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ABSTRACT Defects on fabric surfaces are difficult to identify owing to unsuitable computing devices,
highly complex algorithms, small size, and high degree of integration with the fabric. To this end, this study
proposes a lightweight fabric defect-detection network, YOLO-SCD, based on attention mechanism. The
introduction of depth-wise separable convolution and the attention mechanism enhanced the capacity of the
neck network to extract the defective features and increased the detection speed of the overall network.
The extensive experimental results revealed that YOLO-SCD achieved an average accuracy of 82.92%,
effective improvement of 8.49% in mAP, and an improvement of 37 fps compared to the original YOLOv4
on a standard fabric defect dataset. By leveraging its swift detection speed and high efficiency, YOLO-SCD
excels in both the general fabric defect category and the difficult-to-detect fabric. Overall, it exhibited strong
performance in detecting both minor flaws and flaws with high fabric integration. Furthermore, the proposed
model was extended to steel datasets with similar characteristics.

INDEX TERMS Fabric defect detection, SoftPool, attention mechanism, depthwise separable convolution,

lightweight.

I. INTRODUCTION

Fabric defects are key factors affecting the quality of fabric
production and fabric grade. According to market research,
the price of fabrics with prominent defects is approximately
50% less than that of defect-free fabrics and cause consid-
erable economic losses to textile enterprises [1]. Although
manual inspection is a common defect-detection method
in the traditional fabric industry, the conventional methods
involve substantial human and management resources and
yields low detection efficiency, high error detection rate, and
considerable damage to the workers’ eyes [2]. Therefore, the
development of an automatic inspection method with high
detection accuracy and fast detection speed is required to
replace the currently employed manual method and improve
the production efficiency, reduce workers’ labor intensity,
and lower production costs of enterprise. With the rapid
development of computer technology and machine learning,
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several inspection methods have started using machine vision
and deep learning to replace traditional manual inspection
methods and achieve adequate detection results.

To detect defects on the fabric surface, machine vision
methods are used for analyzing the texture and defect charac-
teristics of the fabric, followed by identifying and locating the
defects using image processing technology. In recent years,
domestic and foreign companies have developed machine
vision products for fabric defect detection, such as FAB-
RISCAN and webSPECTOR. The detection standards of
these devices differ from those regulated in China, and small
textile factories cannot afford such detection methods [3].

The existing fabric defect-detection methods proposed by
domestic and foreign researchers can be segmented into
four major categories: structural analysis [4]—Dhivya and
Devi [5] applied the closest node algorithm for multiscale,
multidirectional extraction of the contour features of fabric
defects. Although this method outperformed support vector
machines in experiments, it requires initial pre-processing
through conversion and filtering techniques, which accounts
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for redundancy. Statistical analysis [6]—Kumari et al. [7]
extracted fabric defects based on the similarity estima-
tion method of Sylvester matrix, which can process test
images captured under various lighting conditions. However,
it detected only three types of defects and its fitting ability was
inadequate. Frequency domain analysis [8]—Mak et al. [9]
developed a method based on filter-based approach to extract
features from images of varying scales. Although it accu-
rately detected the edge defects and holes, it was limited in
optimizing the parameter values of the filter and was compu-
tationally intensive. Model analysis [10]—Lin et al. [11] used
grayscale co-occurrence matrix and redundant contour trans-
form to extract the segmented sub-images texture features and
combined it with convolutional neural network classification
method to improve the recognition rate of the fabric defects;
however, this method is more sensitive to lighting and image
noise. These conventional detection methods require prede-
fined thresholds to detect the presence of defects, and the
extracted features must be carefully designed. These methods
are effective only for a specified defect class and manifest
inferior adaptability and insufficient generalization ability
under improper imaging conditions.

Deep learning-based target detection algorithms have
achieved significant progress in industrial applications for
detecting defects in steel and aluminum. Fundamentally,
these algorithms are of two types: two-stage detectors and
one-stage detectors. The target detection process of the
two-stage detector first involves extracting a set of object
candidate frames by selective search, followed by the classi-
fication of the candidate frames to determine the exact target
location. Common two-stage detectors include RCNN [12],
Fast R-CNN [13], and Faster R-CNN [14]. Zhou et al. [15]
proposed a fabric defect-detection method based on Faster
R-CNN by combining a feature pyramid network (FPN),
deformable convolutional (DC) network, and distance IoU
loss function with an average prediction speed of 17 frames
per second (fps), which was less than the detection level of
25 fps required in actual factories. The single-stage detector
involved only a single operation of the CNN to obtain classi-
fication and position, which exhibited a faster detection speed
and achieved end-to-end detection. Compared with two-stage
detection networks, one-stage networks do not include a
stage for generating candidate frames, and therefore, offer
significantly advantageous detection speed. Commonly used
single-stage detectors include the YOLO series [16], [17],
[18], [19], single-shot multibox detector (SSD) [20], and
CenterNet [21]. Zhang et al. [22] proposed a YOLOV2-based
method for automatic localization and classification of color
fabric defects, which improved the model by optimizing the
hyperparameters of the neural network. However, its training
set contained only 200 sheets with three categories of defects,
which yielded weak generalization and inferior robustness of
the model. Luo et al. [23] proposed a fabric defect-detection
method based on YOLOv3 combined with deformable convo-
lution, which provided adequate detection results for 17 types
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of fabric defects. However, the model size was excessively
large for practical applications in textile mills. Recently,
semantic segmentation has been applied by the computer
vision community. The segmentation of an image into groups
of pixels with labels and classifications forms the boundary
segmentation of existing targets in an image based on pixels.
Lu et al. [24] proposed a fabric defect detection method based
on a C-RCNN for image segmentation, but the segmentation
results were inaccurate if the fabric defects were extremely
small or similar.

Although the two-stage detector offers advantages in terms
of fabric defect-detection accuracy, it is not as fast as the
single-stage detector. This method yields unsuitable image
segmentation of fabric defects for fabric defect detection
owing to the small size of the defects and the high fusion
of defects with the fabric, which restricts the accuracy
of detecting fabric defects. Most current studies performed
defect detection on only a small number of easily detectable
defect types. Thus, the number of defect types that can
be detected by the model and its detection accuracy for hard-
to-detect defects requires imminent improvement. Moreover,
the real-time detection of fabric defects is a challenge due to
the large network structure.

Conventional image processing-based defect detection
methods fail to appropriately adapt to the complex and con-
tinually varying industrial applications. In comparison, deep
learning-based target detection algorithms are more robust
and can improve the recognition accuracy of defect detection.
Therefore, exploring the automatic detection of fabric defects
based on deep learning is vital for improving the accuracy of
detecting fabric surface defects and enhancing the develop-
ment of related industries. To this end, this study selects a
single-stage detector YOLOv4 as the benchmark model and
proposes a new detection network YOLO-SCD that inher-
its the automatic learning characteristics of YOLOv4 and
exhibits improved anti-interference capability, especially for
detecting small defects and long strips of defects that are
typically difficult to detect. In principle, YOLO-SCD incor-
porates two targeted techniques—SoftPool and an attention
mechanism approach—to enhance the ability of the model
for handling hard-to-detect fabric defects and reducing the
loss of the model for extracting small fabric defects and
other types of feature losses. The introduction of depthwise
separable convolution (DSC) significantly reduced the mem-
ory of the model and improved the speed of the model in
detecting defective images. The fundamental contributions of
this research are summarized as follows.

(i) The k-means method was employed to improve the
anchor frame used for training and increase the ability to
detect fabric faults with large-scale fluctuations. In addition,
a new feature pyramid structure with an additional shal-
low backbone network branch output was suggested, which
enabled the model to readily extract the defects of the com-
plex shapes on the fabric surface by fusing shallow and deep
features.
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FIGURE 1. Enlarged display of some fabric defect.

(ii) An attention mechanism was introduced in the middle-
and high-level components of the network to focus its atten-
tion on the defective portion and reduce the loss of the model
during the process of defective feature extraction for small
defects and other hard-to-detect defects.

(iii)) The introduction of DSC significantly reduced the
storage space of the model and improved the model detection
speed.

The remainder of the paper is organized as follows: the fab-
ric defect features are analyzed in Section II (Related Work),
with the introduction of the deep learning models developed
for target detection and fabric defect detection in recent
years. The detailed structure of YOLO-SCD and certain other
improved methods are presented in Section III (Proposed
Network). The validation of the proposed method along with
certain comparative experiments considering other methods
are discussed in Section IV (Experiments and Discussion).
The conclusions and future scope of this research are sum-
marized in Section V (Conclusions).

Il. RELATED WORK

The fabric defect-detection algorithm includes the extrac-
tion of defective features, defect classification, and defect
location. In general, fabric surface defects contain numerous
categories: hundred feet, broken warp, knots, hole, pulp spots,
stains, abrasion marks, three filaments, loose warp, grain,
etc. The enlarged view of certain fabric defects is displayed
in Figure 1, which depicts the following problems related to
fabric defects.

1) NONUNIFORM DISTRIBUTION OF DEFECTIVE SHAPE
CHARACTERISTICS

Hundred feet and other defects are long and thin lines
(Figure 1 (a)), whereas grain, broken warp, and cer-
tain portions of other defects display a dotted appear-
ance (Figure 1 (b)).
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2) DEFECTS ACCOUNTED FOR VARIOUS SIZES OF FABRIC
AREA

Certain defects such as stains and grains appear dotted and
account for a smaller area of the fabric that is challenging to
detect. In comparison, defects such as pulp spots and holes
occupy a larger space in the fabric.

3) HIGH INTEGRATION OF FABRIC DEFECT WITH FABRIC

In Figure 1 (c), the first two defective images illustrate the
defect categories of pulp spot and abrasion marks; its color
is similar to the fabric background and cannot be easily
distinguished only by the naked eye.

The aforementioned problems of fabric defects, i.e., cover-
ing a small proportion of the area with high degree of inte-
gration with fabric characteristics, have created challenges
for fabric defect detection. The traditional manual detection
of fabric defects by the naked eye is difficult and exhibits a
high leakage rate with low detection efficiency. To overcome
these drawbacks of manual detection, scholars have used
a combination of image-processing techniques and manu-
ally designed features. Li et al. [25] proposed a pattern-free
fabric defect-detection scheme that includes texture feature
extraction and detection stages by combining the ‘“uniform”
MDBP operator and grayscale co-occurrence matrix that ini-
tially generates an image vector based on a multidirectional
binary pattern to extract the grayscale co-generation matrix,
and thereafter, generates the similarity values based on the
matrix similarity before arriving at the defect detection result
map. Although the detection of defects via traditional manual
extraction of features is convenient compared to that by the
human eye, the process remains tedious with improper imag-
ing conditions.

In recent years, with the widespread industrial application
of image processing technology and computer vision technol-
ogy, new ideas and means have been developed for detecting
fabric defects. Lin et al. [26] developed a top—down archi-
tecture with horizontal connections, i.e., a feature pyramid,
to construct high-level semantic feature maps of all scales.
Yang et al. [27] proposed PanNet, which is a top—down and
bottom—up bidirectional fusion backbone network based on
the feature pyramid, with a “short-cut” between the bottom
and top layers. Zhang et al. [28] proposed a multifeature
aggregation framework for salient object recognition. The
feature pyramid can extract features for every scale size of
image defects and generate multiscale feature representa-
tions. More importantly, strong semantic information can
be generated using the feature pyramid network depending
on the type of fabric defects, i.e., point-like defects such
as hair grains and stains or linear defects such as hundred
feet and broken warps. The bidirectional backbone fusion
method induced by PanNet can generate an effective flow
of the fabric defect features between the network layers,
because the bottom layer of the network contains additional
information on both small and slender defects. Furthermore,
multilayer feature fusion can reduce the loss in the fabric
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FIGURE 2. The Network structure of YOLOvA4.

defect feature extraction process and facilitate the feature
extraction of small defects as well as other types of difficult-
to-detect defects.

In April 2020, Bochkovskiy et al. [18] proposed YOLOv4
by adding new and improved concepts such as mosaic data
enhancement and PanNet to YOLOvV3 to achieve the best
balance of accuracy and speed for the COCO dataset. Con-
sequently, they derived the end-to-end object location and
category output. The continuous improvement of the YOLO
network structure from v1 to v4 increased the detection speed
and accuracy of complex objects to achieve the most optimal
balance between speed and accuracy. The schematic of the
original YOLOv4 model structure is illustrated in Figure 2,
which was segmented into three components: backbone,
neck, and head.

The backbone uses the CSPDarknet53 [29] network for
feature extraction, comprising a five-group stacked residual
layer structure and a convolutional block with a Mish acti-
vation function and batching. The residual structure divides
the feature mapping of the base layer into two components
and merges them through the cross-stage hierarchy, which
reduces the computational bottleneck of the entire model and
ensures its high accuracy.

The neck component is used to enhance the features, and
the SPP structure [30] along with the FPN+PANet struc-
ture [31] is used to multiplex and fuse the features of the
three feature layer outputs from the backbone component to
enhance the feature representation capability of the model.
The feature maps after the backbone network feature extrac-
tion are passed into the SPP module, which uses four distinct
maximum pooling scales (13 x 13, 9 x 9, 5 x 5, and
1 x 1) to fuse the four feature maps by Concat operation
and enhance the information representation capability of
the shallow feature map input. The FPN layer captures the
strong semantic features of the image, whereas the PAN
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records the strong semantic features of the image by self-
bottom—up to convey strong localization features. Upon
combining these two modules, the target localization can
be accomplished. However, using an extensive amount of
maximum pooling in SPP affects the accuracy of the fab-
ric defect localization, which deteriorates the fabric defect
classification tasks in case the target is similar to the
background.

The head section is used to decode the output of the three
feature maps by feature enhancement, decode the anchor
frame into the input image, compute the loss function for
defect prediction, and output the final detection result map,
including the confidence level, target location, and corre-
sponding class of the target. Although YOLOv4 delivers
adequate detection performance on the large target dataset
COCO, the analysis in Section II indicates hard-to-detect
characteristics of the fabric. In fabric defects such as stains
and grains that account for a small fabric area and are difficult
to detect with the naked eye, the application of YOLOv4
cannot be migrated to the field of fabric defect detection.
In this regard, Liu et al. [32] proposed a fabric defect detection
method based on YOLOv4 with high detection accuracy, but
it divided the fabric defect dataset only into four categories,
all of which included easily detectable fabric defect types
such as lines and holes, and no targeted research based on
minor defects was conducted.

Based on the above analysis, most existing fabric defect
detection models were only applied to a small number of
easily detectable defects. In the actual production process,
dozens of types of fabric defects exist and most defects
pertain to the types that are not easily detected. For instance,
certain defects were slender and readily deemed as lines,
and certain defects were not easily found with high fab-
ric fusion. Therefore, based on the study of the YOLOv4
structure, this study proposes the YOLO-SCD model
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and designs the corresponding feature fusion module to
accurately detect miniscule defects and those highly fused
with fabrics.

Ill. PROPOSED NETWORK

The proposed YOLO-SCD model is introduced in detail
herein. First, we introduce the end-to-end structure of the
proposed model, including the loss functions used by the net-
work. Second, we present several solutions of the model for
fabric defect detection, including SoftPool, attention mech-
anism, and lightweight procedure of the detection model
using DSC.

A. INTRODUCTION OF YOLO-SCD

The structure of the proposed model generally follows that
of YOLOV4, including the backbones, neck, and head; the
schematic of the overall network structure is illustrated
in Figure 3.
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1) BACKBONE

Initially, the model resizes the input defect image, compress-
ing it to a resolution of 512 x 512, and feeds the defect
image into the feature-extraction network. Thereafter, the
backbone portion of the network retains the CSPDarknet53
structure used in YOLOv4, wherein we believe that multi-
ple large residual structures can adequately retain the defect
information. In principle, the feature map of the upper layer
input is segmented into two portions and merged through the
cross-stage hierarchy to reduce the repetitive gradient infor-
mation along with improving the inference speed. As certain
fabric defects cannot be easily distinguished with the naked
eye because of their large-scale variations and high fusion
with the fabric, a shallow output branch from the backbone
network to the PANet network of the neck is added for feature
reuse and feature fusion to maximize the retention of the
defect features. Consequently, the output feature map size
becomes (128 x 128 x 128). To reduce the model size
and improve the detection speed, the DSC is introduced into
the structure of the last two residual layers of CSPDarknet.
As depicted in Figure 4, a part of the input feature map
passes through a convolution block, several residual blocks,
and another convolution block to extract features. Similarly,
the other part is first convolved and then combined with it.
Finally, the combined part passes through a transformation
layer (convolution block) to derive the final output. The CSP-
Darknet53 contains 1, 2, 8, 8, and 4 residual layers in each
stage. Notably, to achieve the most optimal balance between
accuracy and speed, we introduced a 3 x 3 convolution
in the last two large residual groups in the model into the
DSC and constructed a new bottleneck layer named DpBlock,
as depicted in Figure 4(b). Overall, the design of the new
residual layer reduced the model size as well as the weight
of feature extraction network, thereby reducing the detection
speed of the model.
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2) NECK

The neck network mainly conducts secondary processing for
fabric defect features, such that the network retains more
feature information for small defects, using the SPP struc-
ture and the FPN+PANet for feature enhancement (refer to
Figure 3). The four feature maps obtained as output from the
backbone are fed into the SPP structure and pyramid network
through the attention mechanism, where the SPP structure
primarily extracts the multiscale fabric-defect information
by pooling the feature layers inputted from the backbone
network through multiple pooling windows. This mechanism
effectively expands the perceptual field and can extract richer
contextual semantic information, i.e., multiscale fabric defect
information. To retain more semantic feature information of
the defects, the SPP structure uses a mild feature mapping
SoftPool for spatial pyramidal pooling, which is in proportion
to the corresponding values of the elements. Additionally,
we designed a new PANet structure. As the original structure
of the PANet reuses only the high-level feature information
of the fabric, we added a shallow pyramid layer to the orig-
inal three-layer pyramid structure of PANet to retain more
information on small fabric defects. Moreover, we embed-
ded a spatial attention mechanism (Figure 3: CBAM) in the
up-sampling and feature fusion segment of the pyramid struc-
ture to ensure that the model focuses more attention on the
defect part, thereby intending to resolve the issue with highly
fused fabric defects. Furthermore, we applied DSC for feature
extraction and reducing the size of the feature enhancement
network. The improved PANet is more suitable for extracting
small fabric defects and enhancing the semantic information
of the defects.

3) HEAD

The YOLO Head was used for the module to determine
whether the fabric defects are identifiable and the type of
identified defects corresponds to the three priori frames preset
in the feature enhancement networks. In particular, the three
tensor dimensions of the input feature—(64, 64, 256), (32,
32, 512), and (16, 16, 1024)—with output dimensions (after
Head) of (64 64, 21), (32, 32, 21), (16, 16, 21), and 21 in the
last dimension contains the x_offset, y_offset, image width
and height, confidence level, and defect classification result.
The decoding process of the head first involves adding each
grid point with its corresponding x_offset and y_offset to
derive the center of the prediction frame. Thereafter, using
the combination of the width and height of the prior frame and
the feature map, the length and width of the prediction frame
were calculated to derive the position of the entire prediction
frame. Finally, score sorting and non-great suppression fil-
tering of these prediction frames were performed to plot the
final prediction results of the defect classification.

4) LOSS FUNCTION
As discussed in Section II, fabric defects such as hair grains
and warp breaks constitute a small proportion of the entire
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fabric image. Owing to the high degree of fusion of these
defects with the fabric, several types of defects appear sim-
ilar to each other, resulting in several difficult-to-classify
samples. To resolve this issue, the loss function used by
YOLO-SCD combines CIOU loss [33] and focal loss [34]
to ensure a higher detection accuracy for fabric defect detec-
tion. Although CIOU reflects the distance and compliance
between the predicted bounding box and the real box, these
two boxes do not intersect and prevent the regression gradi-
ent from reaching zero. In addition, it considers the aspect
ratio fitting between the predicted bounding box and the
real box, thereby promoting faster computational conver-
gence of the model. The focal loss can control the weights
of the positive and negative samples as well as those of
the easy- and difficult-to-classify samples. This solves the
imbalance between the number of easy-to-classify fabric
defects and difficult-to-classify fabric defects in the actual
training and enhances the prediction ability of the network
model for difficult-to-classify defects. The loss of the YOLO-
SCD model is primarily composed of target position loss
(LOSS ciou), classification loss (LOSS ), and focus loss
(LOSS focar), calculated as follows.

(i) The target position loss (LOSS ciov ) is used to evaluate
the error between the predicted result box and the real box;
a smaller loss indicates a higher degree of overlap between
the predicted box and the real box, in addition to higher
positioning accuracy of the predicted bounding box.

Zb’bgt
P0.b) |

LOSScioy =1 —10U + o)

= v
(1 —I10U) +v

oy (1)
2

4 ws! w\?
v=—3 (arctanﬁ — arctanz) 3)
where p2(b, b%") denotes the Euclidean distance between
the predicted box b and the center-point coordinates of the
real box b8!, In (2), o denotes the weight function and v is
used to measure the consistency of the aspect ratio; in (3),
w8 and k8" denote the width and height of the real box and
w and h represent the width and height of the predicted box,
respectively.

(i) Classification loss (LOSS;s) compares the predicted
and actual results of the categories, expressed as follows:

> H©og(r©)

-3
i=0 ceclasses
+ (1= Fonog (1 - Plo))) @)

where s* denotes the number of grids in the input feature map;
lfj]l.” indicates the presence of the object in the i-th grid in
the j-th prediction frame; ﬁi (c) denotes the probability that

the target defect class is in the true frame; pé(c) indicates the
probability of the target defect class in the prediction frame.
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(iii) Focal Loss (LOSSfycar) is used to calculate the confi-
dence level of the fabric defects, as follows:

LOSS focal = —a (1 — po)? log (py) (5)
ify=1
p=1" v ©)
1 —p otherwise

where p; reflects the proximity of the prediction frame to
the true frame, i.e., a larger value implies a more accurate
classification. ¢ and y are used to solve the positive and
negative sample imbalance along with the difficult-to-classify
problems in the defective fabric samples, respectively, where
y =2.

5) IMPROVEMENT OF ANCHOR FRAME

To better fit the defect aspect ratio in the fabric defect dataset,
the anchor box parameter suitable for this experiment must be
calculated prior to model training. The anchor box refers to
a representative rectangle of pixels with varying scale sizes
in the image, which assisted the model to learn the target
location, as depicted in Figure 5(a). If each prediction result
was adjusted according to the real box, the object size would
increase beyond computational efficiency. Accordingly, the
location of the real box was unified and initially set to nine
scales, according to the defective dataset. as discussed in
Section II, the current fabric dataset exhibits a nonuniform
distribution of defect sizes, i.e., certain fabric defects display
an aspect ratio of 1:1, whereas other defects portray an aspect
ratio of 20:1. the anchor frame used in

YOLOV4 is depicted in Figure 5(b). although the target
contained three scales, it was not applicable to the character-
istic properties of the fabric defects. thus, the values of the
original yolov4 anchor frame should be improved.

In this study, k-means clustering was used to optimize the
size of the anchor frame based on the true value of the defect
size of the defect dataset, and the average IOU was defined
as the clustering measure. The average IOU was calculated
as follows:

k  ng

2. 2 Tiou(B. C)
AvglOU = arg max % @)

where I;oy (B, C) represents the intersection ratio of the true
value to the bounding box of the cluster centers, B denotes the
true value, C represents the cluster center, and n denotes the
total number of clustered objects. Accordingly, we selected
k =9 cluster centers, and the final generated anchor boxes are
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illustrated in Figure 5(c), with sizes (1, 12), (1, 29), (3, 10),
(2, 25), (1, 78), (12, 37), (2, 463), (9, 497), and (145, 121).
The size of the anchor frame was set adaptively according
to the aspect ratio of the fabric defects, which improved the
recognition and localization accuracy of the defect model.

B. OTHER MEANS OF YOLO-SCD TO IMPROVE FABRIC
DEFECT DETECTION

The analysis of the anchor frame in Section II and
Section III-AS highlights the presence of numerous fabric
defects, including those occupying a relatively small area,
with extremely low aspect ratios. Moreover, most pulp spots,
warp knots, and other similar defects are highly integrated
with the fabric. Therefore, this study applied specific research
techniques to address the limitations of such fabric defects:
SoftPool was used to weaken the loss of the defective features
through multiple maximum pooling operations; the attention
mechanism induces the model to focus more on the defective
regions, which positively impacted the feature extraction of
the small defects; the introduction of DSC reduces the weight
of the model and enables high-speed detection on the mobile
side.

1) SOFTPOOL

The SPP structure used in YOLOv4 performs max-pool oper-
ations on the feature map at varying scales, with pooling
kermnelsof 1 x 1,5 x 5,9, x 9, and 13 x 13, after which
the four pooling results were fused. The pooling layers with
varying kernel sizes can be used to more comprehensively
acquire the contextual features.

Although MaxPool can effectively reduce the number
of parameters, it loses a significant amount of information
during the selection process. In addition, as MaxPool only
retained the most evident features to represent the neigh-
borhood, the fabric defects appeared similar to the fabrics,
and the small defect information was readily lost after the
MaxPool operation. In addition, the pooling operation used a
method called AvgPool, which considered the average of the
pixel region as the pooled result. To detect the fabric defects,
MaxPool in SPP executes the risk of losing defect features
owing to the high degree of fusion between the defects and
fabrics. Although AvgPool considers all the features in the
neighborhood and retains more background information and
defect information, it reduces the intensity of the defect fea-
tures in the region and neglects the evident defect features
after averaging.

SoftPool is a new pooling method proposed by Zeiler
and Fergus [35], which retains the pixels according to their
weights in the feature map, which reasonably solves the prob-
lems of MaxPool of easy-to-lose information and the average
pooling weakens the target feature intensity, expressed as
follows:

ai

e
Wi=S g

el
y Z]GR , (8)
a = Zwi*ai
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FIGURE 6. Network structure of CBAM.

where w; represents the weight of the candidate region, a
denotes the weight of the activation mapping. The SoftPool
is advantageous because the number of features is reduced
and the image information is adequately preserved; thus, the
small defects are preserved during feature extraction.

2) ATTENTION MECHANISM
The concept of the attention mechanism originates from the
human visual mechanism: when humans observe an object,
they tend to focus on its most vital part. Driven by human
visual mechanisms, scholars have gradually applied atten-
tion mechanisms to artificial intelligence, especially in the
field of computer vision, and several attention mechanisms-
based studies have been conducted to achieve target detection
and semantic segmentation [36]. In deep learning, the com-
mon implementations of the attention mechanisms include
the channel attention mechanisms, channel-space attention
combination mechanisms, and efficient channel attention
modules. Squeeze-and-excitation networks (SENet) [37],
proposed by the WMW team, was the winner of the last
ImageNet competition in 2017, and its principle is to generate
a (1 x 1 x C) channel descriptor via squeeze compression
operation for features with spatial dimension w x h. These
channel descriptors were subjected to excitation by adap-
tively adjusting the weights of each channel to extract the key
features.

Based on channel attention, Woo et al. [38] proposed
a new convolutional attention module: convolutional-block-
attention module (CBAM), which utilizes cross-channel
information and spatial information to extract the informa-
tion features that direct the focus of the model. CBAM has
been widely used to improve the expressive power of CNNs.
In 2020, Wang et al. proposed a new efficient channel atten-
tion (ECA) module based on SENet [39], and they proposed
a local cross-channel interaction strategy without dimen-
sionality reduction, which effectively avoided the effect of
dimensionality reduction on the learning effect of channel
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attention. The mechanism is an efficient and lightweight
module that obtained suitable results on the COCO and Ima-
geNet datasets. In this study, after conducting comparative
experiments and analyses of these three attention mechanisms
and ultimately selected the CBAM as the attention module
in the proposed YOLO-SCD model, which maximized the
performance (refer to Section IV-C).

In CBAM, features were initially input to the channel
attention module to generate a channel attention map, and
the weights of the channels were obtained as output after
the sigmoid function. Thereafter, the features were input
to the spatial attention module, where the average pooling
and maximum pooling operations were first applied along
the channel axes and connected to generate a valid feature
descriptor, as indicated in the structure diagram in Figure 6.
The channel attention mechanism is a plug-and-play module,
and its placement at several locations can produce various
effects. In this research, CBAM was placed in the feature
enhancement section because higher-level semantic infor-
mation is more beneficial for guiding the model to learn
the defect locations and focus more attention on the defec-
tive part. We visualized the feature maps of the incoming
defective images at each stage of the network. Owing to
numerous network layers, we captured an exemplary image
with a defect category of holes and selected the shallow
network portion of the feature extraction network (CSPDark-
net53) and the high-level network portion for the feature
visualization output. The results are depicted in Figure 7,
wherein the feature map of the shallow network contains
more redundant fabric background information, whereas the
deeper feature map has more prominent defective fabric
portions.

The results indicated that higher-level semantic informa-
tion contains fewer fabric features with interference. For
fabric defect detection, as several categories of defects were
highly integrated with the fabric, incorporating the CBAM
in the higher-level network position aids the model to focus

33561



IEEE Access

X. Luo et al.: Lightweight Detector Based on Attention Mechanism for Fabric Defect Detection

(b)

FIGURE 7. Visualization of feature maps in networks: (a) low-level network feature map; (b) high-level

network feature map.

more on the defective portion and reduce the information
interference.

3) DSC

Howard et al. [40] proposed the use of DSC to effectively
reduce the size of models with standard convolution, which
can be categorized into two main processes: depth-wise con-
volution and pointwise convolution. Depth-wise convolution
includes a convolution kernel for a single channel, which
was convolved by only one convolution kernel and produced
exactly the same number of channels of the feature map as
that in the input. Considering a color input image of size
(5 x 5 x 3) as an example, depth-wise convolution first
passes through the first convolution operation, and owing
to the same number of convolution kernels as the channels
in the previous layer, a three-channel image is generated
with three feature maps after the operation. The channel-by-
channel convolution operation independently convolved each
channel of the input layer, which failed to effectively utilize
the feature information of various channels at a given spatial
location. Therefore, a point-by-point convolution is required
to combine these feature maps.

The size of the convolution kernel for point-by-point con-
volution was 1 x 1 x M, where M denotes the number of
channels in the previous layer. To generate a new feature
map, the convolution operation combines the feature maps of
the previous step in the depth direction with the weightage.
As depicted in Figure 8, the input feature map size was
D,, x Dy, x F and the output feature map size was Dy, x D, XN,
where the size of the convolution kernel for the DSC is
Dy x Dy, and the computational volume for the depth-wise
separable convolution can be determined using Eq. (9), and
that for an ordinary convolution is expressed in (10).

Caep =Dy x Dy X F x D + Dy xDpy x F XN (9)
Ceom = Dy X Dy X F X N X Dy x Dy, (10)
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Considering a color input image of size 5 x 5 x 3 as
an example, the computation amount of ordinary convo-
lution was 972, whereas the computation amount of DSC
was only 351, representing a reduction of two-thirds of the
computation amount. Thus, the depth-wise separable con-
volution method, which combines width and resolution fac-
tors, significantly reduced the computation and model size.
As both the CSPDarknet53 and PANet of the YOLOv4 model
leveraged numerous ordinary convolutions of 3 x 3, which
increases the model size. Accordingly, we replaced the ordi-
nary convolution in the feature enhancement component with
DSC, and simultaneously, selected specific convolutions of
the higher-level backbone network for replacement. This is
because the images at the bottom layer contain more semantic
information, and the use of DSC may yield partial feature loss
(Section IV-E).

IV. EXPERIMENTS AND DISCUSSION

We performed data augmentation on the data using popular
data augmentation methods. Thereafter, we describe the abla-
tion experiments of the attention mechanism, analyze the soft
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pooling, explore the performance variations after introducing
DSC, and finally, verify that the final model of the improved
YOLOV4 outperformed the unimproved baseline model as
well as other widely used models.

A. EXPERIMENTAL DATASET AND MODEL PARAMETER
SETTINGS

In this study, the used dataset was obtained from the Aliyun
Tianchi Guangdong Industrial Manufacturing Competition
(https://tianchi.aliyun.com/competition/entrance/231666/inf
ormation), containing 5096 defective images with a resolu-
tion size of 2446 x 1000.

The experiments were conducted on a computer with an
NVIDIA GeForce RTX 2080 Ti GPU with 16 GB RAM,
using Python 3.7.4 and TensorFlow 2.2. The learning rate
was initially set to 0.01 with a cosine annealing learning-
rate adjustment strategy. The backbone of the network was
frozen and the network was trained for 50 epochs using these
parameters with pre-training weights of 200 epochs on the
COCO dataset. Subsequently, the end-to-end network was
thawed for 250 epochs and pre-training on the COCO dataset
prevents the scattering of the weights. In the experiments, the
average precision (mAP) and model inference speed (FPS)
were used to evaluate the model performance, calculated as
follows:

P
P=7prp
. 17
TP+ FN
AP—IZP() , (11)
k= Nk Ik
rr €Ry
1
mAP = ZAPk
N.
FPS = —248¢ (12)
Ttotal

where P denotes the precision rate, R indicates the recall rate,
TP represents the number of images that correctly detected
the cloth defects, FP represents the number of images that
predicted non-defective points as defective points, FN indi-
cates the number of defective points that were unidentified,
AP represents the average precision of each class, Ny denotes
the number of precision and recall for the k-th category, and
P (ry) indicates the precision rate at the k-th category for
the recall Rx. FPS denotes the number of images detected
per second, which is a direct representation of the detection
speed, where T4 denotes the total time and Njyqg. indicates
the total number of frames detected.

B. DATA ENHANCEMENT

Considering the diversity requirements for fabric defect

recognition in actual factories, the categories of the defect

images were mostly preserved and only certain categories

with negligibly low number of defect images were discarded.
This is because a small number of training images was

not conducive for model fitting and affected the detection
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FIGURE 9. Images of the fabric dataset used in this paper.(a) HUNDRED
FEET, (b)BROKEN WARP, (c)KNOTTED HEAD, (d)HOLE, (e)PULP SPOT,
(F)STAIN, (g)ABRASION MARK, (h)THREE FILAMENTS, (i)LOOSE WARP,
(j)DENSE FILE, (k)\WARP KNOT, (I)GRAIN.

accuracy of the model. Finally, the fabric defect dataset was
reclassified into 12 categories: hundred feet, broken warp,
knotted head, hole, pulp spot, stain, abrasion mark, three fil-
aments, loose warp, dense file, warp knot, and grain, as illus-
trated in Figure 9. Among these defects, hundred feet and
dense file were narrow and long, similar to stitches, whereas
the broken warp, knotted head, and warp knot defects were
similar and exhibited point-like distribution. As such, holes,
pulp spot, and stains are large defects, accounting for a larger
proportion of the fabric area. The number of pictures in the
broken warp dataset was nonuniformly distributed, and only
a small number of defects (i.e., 200) existed in the four
categories: dense file, abrasion mark, warp knot, and grain.
To improve the generalization ability and robustness of the
model, the defect categories with less images were selected
for data enhancement.

Common data-enhancement methods include translation,
rotation, scaling, and histogram equalization. The first
three methods primarily increased the number of defec-
tive datasets in various directions by altering the defective
positions, whereas the histogram equalization method read-
justed the contrast and brightness of the images to highlight
the defective regions. Thus, the aforementioned four data-
enhancement operations were applied to each defect category
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FIGURE 10. Comparison before and after data enhancement (baseline
refers to YOLOv4 using improved PANet).

TABLE 1. Comparison of various attention mechanisms.

Model MS(MB) mAP(%)
YOLOv4 238 7443
+SE 245 77.76
+CBAM 246 78.84
+ECA 245 78.12

TABLE 2. Comparison of the effects of different insertion positions of
CBAM.

Model Model Size(MB) mAP(%)
YOLOv4 238 74.43
Backbone+CBAM 246 79.13
Neck+CBAM 246 79.30
Togethert CBAM 245 80.67

TABLE 3. Comparison of ablation study with Cbam and SoftPool(baseline
means YOLOv4 with improved PANet and after data enhancement).

Model SoftPool CBAM mAP(%)
YOLOv4 - - 74.43
baseline N - 76.26
baseline - 4 80.67
baseline Y ~ 83.31

with less defects and 7021 defective images were obtained
(certain images contained multiple defects). As depicted in
Figure 10, the data enhancement improved the most cate-
gories of defect images. Notably, defects such as holes were
improved considerably, with a nearly 10% improvement in
mAP relative to YOLOv4, whereas other background-like
defects such as pulp spots were improved only to a certain
extent. Thus, enhancing the contrast and brightness of the
images aided the model to identify background-like defects.
After obtaining the data-enhanced images, we repartitioned
the dataset, and the ratio of the training set to the validation
set and test set was 8:1:1.
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C. ATTENTION MECHANISM ABLATION EXPERIMENTS

To investigate the effect of the attention mechanism module
on the model, we conducted a series of ablation experiments.
The results are summarized in Tables 1 and 2, wherein the
baseline refers to the addition of a shallow branch output
to the original YOLOv4 backbone network and the addi-
tion of a pyramidal layer to the PANet. First, we conducted
comparative experiments for the three attention mechanism
modules (SE, CBAM, and ECA), which were selected as
the four branches from the backbone network output to the
neck PANet location to compare the impact of these three
methods on the model performance. As listed in Table 1,
YOLOvV4 incorporated with SE, CBAM, or ECA improved
the model performance, implying that the introduction of the
attention mechanism enables the model to dynamically adjust
the feature weights. As this induces a beneficial effect on
the model, the application of the CBAM mechanism deliv-
ered more improved performance than that of the other two
schemes. The SE module compresses the global information
to control the complexity of the module. However, the reduc-
tion of feature dimensionality causes side-effects in channel
attention prediction and inefficiently captures the dependen-
cies between all the channels. ECA avoids dimensionality
reduction and efficiently captures cross-channel interactions.
Nonetheless, it does not analyze the spatial dimensionality
of the feature map. Unlike SE and ECA, CBAM considers
the spatial location of features, with a more local scope,
accounting for the details of the spatial location of fabric
defects for both methods, SE and ECA, and complement-
ing their deficiencies in spatial representation. Conclusively,
we decided to embed CBAM in the model for subsequent
experiments.

Second, as the attention mechanism module is a plug-and-
play module, its insertion position results in varying influ-
ences of the model. We embedded the attention mechanism
CBAM obtained from the previous comparison experiments,
which was most applicable to this model, into the backbone
and neck networks to comparatively experiment and obtain
the most suitable embedding position for this model. As the
backbone network CSPDarknet53 used in YOLOvV4 exhibits
five residual structures of varying dimensions, the positions
between these five residual structures were selected to embed
CBAM. In contrast, the neck segment—Ilocated higher in
the network—was selected to embed the up-sampling and
down-sampling positions in the spatial pyramid structure.
Furthermore, we performed a comparative experiment by
combining the above-mentioned two insertion positions:
CBAM is embedded in the neck (higher part of the network)
and the branch portion of the backbone network outputs to
the neck. As observed in Table 2, incorporating CBAM into
a higher level, i.e., neck, yielded superior performance than
inserting it into the backbone network model. This finding
confirms the discussion in Section III-B2: the higher-level
semantic information reduces the interference information
such as fabric noise for the model and drives stronger focus
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TABLE 4. Comparison of effect of various introductions positions of DSC.

Model mAP (%) MS (MB) FPS (f/s)
baseline 83.31 245 9
Backbone+DSC 80.44 196 30
Neck+DSC 82.92 140 46
Together+DSC 80.25 98 51

TABLE 5. Comparison with state-of-the-art detectors in fabric dataset.

Model mAP (%) MS (MB) FPS (f/s)
Faster-RCNN 79.83 522 5
SSD(VGG16) 65.90 98 15

YOLOvV3 72.78 236 7

YOLOv4 74.43 238 9
YOLOV5(x) 76.10 330 28
YOLO-SCD 82.92 140 46

on the defective regions. As such, combining the two methods
yielded more accurate results than integrating the first two
methods. Because the feature pyramid structure of the neck
extracted features that were considerably reused, incorpo-
rating the attention mechanism in the branch portion of the
backbone network output to the neck refined the defective
features used in the feature pyramid, thereby enabling the
utilization of higher-level feature information of the network
in PANet. Therefore, we decided to embed CBAM into the
output branches of the backbone and neck networks.

D. ABLATION STUDY OF SOFTPOOL

The SPP structure is situated beyond the backbone network,
acting as a bridge between the backbone and neck networks.
Here, the MaxPool at multiple scales considerably increases
the perceptual field of the model and separates the most
significant contextual features of the fabric defects. Con-
sidering that the SPP structure may lose a certain amount
of crucial information of the defects during the MaxPool
process, and the SPP structure acts similarly to the atten-
tion mechanism, excessive extraction of salient information
may result in the loss of information of certain defects with
high fabric fusion or small defects during feature extraction.
Accordingly, the Maxpool in SPP is replaced here with a rela-
tively moderate SoftPool pooling, and its results are displayed
in Table 3.

As observed from Table 3, using SoftPool in the SPP
structure displayed superior performance than the MaxPool
model, with a 1.83% improvement in its mAP. Although
MaxPool can adequately extract the salient features in the fab-
ric, its feature loss for small defects is irreversible. In contrast,
SoftPool used softmax for weighted pooling and its gradient
(SoftPool pooling) acted complementarily with the attention
mechanism.

Thus, the visibility and prominence of the small defec-
tive features increased and was beneficial for fabric defect
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detection, depending on various gradient sizes, thereby main-
taining the expressiveness of the features.

E. ABLATION STUDY OF DEPTH-WISE SEPARABLE
CONVOLUTION

The YOLOvV4 network uses numerous ordinary convolution
operations for both the backbone and neck networks. In par-
ticular, the neck network uses five convolutions that increases
the weight of the model. Consequently, the detection period
of a defective image is incompatible with the application
requirements of actual production in fabric and textile indus-
tries. Therefore, we introduced the DSC to reduce the model
size and increase the detection speed. We replaced the
3 x 3 convolution used in the backbone and neck networks
with the DSC to perform ablation experiments, and the results
are summarized in Table 4. These results signify that DSC can
effectively reduce the network size; however, the detection
accuracy of the network is slightly reduced. Upon replacing
only the 3 x 3 convolution used by the neck network, the
highest mAP was obtained in comparison to other replace-
ments. This finding indicated the richer underlying semantic
information, and the more accurate fabric defect location
information provided by the underlying feature map is highly
beneficial for the model. Although the model size obtained
with this method is not as small in as that derived from com-
plete replacement, the model size was reduced by approxi-
mately 42% compared to the original YOLOv4. The detection
speed was significantly improved, which was sufficient for
actual factory inspection. Therefore, we decided to replace
only the convolution of the neck with the DSC.

F. COMPARISON OF DETECTION RESULTS WITH OTHER
MODELS

To thoroughly validate the model, we compared the YOLO-
SCD with advanced target detectors that satisfy real-time
detection requirements for industrial scenarios. To ensure
fairness of the experimental results, reduce the computa-
tional cost, and ensure training accuracy, the above models
were pretrained using the COCO dataset to acquire more
compact weights. Specifically, the same training rounds
were employed to train the other models using the data-
enhanced fabric-defect dataset with the same size of anchor
frame. The results of comparatively analyzing the proposed
model with Faster-RCNN, SSD (VGG16 network selected by
BackBone [41]), YOLOV3, YOLOv4, and YOLOVS (xLarge)
are summarized in Table 5. The results indicated that the
developed model retained the high accuracy of YOLOv4
and displayed improved performance at a lower computa-
tional cost. Compared with the YOLO series model, the
developed model exhibits increased ability to extract small
fabric defects with the inclusion of the attention mecha-
nism and Softpool. More importantly, the introduction of
DSC considerably reduced the model size. Conversely, both
YOLOv3 and YOLOv4 employ numerous normal convolu-
tions that reduce the detection speed of the model, with fps of
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TABLE 6. Comparison of single flaw detection results between other methods.

AP(%) mAP MS FPS
Model HOLE | STAIN HUlz\{g]])gl}fED ABI\IZQI%(ON nums ©) | (MB) | (fs)
Tianchi top1 - - - - 34 77.3 - -
Qiang Liu[32] 89.6 86.36 69.96 - 4 86.5 - 21.2
Xin Luo[23] 96.18 85.5 90.97 86.48 17 82.2 - 42
Lu[24] 49.71 23.22 47.77 - 34 29.18 - -
Bing Wei[42] - 82.47 - - 5 75.56 - -
Ours 92.84 91.95 92.47 96.1 12 82.92 140 46
only 7 and 9, respectively. YOLOv5 employs a FOCUS struc- GRAIN cobr
ture that stacks various feature layers and offers faster detec- WARP KNOT s 71,00
tion speed than that of YOLOv3 and YOLOv4. However, its e ane iy
network model weight file is larger. Although YOLO-SCD is THREE FILAMENTS 9130
not as lightweight as SSD, its detection accuracy is 17.02% e i iy
higher than that of SSD. PULP SPOT 90.91 AmAP
Using the Tianchi dataset, we compared the present results HOLE 9284
. R X = K KNOTTED HEAD s 7).13
with those reported by other studies investigating fabric- BROKEN WARP s 66,7
HUNDRED FEET 92.47

defect detection. As observed from the table, the present
experimental results were 5.62% more accurate than those
reported by the first-place winner of the Tianchi indus-
trial competition. For validation, we compared the current
experimental results with those obtained by Liu et al. [23],
[24], [32], who applied the fabric defect dataset of Tianchi.
As observed, the present model displayed adequate results
for individual defects, and the detection accuracy of large
defects such as stain, hundred feet, and other difficult-to-
detect defects such as abrasion mark were optimal compared
to other studies. Notably, the developed model can detect
12 types of defects, which was less than the 34 types of
defects considered in the original Tianchi dataset. However,
these 12 defect types are sufficient compared to others who
only detected four or five types of defects. Although Liu
reported the highest average accuracy in detecting fabric
defects, their study classified only four categories of fabric
defects, namely, line, float, stain, and hole, which was insuffi-
cient for practical industrial applications. Second, we consid-
ered a series of targeted measures such as introducing CBAM
to increase the adaptability of model toward various defects
and improve the existing accuracy and detecting speed. The
current results demonstrated the strong detection ability of
the proposed model including adaptability to various types of
fabric defect detection.

The final performance of the developed model for
12 classes of fabric defect detection is illustrated in
Figure 11. As observed, the proposed model achieved sub-
stantial improvement in the difficult-to-identify classes (knot,
dense file, and abrasion mark) and maintained comparable
performance for easy-to-identify classes (e.g., pulp spots,
hole, hundred feet).

A graph of the final output of the model for defect
detection is plotted in Figure 12, and the heat maps of the
model detection are portrayed in Figure 13. As observed in
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FIGURE 11. Detection mAP result of proposed model.

Figures 12 and 13, the proposed model extracted the features
of small defects such as knotted head and grain, in addition
to accurately predicting their types. These results signified
the applicability of the improved model for detecting fabric
defects.

G. EXTENSION TO STEEL PROFILE DATASET

We conducted extended experiments on the Vision-
based_SIS_Steel surface defect dataset using the improved
model. The Vision-based_SIS_Steel surface defect dataset is
from Northeastern University, including six types of steel sur-
face defects, namely, crazing, scratches, inclusion, patches,
pitted-surface, and rolled-in_scale. The six types of steel
defect images are presented in Figure 14, where pitted-
surface and rolled-in_scale appeared as small patchy defects.
The majority of these defects were only 6 x 6 pixels in size.
As such, scratches and crazing are long defects, inclusions
are similar to stains in fabric defects with irregular sur-
faces, and patches correspond to pulp spots in fabric defects.
We segmented the dataset into 1485 images for training and
166 images for validation and followed the same experi-
mental protocol as specified in Section IV. The correspond-
ing results for the steel dataset are displayed in Figure 15.
In particular, the proposed model achieved an accuracy of
89.66% for small pitted-surface defects, over 90% for nar-
row defects such as inclusions and scratches, and suitable
performance for rolled-in_scale defects that blend with the
surface. For the steel-surface defect dataset, we obtained an
average accuracy of 87.02%. The results demonstrate that
the proposed model can infer more advanced features for
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FIGURE 12. Detection result of proposed model.

FIGURE 14. Images of Vision-based_SIS_Steel surface defect dataset.

small-defect detection, thereby signifying its applicability as
a reference for other similar situations.

H. ANALYSIS OF DETECTION FAILURE CASES
Although the proposed YOLO-SCD delivered appropriate
results in fabric defect detection, it exhibited certain issues
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FIGURE 15. Detection results obtained by proposed model on various
types of defects in steel dataset.

with its performance in detecting defect classes from over-
lapping fabric defects and similar defects. As depicted in
Figure 16(a), highly fused defects such as slurry spots were
correctly detected; however, the class of defects such as
abrasion marks in the middle of the defective image were
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(b)

FIGURE 16. Model detection failure case pictures.

not detected and treated as part of the pulp spot. We believe
that the characteristics of the abrasion mark in Figure 16(a)
were extremely similar to those of the pulp spot, and they
were misclassified if a single portion exhibited insufficient
periodicity in a certain area. As depicted in Figure 16(b),
both types of defects, hole and hundred feet, were correctly
detected, and hundred feet was classified as difficult-to-see
defects to the naked eye, thereby establishing the ability of
the proposed model to detect defects that are highly integrated
with the fabric. Nonetheless, the detection frame failed to
accurately determine the lower edge of hundred feet, presum-
ably because such defects (hundred feet) were excessively
thin and long. Consequently, they were treated as lines in
the fabric, and the accurate extraction of their features was
restricted by their scattered appearance.

V. CONCLUSION

This study proposed a lightweight and efficient YOLO-SCD
model to detect fabric defects by leveraging the attention
mechanism. The model delivered improved results relative to
YOLOV4, which was optimized for difficult-to-detect defects
and improved the detection accuracy of small defects. First,
we optimized YOLOV4 in terms of anchor frame and loss
function to ensure its compatibility with fabric defect detec-
tion. Second, we improved the feature enhancement network,
including proposing a new PANet structure, introducing soft
pooling, and an attention mechanism to enhance the ability
of the model to extract features. Finally, we introduced a
DSC to reduce the model size and obtain a faster detection
speed. Compared with the original YOLOv4, YOLO-SCD
achieved an 8.49% improvement in mAP in terms of detection
accuracy and considerably increased its detection speed. For
instance, the AP values of abrasion mark, stain, and broken
warp increased by 7.43%, 2.7%, and 7.51%, respectively.
More importantly, the proposed model remained stable for
relatively large defects (e.g., hole) as well as accurately small
defects (e.g., broken mark). In particular, tt attained a speed of
46 fps, corresponding to an improvement of 37 increase fps
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compared with YOLOv4. Based on extensive research and
a detailed analysis of fabric defects, the proposed network
model is the most suitable for fabric defect detection. Notably,
the proposed model may provide a solution for detecting
small-size defects or those integrated with the surface.

Future research directions are focused on the following two
aspects. First, the present model has been experimented only
on a monochromatic background fabric dataset, and future
research should improve its detection accuracy for multiple
types of fabric defects in a complex pattern background.
Second, the proposed model can be applied to other indus-
trial datasets to improve the generalization capability of the
model.
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