types of human body keypoints
in this dataset, as was mentioned above. In this work, images
from this dataset were transformed to grayscale, so that the
models were trained using samples that better resemble the
target domain of thermal images; both domains, the grayscale
and the thermal, are monochromatic. A comparison between
training with the original RGB images and their grayscale
conversions is made for one of the models (CenterNet) to
support this hypothesis (see Appendix A2). The training of
all models using both types of images would have been a
massive undertaking, given the limited time and resources,
so the results obtained for CenterNet are generalized for the
other models.

In order to train and evaluate the extended methods a new
dataset, UCH-Thermal-Pose, was built and made public for
research purposes. The database is composed of two sets,
A and B.

UCH-Thermal-Pose Set-A was built by collecting thermal
images from different public sources and then annotating
them. The dataset is composed of 800 images including both
indoor and outdoor settings, each one containing at least one
person. In each image, the human keypoints were annotated
manually using the LabelMe [28] tool. 600 of these images
are used for training the methods, and the remaining 200 are
used as a validation set. Table 1 shows a more detailed
description of the different image sources and the number of
images extracted from each one for training and validation.

Variability in thermal image datasets is hard to find, since
most of the existent datasets are captured in a limited amount
of environments, using static camera setups [27], [30].
Consequently, the images selected for UCH-Thermal-Pose

TABLE 1. Different thermal image sources used in the new
UCH-Thermal-Pose set-A database, which consists of 600 training images
and 200 validation images.

Set-A were chosen while trying to maximize various settings,
weather conditions, and poses.

UCH-Thermal-Pose Set-B is composed of thermal images
acquired in our laboratory, which were annotated using the
same procedure used for annotating the images in set A. The
dataset is composed of 104 thermal images captured using a
FLIR FC-690 S thermal camera, at a resolution of 640× 480,
and comprising a total of 3 different camera angles. All these
images, except three, which are devoid of people, contain
between 1 and 4 people in different poses. Examples of these
images are shown in Figure 6.
Figures 3, 4, and 5 provide an overview of the UCH-

Thermal-Pose dataset. A histogram showing the frequency of
images at different sizes is provided in Figure 3. The distri-
bution of the number of keypoints labeled for each person
is shown in Figure 4. Finally, the distribution of the labeled
bounding box areas is shown in Figure 5, shown both as pixels
(left) and relative to the size of the image (right).

35356 VOLUME 11, 2023



J. Smith et al.: Human Pose Estimation Using Thermal Images

FIGURE 3. Histogram of image area, in pixels, from the
UCH-Thermal-Pose dataset.

FIGURE 4. Histogram of the number of visible and occluded labeled
keypoints per person instance, from the UCH-Thermal-Pose dataset.

B. THERMAL HUMAN POSE ESTIMATION METHODS
Top-down and bottom-up methods are used in this work for
human pose estimation in the thermal domain.

The following top-down methods are analyzed: Simple
Baselines [5], AlphaPose [6], RSN [7] and ViTPose [8].

These methods were chosen because of their use on com-
mon benchmarks like Microsoft COCO and MPII [41], and
their ubiquity in the field of human pose estimation. Since
top-down methods depend largely on off-the-shelf object
detectors for identifying humans in images, the choice of
detector heavily influences the final results. The same object
detector, YOLOv7 [17], therefore, was used in each method
for predicting bounding boxes for humans.

The analyzed bottom-up methods are CenterNet [11],
OpenPose [10], Bottom-Up HRNet [9], and PoseAE [12].

TABLE 2. Human pose estimation methods considered in this study.

CenterNet has a simple architecture in which the back-
bone can be changed easily. In consequence, four back-
bones are considered for CenterNet: DLA-34, Hourglass-104,
Hourglass-52 and HRNet-W32. These backbones are also
used to analyze freezing of layers in Appendix A.3. In the
case of the other methods, the backbones from the original
papers are used.

The methods to be compared are summarized in Table 2.

C. EVALUATION METRICS
Evaluation of human pose estimation models done in this
work, is based on a metric named Object Keypoint Similarity
(OKS), that was introduced in the COCO challenge [4]. OKS
is computed as shown in (1), and its possible values are in
the range of 0-1. In equation (1), di is the distance between
each predicted keypoint and their respective ground truth, s is
the object scale computed from the bounding box size, and ki
a fall-off constant for each type of keypoint that quantifies
the variance in the annotation process for that keypoint. Only
keypoints that are inside the image boundaries (vi > 0) impact
the final value.

OKS =

∑
i
e
−

d2i
2s2k2i δ (vi > 0)∑

i
δ(vi > 0))

(1)

OKS can thus quantify how close a human pose prediction
is to its actual ground-truth values, and a prediction can be
considered correct if this metric is over a certain threshold.
In this way, detections are gathered as True Positives whose
OKSs are over a defined threshold (TP), detections whose
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FIGURE 5. Histogram of bounding box size per split from UCH-Thermal-Pose Dataset, in pixels (left) and relative to image size (right).

FIGURE 6. Examples of thermal images included in UCH-Thermal-Pose
set-B.

OKSs are under the threshold as False Positives (FP), and
ground-truth human poses that were not properly detected
as False Negatives (FN). Then, precision and recall can be
calculated easily using (2) and (3), in which TP are true
positives, FP are false positives, and FN are false negatives.
In this case, precision defines the ability of themodel to detect
only the correct poses (a fraction of correctly detected poses
of the total detections), whereas recall defines the ability of
the model to detect the poses of the humans that are present
in the images (a fraction of detected poses from all the poses
to be detected).

Precision =
TP

FP+ TP
(2)

Recall =
TP

FN + TP
(3)

Following common practices, average precision (AP), and
average recall (AR) are calculated by averaging over 11 dif-
ferent OKS thresholds, from 0.5 to 0.95 with steps of 0.05.

These correspond to the main metrics used in the experi-
ments reported. In addition, AP and AR at OKS thresholds of
0.5 and 0.75, as well as for medium (M), and large (L) objects,
are also calculated. They correspond toAP0.5, AP0.75, APM,
and APL, respectively.

The inference speed of the trained models is estimated
using the Frames per second (FPS) metric. This metric is
important as a reference for real-time applications. It defines
the number of images (frames) that a model can detect in
the lapse of one second. Models that score FPS over 15 are
commonly considered to be real-time detectors.

D. TRAINING METHODOLOGY
All the methods, except OpenPose, are first pretrained on
the COCO grayscale dataset, i.e., using visible images from
COCO converted to grayscale, and then fine-tuned using
the UCH-Thermal-Pose A dataset. OpenPose is not pre-
trained using COCO grayscale images given that a long
training is required by this method. Instead, available pre-
trained weights, obtained after training the network in the
pose estimation task using color images, are used as a base
for fine-tuning this method. The training of all methods
was carried out using 1 or 2 Tesla V100 GPUs contained
in a NVIDIA DGX-1 deep-learning server.3 This server
includes 8 V100 GPUs, each having 32 GB ram, and a dual
20-core Intel Xeon processor.

1) PRETRAINING
The pretraining of the networks includes two steps: (i) first,
using the weights resulting from training the network on
the ImageNet dataset (image classification task), and/or the
COCO color dataset (object detection task), and then (ii) pre-
training using COCO grayscale on the pose estimation task,
based on the previous weights. Grayscale images are used

3https://www.amax.com/products/nvidia-products/nvidia-dgx-1/
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TABLE 3. Base weights used as starting points for pretraining human
pose estimation methods on COCO.

because thermal images are also monochromatic. The results
of this procedure are pre-trained networks. The only excep-
tion is OpenPose, which, as mentioned before, is pretrained
by using only color images.

With respect to the first step, the base weights available
in the original code repositories were used. Some networks
included in this work use base weights obtained by train-
ing directly on ImageNet. Others use base weights obtained
by training on ImageNet first and then training in COCO
color for object detection. For instance, using CenterNet with
backbone DLA-34, network parameters are initialized from
base weights trained over COCO color for object detection,
which were, themselves, trained over ImageNet weights.
Meanwhile, for other models, such as PoseAE, training
is resumed from the base weights obtained directly from
using ImageNet. Table 3 shows the information on the base
weights used as a starting point for the pretraining of the
methods.

The second pretraining step is performed on the task of
person pose estimation. The training hyperparameters were
chosen guided by the references of each work but accommo-
dating for available computational resources when necessary.
Table 4 shows a fuller description of the hyperparameters
used in each case.

TABLE 4. Learning hyperparameters evaluated in this work for
pretraining the networks on the COCO human keypoint dataset.
∗OpenPose was not pretrained on COCO in this work, but pretraining
done by the authors includes values indicated in the table.

2) FINETUNING
After pretraining, all methods are fine-tuned using the
600 annotated images fromUCH-Thermal-Pose Set-A.Given
the fact that this training set is small, various combinations of
learning rate and batch size are used, deviating from the ref-
erence values. Additionally, different learning rate schedules
are explored. Table 5 shows a summary of the best training
parameters found in each case.

For CenterNet DLA-34 and CenterNet Hourglass-104,
additional experiments were done by freezing different num-
bers of layers of the backbone network during fine-tuning
(see Appendix A3 for details). These freezing regimes
were labeled [Freeze 1 . . . Freeze N], where 1 corresponds to
freezing just the first convolutional block right after the image
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TABLE 5. Learning hyperparameters used for fine-tuning the networks
evaluated in this work.

input, and N corresponds to freezing the entire backbone
network. In the case of DLA, N = 6 was used, while in
Hourglass, N = 4 was selected. Diagrams of Figures 7 and 8
illustrate which extensions of the backbone network each
freeze regime includes, with the names of the weight param-
eters being frozen in each case.

The experiments showed that the best alternative for Cen-
terNet DLA-34 and for CenterNet Hourglass-104 is to use
N = 1 (see Figure 16 in Appendix A3), i.e., to freeze the first
block. Therefore, in these two cases this freezing regime was
selected for the fine-tuning process.

IV. EXPERIMENTAL RESULTS
A. PRECISION AND RECALL ON THE UCH-THERMAL-POSE
SET-A DATASET
Tables 6 and 7 show the AP and AR for eachmodel, evaluated
on the validation subset consisting of 200 thermal images.
These results are reported after pretraining the models over
the COCO dataset, and then fine-tuning using 600 ther-
mal images of the UCH-Thermal-Pose set-A, that is, using
the best hyperparameters found for each model in this last
stage (see Table 5). Also, as already mentioned, the vari-
ants used for the networks CenterNet DLA and CenterNet

Hourglass-104 were trained with the first convolutional block
frozen, since this proved to be the most effective (see
Appendix A3).
The results obtained show that the highest precision among

all models was obtained by ViTPose, with 85.7% average
precision. Meanwhile, the highest recall was achieved also by
the ViTPose model, with 88.7% average recall. A comparison
between precision and recall scores shows that the problem of
false positives is more serious than that of false negatives.

The results also show that top-downmodels obtain a higher
performance than bottom-up models, both in precision and
recall.

The results for CenterNet variants show that they perform
well when using backbones DLA-34, and 2-stack Hourglass-
104. Meanwhile, the system shows poor results when using
backbones of 4-stack Hourglass-52, and HRNet-W32 net-
works. Using the latter as part of the Bottom-Up HRNet sys-
tem yields the worst result in precision, and second-to-worst
result in recall. Therefore, a conclusion can be made that this
specific backbone architecture is not suited for human pose
estimation on thermal images. The best-performing bottom-
up thermal pose detector is PoseAE. Compared to ViTPose,
it achieves a 6.7% lower AP and a 10.3% lower AR. Also,
HRNet and OpenPose perform worse than the best CenterNet
model.

B. INFERENCE SPEEDS
Inference times for each model and for all the test images
were gathered to obtain the FPS. The results are shown in
Table 8, on which the fastest top-down models are slower
than the fastest bottom-up ones. Additionally, only ViTPose,
RSN and the CenterNet variants with backbone DLA-34
and with backbone Hourglass-52 can be considered real-time
detectors (≥15 FPS). FPS was measured using two differ-
ent GPUs: the Tesla V100 (see technical specifications in
Section III-B), and the GTX 1660.4 The latter GPU has 6 GB
ram, and 1408 CUDA cores, 28% of those available on the
Tesla V100.

In Figure 9, a diagram shows the FPS of the various
methods when different numbers of people are included
in the analysis. These results reflect the dependence of
top-down model speeds on the number of people present in
the image. For the four models belonging to this paradigm,
speed decreases dramatically as more people are present
in the image. Meanwhile, models following the bottom-up
paradigm present nearly flat curves when being evaluated for
images with different numbers of people. This is an important
factor to consider when deciding what applications these
types of models might have.

Figure 10 shows FPS versus AP for the various methods
under comparison. ViTPose and RSN achieve both good AP
and high FPS. The fastest method is CenterNet DLA-34, but
its AP is considerably lower (around −20% AP) than the
previous two methods.

4https://www.nvidia.com/en-us/geforce/graphics-cards/gtx-1660-ti/
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FIGURE 7. Convolutional blocks frozen for a CenterNet DLA-34 network.

FIGURE 8. Convolutional blocks frozen for a CenterNet Hourglass-104 network.

FIGURE 9. FPS when analyzing images containing different numbers of people for the methods under comparison.

C. PRECISION AND RECALL ON THERMAL IMAGES FROM
UCH-THERMAL-POSE SET-B
Tables 9 and 10 show the AP and AR for each model,
evaluated using the Set-B of the UCH-Thermal-Pose dataset.
If these results are compared with those displayed in the

previous section, the results obtained for this set are superior
for every trained model. Most of the bottom-up models, with
the exception of CenterNet with Hourglass-52 backbone, and
Bottom-Up HRNet, score an AP over 70%, and an AR over
80%. Likewise, results for top-down models indicate an AP
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FIGURE 10. FPS versus AP for the different methods evaluated in this work.

over 83%, and an AR over 86%, reaching an impressive
91.5% average precision, and 94.1% average recall with the
ViTPose method.

Nevertheless, the results displayed here should be taken
with caution. Images from this set are quite closely correlated
since they were all captured in the same indoor laboratory
environment. On the other hand, images that belong to Set-A
of UCH-Thermal-Pose Database are more varied and contain
a greater array of poses and contexts. Therefore, it is expected
that detection over that set would be a more challenging task.

By analyzing the results for bottom-up models, it can be
observed that CenterNet with backbone HRNet-W32, and
OpenPose score more favorably compared with other models
from the same paradigm. This is a drastic change from what
was evidenced in the experiments with UCH-Thermal-Pose
set A, in which these models were among the least precise.
PoseAE, which was highly performant in the UCH-Thermal-
Pose Set A, achieves a low performance on UCH-Thermal-
Pose Set B, but remains the best on large objects, compared
to the highest scoring methods in this set. Also, Bottom-Up
HRNet performs noticeably less well than CenterNet HRNet-
W32, and OpenPose.

To see the kind of detection obtained by the methods,
examples of human pose detection in some UCH-Thermal-
Pose Set-B images using CenterNet DLA-34 are shown in

Figure 11. Notice how the method correctly places keypoints
on the different subjects.

V. ANALYSIS
Exhaustive experiments were performed to evaluate the
behavior of different keypoint detectors on the thermal
domain. Four top-down, and four bottom-up network archi-
tectures were compared, while the best training regimes for
six of them were studied exhaustively. (The extra experi-
ments are reported in the Appendix). The comparison of
the networks considers runtime, AP, and AR, for different
intersection-over-union thresholds, and for two different sizes
of people (medium and large).

The main measures of performance for the detectors, i.e.,
AP, and speed, are summarized in Figure 10. It can be seen
in that figure that ViTPose is the most highly performing
method. On the other hand, CenterNet DLA-34 performs bet-
ter than all the other architectures regarding inference speed,
while maintaining an acceptable precision, and recall. There-
fore, when high precision is needed for detecting keypoints
of people in the thermal domain, ViTPose is recommended.
On the other hand, when real time processing is the main
requirement, CenterNet DLA-34 is the method of choice for
detecting human skeletons. It must be noted that the best
ViTPose model obtained was pretrained with a grayscale
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TABLE 6. Average precision for various network architectures on the UCH-Thermal-Pose set-A validation split, pre trained on the COCO dataset and then
fine-tuned. With APM/APL: AP for Medium/Large size objects, OD: Object Detection, and PE: Pose Estimation.

TABLE 7. Average recall for various network architectures on UCH-Thermal-Pose set-A validation split, trained on the COCO dataset and then fine-tuned.
With ARM/ARL: AR for Medium/Large size objects, OD: Object Detection and PE: Pose Estimation.

version of COCO. This is also true for CenterNet DLA-34,
although the latter was fine-tuned with the first convolutional
blocks frozen (see Appendix A3).

It can also be noted that the accuracy of some of the
trained models benefits from large resolution images. This
is evidenced in Tables 11-16 in Appendix A1, in which,
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TABLE 8. Frame rates for various network architectures. With OD: Object detection, and PE: Pose estimation.

TABLE 9. Average precision for different network architectures on UCH-Thermal-Pose Set-B, trained on the COCO dataset, and then fine-tuned on the
UCH- Thermal-Pose Set-A. With APM/APL: AP for Medium/Large size objects, OD: Object Detection, and PE: Pose Estimation. Detection of keypoints of
people in the UCH-Thermal-Pose Set-B using CenterNet DLA-34.

in some cases, precision and recall were reduced to half or
less by using input images half the size of the images used for
training. These tables also show that bottom-up detectors are

most affected by lowering input resolution, compared with
top-down detectors. This may be due to the fact that top-down
detectors separate person detection and pose estimation into
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FIGURE 11. Detection of keypoints of people in the UCH-Thermal-Pose Set-B using CenterNet DLA-34.

TABLE 10. Average recall for different network architectures on UCH-Thermal-Pose Set-B, trained over the COCO dataset, and then fine-tuned on the
UCH-Thermal-Pose set-A. With ARM/ARL: AR for Medium/Large size objects, OD: Object detection, and PE: Pose estimation.

two parts, while bottom-up detectors perform both detections
simultaneously, so they can be more affected by changes in
the input resolution.

VI. FUTURE CHALLENGES
After analyzing the results obtained in the experiments
reported, some future challenges were identified. The first
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challenge is the need for having architectures whose structure
is adapted to thermal images. The architectures explored in
this work are aimed at processing color images, which implies
that the same thermal image is fed into three channels at the
input of the network, which is redundant for thermal images.
Exploring architectures that consider only one input image
(a thermal one) could improve the runtime of the methods.

A second challenge is related to the possibility of using
RGB and thermal images in an integrated way. A detection
system could benefit from switching between both modalities
depending on the environmental conditions, such as using
RGB images for well-illuminated surroundings, and ther-
mal images for low-light surroundings. However, additional
efforts would be needed to capture the state of the environ-
ment and to automate the switching between both modalities.

Another alternative is feeding both RGB and thermal
images into the detection networks simultaneously, to benefit
from the complementary nature of both sensors. This can be
achieved by adding the thermal image as an extra channel in
the network inputs. However, thermal and color images need
to be aligned first for performing this step, which imposes
an extra challenge on the annotation procedure, since most
of the datasets available do not have intrinsic and extrinsic
parameters for the cameras. In addition, calibrating thermal
cameras is not as straightforward as it is with RGB cameras
because normal checkerboards are not useful for this task.
Also, the error of the mapped keypoints between the two
images increases with the baseline between the cameras.
Color images can be aligned by using local descriptors; how-
ever, this procedure is not straightforward for aligning images
from different domains. Thus, the automatic alignment of
images from the two domains could be an interesting topic to
be explored in the future, as this could enable the use of both
thermal and color images in a unified and straightforwardway
for tasks like person detection in environments containing
dust, or detection of people in hospital beds, in which they
might be either covered or uncovered.

VII. CONCLUSION
Several network architectures for detecting keypoints of peo-
ple in the thermal domain are explored and compared in
this work. Since the different networks were developed for
color images, their performance on thermal images cannot be
deduced from studies in the existing literature. Procedures for
training the networks were explored, such as using images
from the COCO dataset transformed into grayscales when
pretraining the networks. This procedure was able to increase
the accuracy of the networks for most of them. Also, freezing
different numbers of convolutional blocks when pretraining
was also explored, and freezing only the first convolutional
block proved to increase the accuracy of the networks when
trained in the thermal domain.

A dataset labeled with human keypoints in the thermal
domain, UCH-Thermal-Pose, was created for enabling a
comparison between the different networks. UCH-Thermal-
Pose Set-A is composed of images from various existing

TABLE 11. Metrics for bottom-up detectors for input resolutions
128 × 128 and 256 × 256.

datasets, in which keypoints on the selected images were
annotated manually, while the UCH-Thermal-Pose Set-B is
composed of thermal images acquired in our laboratory, and
annotated using the same procedure used for annotating the
images in set A.

The results presented in this paper show that pretraining
with grayscale images improves the performance of most
of the network architectures, while freezing the first layer
improves the results on the CenterNet DLA-34, and Center-
Net Hourglass-104 architectures.

The best architectures obtained for detecting human key-
points on thermal images are ViTPose when high accuracy is
required, and CenterNet DLA-34 when real time processing
is the main requirement.

APPENDIX A
SELECTION OF BEST TRAINING PROCEDURES AND
HYPERPARAMETERS FOR THE NETWORKS
A.1 TESTING DIFFERENT INPUT RESOLUTIONS
AP, AR, and FPS were tested for bottom-up models
using different input resolutions. The results are shown in
Tables 11 and 12. Using a low input resolution, such as
128 × 128, increases speed significantly for all models. Each
one of them, except for Bottom-Up HRNet, performs at real-
time speeds with that resolution, but with very low precision.
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TABLE 12. Metrics for bottom-up detectors for input resolutions
384 × 384 and 512 × 512.

TABLE 13. Metrics for top-down detectors. The person detector is trained
for input resolutions 128 × 128 and 256 × 256.

As resolution increases, precision and recall improve but are
accompanied by a decrease in speed. Therefore, it is easy to
establish a tradeoff between speed and precision/recall for
these models.

With top-down models, changing input resolution is more
complex since there are two networks with different input
resolutions: the person detector, and the keypoint detector.
Nevertheless, experiments were made by changing the input
size of the YOLOv3 person detector while maintaining the
input resolution of the pose estimation network. These results
are shown in Tables 13 and 14. Note that YOLOv3 was
used in these experiments because of it being used in the
AlphaPose paper [6].

TABLE 14. Metrics for top-down detectors. The person detector is trained
for input resolutions 384 × 384 and 512 × 512.

TABLE 15. Metrics for top-down detectors. The keypoint detector is
trained for input resolutions 128 × 128 and 256 × 256.

TABLE 16. Metrics for top-down detectors. The person detector is trained
for input resolutions 384 × 384 and 512 × 512.

Remarkably, the AP and AR of top-down detectors are less
affected by a decrease in image resolution when compared to
decreases in resolution for bottom-up detectors. As can be
seen, both keep an AP over 50%, and an AR over 59% when
the detecting was done on 128× 128 images. And even more,
at 256 × 256 images, AP and AR are very close to those
obtained at high resolution images. This fact can be explained
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FIGURE 12. Average precision for CenterNet DLA-34 trained on grayscale
and color images, for different training epochs.

FIGURE 13. Average precision for CenterNet Hourglass-104 trained on
grayscale and color images, for different training epochs. Average
precision for CenterNet DLA-34 trained on grayscale and color images, for
different training epochs.

by object detectors being robust when detecting people over
low-resolution images.

However, no gains in speed are evidenced when detecting
on smaller images. FPS remains almost the same for the
different input sizes considered. A plausible reason behind
this is that, even though the object detector receives lower res-
olution images, the pose estimation network keeps operating
at the same resolution. This constitutes a bottleneck since the
actual speed of the full detector is determined mainly by
the pose estimation network. Additionally, we observed that

FIGURE 14. Average precision for CenterNet Hourglass-52 trained on
grayscale and color images, for different training epochs.

FIGURE 15. Average precision for CenterNet HRNet-W32 trained on
grayscale and color images, for different training epochs.

the YOLOv3model predicts a larger number of false positives
when receiving low-resolution images, which means that a
greater number of bounding boxes would be fed to the pose
estimation network.

On the other hand, when changing the input resolution of
the pose estimation network but preserving the resolution of
the whole images, the results shown in Tables 15 and 16 are
obtained. The models are evaluated using both ground truth
bounding boxes, and detected ones. By observing the results,
it can be seen that, when using input resolutions lower than
the default ones of the models (256 × 192 for AlphaPose,
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FIGURE 16. Average precision and average recall for two CenterNet models, for different numbers of frozen
convolutional blocks.

and 384 × 288 for Simple Baselines), precision and recall
are negatively impacted, reaching values below 6% for all the
metrics. Moreover, when increasing resolution from default
values, precision and recall are also negatively affected by
largemargins. Speed is not substantiallymodifiedwhen using
different resolutions.

A.2 COMPARISON BETWEEN PRETRAINING ON GRAY
SCALE AND COLOR IMAGES
Experiments carried out with the CenterNet architecture show
that models pretrained over gray images exhibit, in general,
a greater affinity for detection in the thermal domain with
respect to models pretrained over color images. Figure 12
shows some good examples of the previous statement,
exhibiting two identical CenterNet DLA-34 networks trained
with grayscale images, and with color images, respectively,
over 140 epochs. The AP of both variants was evaluated
on the thermal images test set in each epoch (without
fine-tuning).

Figures 12-15 show the results of using the DLA-34,
Hourglass-104, Hourglass-52, and HRNet-W32 backbones.
With networks using the first three backbones, training using
grayscale images provides better results compared to those
when using color images, as is shown in Figures 12 to 14.
Nevertheless, this statement does not hold true when using
an HRNet-W32 backbone, where the curves corresponding to
trainingwith RGB and grayscale images aremore intertwined
as can be seen in Figure 15.

A.3 FINE-TUNING CENTERNET WITH FROZEN LAYERS
During the training process, freezing layers promote obtain-
ing better results when little training data is available, since
a lower number of parameters from the network need to be
learned. For some architectures, freezing individual convolu-
tional layers can be difficult to implement, but in that case

convolutional blocks, which are subsets of convolutional lay-
ers, can be frozen. Results from experiments on freezing dif-
ferent numbers of convolutional blocks (freeze 1 to freeze 6)
for two CenterNet models, DLA-34, and Hourglass-104, are
shown in Figure 16. The convolutional blocks used for the
freezing experiments are shown in Figures 7 and 8.

As is shown in Figure 16, precision and recall lower sig-
nificantly when the entire backbones are frozen (freeze 4 in
Hourglass and freeze 6 in DLA). However, when using the
freeze 1 regime, both networks show gains in both precision
and recall. Recalling Figures 7 and 8, this regime corresponds
to freezing the first convolutional block for each backbone.
The freeze 1 regime was included as part of the training of
the final models reported for these variants of CenterNet.
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