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ABSTRACT This paper focuses on a fixed-time prescribed performance-based Fault-tolerant controller that
guarantees the global performance for the Trajectory tracking control of the air cushion vehicle (ACV). In the
presence of faults, time-varying parameters and environmental disturbances, the proposed control system in
this paper has good robustness and control performance. Firstly, an integrated observer for disturbances and
faults is proposed to suppress all uncertainties in the system. Then a novel prescribed performance function is
designed that does not need to be constrained by the initial value of the target errors while ensuring that it has
fixed-time convergence performance. Global prescribed performance control has the advantage of separating
the error initial conditions from the prescribed performance function. At the same time, combined with the
global sliding mode control method, the fast convergence and robustness of the whole system are guaranteed.
Finally, the simulation results verify the effectiveness of the control system.

INDEX TERMS Air cushion vehicle, prescribed performance control, trajectory tracking, fault-tolerant
control.

I. INTRODUCTION
With the widespread use of the air cushion vehicle (ACV)
in military and civilian applications [1], the fault-tolerant
control systems for Trajectory tracking of the ACV is a
hot topic of current research. The huge challenge of the
tracking control system for amphibious ACV with unknown
perturbations, unmodeled errors and fail-safe issues is mainly
attributed to the high speeds, complex operating environ-
ment and special structures [2]. It is therefore urgent to
design fault-tolerant control systems of the ACV with greater
robustness reject unknown disturbance and fault, with fast
response [3] and high precision of tracking errors.

The first concern focuses on the transient perfor-
mance which excellent for the safe navigation of ACV.
For achieving higher quality transient performance and
high precision tracking errors, the prescribed performance
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control (PPC) [4], [5], [6] has been the focus of recent
research by experts. This is attributed to its ability to ensure
that the target error is restricted to a predefined set [10].
The prescribed performance function (PPF) guarantees the
amount of overshoot of the system error and the rate of
convergence to satisfy an arbitrarily small pre-designed
region [11]. The [12] investigates an adaptive back stepping
Trajectory tracking control system of dynamic positioning
(DP) ships with the disturbance and input saturation. The con-
trol system combines PPCmethod and a disturbance observer
(DO) to improve the control performance of the system.
Based on a prescribed performance function, an adaptive
fixed-time Trajectory tracking controller of the ACV with
model uncertainties and environment disturbances is pro-
posed by [13]. In [14], an adaptive fault-tolerant controller
with a monitoring function is proposed for nonlinear systems
with uncertain parameters and actuator failures, applying
the PPC to guarantee the transient steady-state performance
of the system. A novel fixed-time terminal sliding mode
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(FxTTSM) with PPF is introduced by [15] to improve the
transient and steady-state performance of the tracking of
autonomous underwater vehicles (AUVs). However, the ini-
tial bound for the prescribed performance function in the
above papers must satisfy the inequalities −α(0)β(0) <

e(0) < α(0)β(0) and 0 < α(t) < 1, where α(0) is the initial
value of α(t), e(0) and β(0) are the initial values of the target
error and performance function respectively. This constraint
hinders the application of the PPC method to many complex
practical engineering systems with substantial uncertainties
and faults. For traditional PPC methods, The singular value
problem arises when e(0) = β(0). This paper uses a transfor-
mation error function with time-varying bounds, a variation
that removes the initial value limitations of the PPC. Meth-
ods with above-mentioned advantages are defined as global
prescribed performance functions. In contrast to [7] and [8],
this paper and [3], [9], and [21] focuses more on the limiting
problem of the initial values, and the problem of fragility
after the onset of failure will be discussed further in future
work. The finite-time [7] and fixed-time [6] convergence
problem of transient performance is also essential for tracking
systems. A fixed time convergence global PPC method is
used in [3] and [21], but requires more special functions
to implement.The method in this paper has more flexible
structure.

The focus then has to be on ensuring robustness of the
tracking control system for ACV under strong uncertainty.
Non-linear disturbance observer (NDO) [16], [18] is also a
better selection that was utilized to suppress uncertainty com-
pared to the more computationally intensive neural network
estimation methods. A terminal sliding mode controller in
[19] with PPF based on the slidingmode disturbance observer
(SMDO) of the extended state observer (ESO) is applied to
the tracking system of the underwater vehicle. The fixed-time
problem of transient performance is also essential for track-
ing systems. A fixed-time observer-based adaptive tracking
controller with prescribed transient performance is proposed
by [20] for underactuated unmanned underwater vehicles
(UUV). In [21], a prescribed performance function with fixed
time convergence is proposed, while the barrier Lyapunov
function (BLF) is used to restrict the state error to the desired
range. Despite the existing effective methods being used
to estimate and suppress uncertainty in the system. Further
improvements are still needed for non-linear ACV systems
with strong uncertainties including information on faults,
time-varying parameters and environmental disturbances.
From the special physical structure and complex operating
environment of ACV point of view, a more suitable observer
requiring less perturbative information is more meaningful.
An extended state observer is designed in [22] to ensure
the robustness of the system by considering the Trajectory
tracking control system of ACVwith unknown perturbations.

Sliding-mode variational techniques are widely used in
fault-tolerant tracking control systems due to their inherent
robustness to uncertainties [17]. A based sliding mode and
backstepping fault-tolerant control (FTC) scheme for the

nonlinear systems with disturbances and actuator mismatch
is proposed in [23]. A fixed-time sliding mode fault-tolerant
controller in [24] is developed to compensate for the uncertain
and actuator effectiveness faults of the robot system. In the
research of perfecting sliding mode control methods, how
to let the system state slide into a stable state with strong
robustness as soon as possible is a hot topic of discussion
in recent years. The global sliding mode control method [2],
[25] was therefore created, due to its advantage of enabling
states to be switched quickly. However, we have never ceased
to enhance and improve the performance of the sliding
mode variable structure. To better track the target, we have
combined the sliding mode control with a pre-defined per-
formance function, which ensures that the tracking error is
limited to a pre-defined range for a limited time while still
guaranteeing good robustness in the event of an actuator
failure.

The focus control objective of this paper is to improve
the transient and steady-state performance of fault-tolerant
controller of the ACV tracking systemswith strong uncertain-
ties including fault information based on a novel prescribed
performance function with a boundary function for finite-
time convergence. For the whole control system, the specific
contributions of this paper are as follows:

1) Analyzed from a global perspective, the PPC method
in this paper solves the problem of constrained ini-
tial values, just like [3], [9], and [21]. The differ-
ence is that the solution in this paper is more general.
References [3] and [21] used a special error transfor-
mation function such that the initial value of the per-
formance boundary is infinity; But this transformation
function is too special and lacks generality;

2) Compared with the traditional PPFs designed in [10],
[11], [12], [13], [14], and [15], a new PPC method with
time-varying bounds that is not constrained by the ini-
tial conditions is proposed in this paper. Transformation
errors do not require normalization as [3], let alone
special transformation functions. The improved pre-
scribed performance including fixed-time convergence
and high steady-state error accuracy;

3) A new global sliding mode surface is used to ensure
that the error transformation function enters the slid-
ing mode initially, giving the system a high degree
of robustness while ensuring performance in tracking
error transients;

4) In the presence of uncertainty and faults, ACV’s track-
ing control system, with a combination of controller
and integrated observer, ensures that the tracking and
state errors converge to near the origin in a fixed
amount of time.

The problem description of the tracking control model of
ACV and some prior knowledge is presented in Section II.
Section III describes the design and analysis of the observer
and controller for this paper in detail. Numerical simulation
results are presented in Section IV. Section V offers a brief
conclusion of the article.
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II. PROBLEM DESCRIPTION AND PREPARATORY
KNOWLEDGE
A. PROBLEM DESCRIPTION
Based on the earth coordinate and the body coordinate refer-
ence frame, the kinematics and dynamics of the ACV can be
described as:

η̇ = R(ϕ,ψ)ν

ν̇ = M−1C(ν)ν +M−1F(ν) + Bτ + D(ν, η) (1)

whereM = diag{m,m, Ix , Iz} is the inertia matrix and C(ν)
is the Coriolis matrix. F(ν) is the known total drags are
denoted by F(ν) = [Fu,Fv,Fp,Fr ]T , the details can be
obtained in [2]. η = [x, y, ϕ, ψ]T is the position vector
matrix of the earth-fixed frame, including the surge and sway
position x, y, the roll and yaw angle ϕ, ψ . ν = [u, v, p, r]T

is the body-fixed frame velocity vector matrix, u,v,p,r are the
surge, sway, roll and yaw velocity of the ACV respectively.
B = diag{bu, 0, 0, br } is the health parameter matrix of the
actuators, τ = [τu, 0, 0, τr ]T is the input vector matrix of the
air propellers and air rudders. The other matrixs in the above
equation is described in detail as follows:

R(ϕ,ψ) =


cosψ − sinψ cosϕ 0 0
sinψ cosψ cosϕ 0 0
0 0 1 0
0 0 0 cosϕ

 (2)

C(ν) =


0 0 0 −mv
0 0 0 mu
0 0 0 0
0 0 0 0

 (3)

where R(ϕ,ψ) is the transformation matrix and D(ν, η) =

[du, dv, dp, dr ]T is the external disturbance matrix.
Remark 1: The F(ν) in the above equation is described as

the combined force of all hydro-air drag forces received by
the ACV, assuming that F(ν) is available from actual ship
experiments. The unavailable dynamical part, which in this
paper we combine with external disturbances, is collectively
referred to here as the uncertain dynamics part of the ACV
and described by the matrixD(ν, η), which includes the vari-
able parameters, external disturbances, and the unmodelled
error. A detailed description of the hydro-air resistance of
hovercraft can refer to the [2].

To facilitate the design of the observer controller below,
we have rewritten system (1) in the following form:

η̇ = R(ϕ,ψ)ν

tν = Aν + f (η, ν) + Bxτ + ξ (4)

from system (1) and the transformed system (4), we can know
Bx = R(ϕ,ψ)M−1B, f (η, ν) = R(ϕ,ψ)M−1(C(ν)+F(ν))+
Ṙv and ξ = RD(ν, η). The fault information of the system is
described as

τ
f
j = diag{bj}τ , t > tj (5)

where bj stands for the health efficiency parameters of the
actuator. bj = 1 represents the j-th actuator is fault-free,

FIGURE 1. Prescribed performance error transfer function.

means τ
f
j = Bxτ . bj ∈

[
bfj , 1

)
, 0 < bfj < 1 represents

the j-th actuator is no complete failure, occurring at time tj,
also defines there are j actuators failed during time period
t j+1

=
[
tj, tj+1

)
, and j < m. τ fj ≤ Bxτ , j = 1, 2, 3, 4.

B. PREPARATORY KNOWLEDGE
Lemma 1: [27] Consider the vector V (t) is continuously

differentiable. If it’s derivative satisfies

V̇ (t) = −avV p (t)− bvV q (t) (6)

where av > 0, bv > 0, 0 < q < 1, p > 1, Then, the system
(5) is Fixed-time Stability, where the system can convergence
in the setting time tmax =

1
av(1−q)

+
1

bv(p−1) ,∀V (0) ∈ Rn.

Lemma 2: [28] demonstrated that when the global sliding
mode controller meets the following conditions, the target
error ex can be converged to near the origin in a finite time
and has global robustness. The sliding surface is designed as:

S = ėx + ∂ex − f (t) (7)

where ∂ is positive constant, the forcing function f (t) must be
satisfy three conditions: (1)f (0) = ėx(0)+ ∂ex(0); (2) When
t → ∞, then f (t) → 0; (3) ḟ (t) is the derivative of f (t)
exists and is continuous.
Lemma 3: [11] The prescribed performance funcion of

the position error in [10] and [11] should satisfy the following
inequality:

−δp(t) < e1 < δp(t),∀t ≥ 0, (8)

where 0 < δ ≤ 1, this is the general form of the prescribed
performance funcion.
Remark 2: δ is fixed parameter in [10], [11], and [17]

which is designed to take values between 0 and 1. However,
for the whole PPC theory, this definition limits this method’s
widespread use and is unnecessary. The bounds in this paper
have been designed as time-varying functions with no such
restriction, convergence in finite time, and asymmetrical.

In summary, the following inequality relation is proposed
in this paper,

−δ(t)p(t) < e1 < δ(t)p(t),∀t ≥ 0, (9)
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It is known from Remark 2 that the time-vary boundaries
has the following features:

1) δ(t) > 0, δ(t) > 0 are decreasing functions.

2)
{
limt→∞ δ(t) = δ∞
limt→∞ δ(t) = δ∞

Remark 3: As can be seen from the above conditions,
in comparisonwith [21], the initial value of the boundary does
not need to be infinite and also does not require error nor-
malization. Since the boundary is no longer fixed at a point,
the singularity problem does not arise. This improvement
is more conducive to applying the PPC method in practical
engineering.

Next, based on the time-varying boundary function
designed above, we had to develop a new time-varying
error transformation function, different from the one in the
paper [11], as:

S(z) =
e1
p(t)

(10)

where the z1 is the Transformation error, where e∗1 =
e1
p(t) .

The conversion function S(z) should satisfy the following
conditions:

1) S(z1) is smooth, monotonically increasing in the
domain of definition and has the inverse function
S−1(z1) = T (e∗1) = z1.

2) −δ(t) < S(z1) < δ(t).

3)
{

limz1→∞ S(z1) = δ(t)
limz1→−∞ S(z1) = −δ(t)

Based on the above three conditions for the transformation
error function, a novel barrier Liapunov function with vari-
able boundaries is designed as follows:

T (e∗1) =


e∗1

δ
2
(t)−e∗21

, e∗1 ≥ 0

e∗1
δ2(t)−e∗21

, e∗1 < 0
(11)

Figs. 1 explains the theorem more visually.
Remark 4: It is diffferet the transformation error function

S(z1) =
δe(z1+r)

−δe(z1+r)

e(z1+r)+e−(z1+r) in [26]. This can be any function
with the above properties and variable boundaries. Ultimately
it is sufficient to show that the transformation error converges
near the origin.

III. DESIGN AND ANALYSIS OF CONTROLLERS AND
OBSERVERS
This section focuses on the design and analysis of the
observer and the sliding mode controller. Firstly, the observer
is used to estimate the uncertain part of the system, then the
error is transformed in combination with a prescribed per-
formance function, the sliding mode controller for the whole
closed-loop system is described and finally the stability of the
whole system and the validity of the prescribed performance
function are demonstrated.

FIGURE 2. The structure diagram of the entire control system for
Trajectory tracking of ACV.

A. INTEGRATED OBSERVE
To address the uncertainty of the system, this paper designs
an observer that does not require perturbation of upper bound
information to enhance the robustness of the system to dis-
turbances and actuator failures. The observer is described in
detail as follows,

˙̂ν = Aν̂ + f (η, ν) + B̂xτ + ξ̂ + Lev

ξ̂ = z+ Lξ v

ż = −Lξ ( ˙̂v+ Aev) + δ (12)

where ev = v− v̂ and eξ = ξ − ξ̂ are the errors of the velocity
vector and system perturbations, v̂ and ξ̂ are the estimates
of the observer. L and Lξ are all positive definite matrixs.
z is the intermediate variable of the observer and δ is the
compensation function of the integrated observer and δ is
described as follows

δ = −kξLξ eξ −
eTξ QQ

T eξ∥∥∥eTξ Q∥∥∥ ξ̂kξ (13)

From the above, the following equation can be obtained

ėv = Aev + eBτ + eξ − Lev
ėξ = ξ̂ − Lξ (ėv − Aev) − δ (14)

and
˙̂Bx = kB(Pev − QLξ eξ )τ (15)

where kξ and kB are all positive definite matrixs. At the same
time, positive definite matrices P, Q, ϖ1 and ϖ2 satisfy the
following inequalities

PA− PL + 2I ≤ −ϖ1I (16)

PTP+ QTLTξ L
TLLξQ− kξQLξ − QLξ ≤ −ϖ2I (17)

To prove the validity of the above designed observer, the
Lyapunov function is designed to be

Vo = eTv Pev + eTξ Qeξ + k−1
B eTBeB (18)
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where eB = Bx − B̂x , αb is positive constant. The derivative
of the above equation gives

V̇o =eTv P(Aev + eBτ + eξ − Lev)

+eTξ Q(ξ̂ − δ + LξAev
−Lξ (Aev + eBτ + eξ − Lev))

+k−1
B eTB (−kB(Pev − QLξ eξ )τ ) (19)

According to Young’s inequality there is the following
inequality,

eTv Peξ + eTξ QLξLev ≤2eTv ev + eTξ P
TPeξ

+eTξ QLξLL
T
ξ L

TQT eξ (20)

Substituting the equations (13) and (15-16) into (19) can be
collated to give

V̇o ≤eTv (PA− PL + 2I )ev
+eTξ (P

TP− kξQLξ − QLξ )eξ
+eTξ (Q

TLTξ L
TLLξQ)eξ (21)

Finally, according to (16-17) have

V̇o ≤ −ϖ1eTv ev −ϖ2eTξ eξ (22)

The above equation shows that the observer is designed so
that the estimation error for the uncertain part of the whole
system can converge asymptotically.

B. DESIGN AND ANALYSIS OF AN ADAPTIVE
SLIDING-MODE FAULT-TOLERANT CONTROLLER
This section proposes a fault-tolerant controller that guar-
antees the tracking task with prescribed transient and
steady-state performance even in the event of an actuator
failure for the parametric-strict-feedback non-linear system.
This prescribed performance function ensures that any initial
value error converges in a fixed amount of time and the
detection function detects the occurrence of a fault while
pre-relaxing the error bound range.

The performance function with fixed-time convergence
properties is chosen as [21]

p(t) =

{
(p0 − p∞)(Tp−tTp

)n+2
+ p∞, 0 ≤ t < Tp

p∞, t > Tp
(23)

where p0 and p∞ are positive constants, which are the
initial and minimum values of the performance function
respectively.
Remark 5: According to [14], a detection function µ can

be obtained. In order to be able to limit the tracking error to
a prescribed range even after a failure, we define p∞ = kpµ
and kp is a positive constant.
Based on the condition (4) for the above prescribed perfor-

mance function, a time-varying boundary function with the
following prescribed performance is designed, as described
below

˙δ(t) = −λaδ
ιa (t) − λbδ

ιb (t) (24)

δ̇(t) = −λaδ
ιa (t) − λbδ

ιb (t) (25)

where 0 < ιb < 1 and ιa > 1, λa,b and λa,b are the
rate of change of the boundary function and is a positive
constant. According to Lemma 1 and (8), we define T2 =

max{ 1
λa(1−ιa)

+
1

λb(1−ιb)
, 1
λa(1−ιa)

+
1

λb(1−ιb)
}.

Remark 6: Where T2 is the time for the target error with
any initial value to arrive within the range of the performance
function. Before T2, we can not guarantee that the error
is within the prescribed performance function range, which
is the advantage of this method, but also the disadvantage.
However, we use the advantage of fixed time convergence to
compensate for this deficiency. After T2, the proof of the PPC
method we designed is basically the same as the proof of the
existing works [4], [5], [6], [7], [8].

Then, define x1d is the desired trajectory of the tracking
and the tracking error as

ex1 = x1 − x1d

ėx1 =
xeẋe + yeẏe

ex1
(26)

where ex1 =
√
x2e + y2e , xe = x − xd , ye = y − yd , eψ =

ψ − ψd , xe = ex1cos(ψd ), ye = ex1sin(ψd ).

ψd =

{
π
2 [1 − sgn (xe)]sgn (ye)+ arctan

(
ye
xe

)
, ex1 ̸= 0

ψdex1 = 0
(27)

According to (9) the derivative of the error transformation
function T (e∗x1) as follows,

Ṫ (e∗x1) =


ė∗x1(δ̄(t)

2
+(e∗x1)

2)−2e∗x1 δ̄(t)
˙̄δ(t)

(δ̄(t)2−(e∗x1)
2)2

, e∗x1(0) > 0
2e∗x1δ(t)δ̇(t)−ė

∗

x1((e
∗

x1)
2
+δ(t)2)

((e∗x1)
2−δ(t)2)2

, e∗x1(0) ≤ 0
(28)

where z1 is the conversion error and ė∗x1 =
ėx1ρ(t)−ex1ρ̇(t)

ρ2(t)
,

ż1 = Ṫ (e∗x1).
The sliding surface for adaptive fault-tolerant control based

on Lemma 2 can be designed as

Sz = z1 − F(z1) (29)

The derivative of the sliding surface when e∗x1 > 0 is

Ṡz = −
(δ̄(t)2 + e∗2x1)ρ̇(t)

(δ̄(t)2 − (e∗x1)
2)ρ(t)2

ex1

−
2e∗x1δ̄(t)

˙̄δ(t)

(δ̄(t)2 − (e∗x1)
2)2

− Ḟ(z1)

+
δ̄(t)2 + e∗2x1

(δ̄(t)2 − (e∗x1)
2ρ(t)

(cos(ψd )ẋe + sin(ψd )ẏe) (30)

where the forcing function F(z1) = η(1− tanh(t)); tanh(t) =

(et − e−t )/(et + e−t ) and η = z1(0). According to system
(1), we have xe = ucos(ψ) − vsin(ψ)cos(φ) − ẋd and
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ye = usin(ψ) + vcos(ψ)cos(φ) − ẏd . Rectifying (30) gives

Ṡz=
(δ̄(t)2 + e∗2x1)

((e∗x1)
2 − δ̄(t)2)ρ(t)

(
ex1ρ̇(t)
ρ(t)

+ ẋdcos(ψd ) + ẏd sin(ψd ))

+
δ̄(t)2 + e∗2x1

(δ̄(t)2 − (e∗x1)
2ρ(t)

(ucos(eψ ) + vsin(eψ )cos(φ)

−
2e∗x1δ̄(t)

˙̄δ(t)

(δ̄(t)2 − (e∗x1)
2)2

− Ḟ(z1) (31)

where u = eu + ud , eu is the surge velocity error, ud is the
virtual control value for velocity is designed as follows

ud = [ẋdcos(ψd ) + ẏd sin(ψd ) +
(δ̄(t)2 − (e∗x1)

2)ρ(t)

δ̄(t)2 + e∗2x1

(
(δ̄(t)2 + e∗2x1)ρ̇(t)

((δ̄(t)2 − (e∗x1)
2)ρ(t))2

ex1 −
2e∗x1δ̄(t)

˙̄δ(t)

(δ̄(t)2 − (e∗x1)
2)2

− azS1+ksz − bzS1−ksz − Ḟ(z1))]cos−1(eψ )

− vsin(eψ )cos(φ)cos−1(eψ ) (32)

The Lyapunov function is designed as

Vs =
1
2
S2z (33)

bringing the designed virtual control value (32) into (31),
while simplifying the derivative of (33), have,

V̇s = Sz(
δ̄(t)2 + e∗2x1

(δ̄(t)2 − (e∗x1)
2)ρ(t)

e2 − azS1+ksz − bzS1−ksz )

≤ −azS2+ksz − bzS2−ksz +
δ̄(t)2 + e∗2x1

(δ̄(t)2 − (e∗x1)
2)ρ(t)

eu∥Sz∥

= −azV 1+ks/2
s − bzV 1−ks/2

s +
δ̄(t)2 + e∗2x1
δ̄(t)2 − (e∗x1)

2

eu
ρ(t)

V 1/2
s

= ϑzeu − azV 1+ks/2
s − bzV 1−ks/2

s (34)

where ϑz(z1, δ̄(t)) =
δ̄(t)2+e∗2x1

ρ(t)(δ̄(t)2−(e∗x1)
2)2
V 1/2
s and ϑ > 0.

Similarly design and analyse the controller for yew angle,

rd = ψ̇d +
(δ̄2ψ − (e∗ψ )

2)ρψ

δ̄2ψ + e∗2ψ
(

(δ̄2ψ + e∗2ψ )ρ̇ψ

((δ̄2ψ − (e∗ψ )
2)ρψ )2

eψ

−
2e∗ψ δ̄ψ

˙̄δψ

(δ̄2ψ − (e∗ψ )
2)2

− Ḟψ − aψS
1+kψ
ψ − bψS

1−kψ
ψ ) (35)

where rd = r − re is the virtual control value of yew velocity
and re is the error.
The derivative of Lyapunov function for the sliding of yew

angle as

V̇ψ ≤ ϑψ re − aψV
1+kψ/2
ψ − bψV

1−kψ/2
ψ (36)

where ϑψ (eψ , δ̄ψ ) =
δ̄2ψ+e∗2ψ

ρψ (δ̄2ψ−(e∗ψ )
2)2
V 1/2
ψ . 0 < kψ < 1,

aψ > 0, bψ > 0, δ̄ψ is the boundary function of e∗ψ , e
∗
ψ is

the conversion error of eψ for yew angle.
According to Lemma 1, (34) and (36), it is clearly known

that it is only after the velocity error is converged to near the

origin that the Trajectory tracking error converges to near the
origin in a fixed time ts = 2(az + bz)/ksazbz, tψ = 2(aψ +

bψ )/kψaψbψ .
The next step is to design an adaptive sliding mode

fault-tolerant controller according to (1) to ensure that the
position and velocity states of the whole closed-loop system
tracking the desired objectives.

ė2 = Aν + f (η, ν) + Bxτ + ξ − ẋ2d
= ˙̂ν + ev − ẋ2d (37)

where the e2 = [ue, ve, re]T is the errors of the surge,
sway, roll and yaw velocity, Bx = [bu, bv, br ]T is the health
estimate value of actuators as time-varying parameters. Simi-
larly, the estimate of the overall uncertainty component of the
system is ξ = [ξu, ξv, ξr ]T . According to (21), ev is eventually
converging to near the origin. The above equation is described
as follows

u̇e = b̂uτu + fu + ξ̂u − u̇d

ṙe = b̂rτr + fr + ξ̂r − ṙd (38)

The barrier Lyapunov function that guarantees that the
surge speed error is within δu is as follows

Vbu = (δ2u − e2u)
−

1
2

Vbr = (δ2r − e2r )
−

1
2 (39)

Remark 7: An integral form of the barrier Lyapunov func-
tion is used in [22] and [16], while a logarithmic form is
used in [14]. These functions are too cumbersome in their
derivation, and a novel (with a simple structure and effective)
barrier Lyapunov function is chosen in this paper to limit the
state errors. Also, this form allows a smaller range of limits
to be found based on the detection function in [14], making
the bound design more reasonable.

The derivative of the (39) is

V̇bu = (δ2u − e2u)
−

3
2 eu(b̂uτu + fu + ξ̂u − u̇d )

V̇br = (δ2r − e2r )
−

3
2 er (b̂rτr + fr + ξ̂r − ṙd ) (40)

the controller designed in this paper is as follows:

τu = b̂−1
u (−fu + u̇d − ξ̂u + (δ2u − e2u)

3
2

(ϑz − auV
1+ku
bu /eu − buV

1−ku
bu /eu))

τr = b̂−1
r (−fr + ṙd − ξ̂r + (δ2r − e2r )

3
2

(ϑψ − arV
1+kr
br /er − brV

1−kr
br /er )) (41)

where δu, δr , au, ar , bu, br , ku, kr are all positive constants.
Bringing controllers (41) into (40) has

V̇bu ≤ −auV
1+ku/2
bu − buV

1−ku/2
bu

V̇br ≤ −arV
1+kr/2
br − brV

1−kr/2
br (42)

According to Lemma 1 and (35), it is clearly known that
the velocity errors are converged to near the origin in a fixed
time tu = 2(au + bu)/kuaubu, tr = 2(ar + br )/krarbr .
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TABLE 1. Main parameters for tracking of the ACV.

FIGURE 3. Trajectory tracking curve of the ACV in NEE coordinates.

IV. SIMULATION RESULTS
The simulation data in this paper consists of two parts. The
first part verifies whether the adaptive fault-tolerant con-
troller with PPF designed in this paper can still converge in
fixed-time when the initial value of the tracking error is larger
than the initial value of the performance function. At the same
time verifies whether the system state error can still be limited
to the designed range after a fault occurs.

The detailed modeling of the ACV is detailed in [22]. The
total time for simulation is 1800s. The reference signal rd is
designed in this paper as

rd =

{
0 t ≤ 240, t > 1400
0.01/57.3(t − 240)rad/s 240 < t ≤ 1400

(43)

The reference signal of the surge velocity is ud = 35knots,
the reference values for the other states are obtained from the
following equation

ẋd = udcosψd
ẏd = ud sinψd
ψ̇d = rd (44)

where the initial value of the reference state designed from the
mentioned above first order differential equation is xd (0) =

0m, yd (0) = 0m, φd (0) = 0rad , ψd (0) = 50/57.3rad ,
ud (0) = 0knots, vd (0) = 0knots, pd (0) = 0rad . The initial
values of the state of the ACV’s kinematic model in this part
are chosen as x(0) = −300m, y(0) = 250m, φ(0) = 0,
ψ = 35◦, u(0) = 35knots, v(0) = 0knots, p(0) = 0◦,

FIGURE 4. The position tracking error curve with the controller designed
in this paper.

FIGURE 5. The position tracking error curve with the controller designed
in [12].

FIGURE 6. The yew angle error curve with the controller designed in this
paper.

r(0) = 0◦/s,δ(0) = 1.30, δu(0) = 1.20, δu = 35.02, δu =

5.83, δv = 5.83, δv = 5.83. δr = 5.83, δr = 5.83.
Environmental disturbances and fault messages are sepa-

rately designed as ξ = {10sin(5t) + 0.2sin(0.05t), 5cos(3t),

3cos(2t)}, Bx =


diag{1, 0, 0, 1}, t ≤ 800s

diag{0.6 + 0.01sin(2t),
0, 0, 0.8 + 0.01sin(3t)}, t > 800s

.

Themain parameters of the system and detailed parameters
of the controller in this section for tracking of the ACV are
given as shown in Table 1.
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FIGURE 7. The yew angle error curve with the controller designed in [12].

FIGURE 8. Time response curve for yaw angle of the ACV.

FIGURE 9. Time response curves for tracking errors of surge and sway
position of the ACV.

It can be obtained from the results in Fig.2, Figs.7-8 that the
control system proposed in this paper accomplishes the task
of tracking the trajectory and heading angle of the hovercraft
relatively well. At the same time, it has good robustness
after a fault occurs. Fig.3, Fig.5 and Fig.9 mainly depict
whether the tracking error of the system state is limited to
a predetermined range. From the results, it can be seen that
the system status error are well limited to the pre-set range
even when the initial value is larger than the boundary. The
simulation results in Fig.4 and Fig.6 mainly use the control
system proposed in [12]. The PPF designed in this controller

FIGURE 10. The tracking error curve for the surge, sway and yaw velocity
of the ACV.

FIGURE 11. Time response curves for estimation errors of ξ .

FIGURE 12. Time response curves of the system state estimation error for
the integrated observer.

FIGURE 13. Time response curves of the drift angle.

is of a general form with initial value constraints, so the
controller is unstable when the initial value of the state error
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FIGURE 14. Time response curves for position tracking errors with
different initial values.

FIGURE 15. Time response curves for surge and sway position errors with
different initial values.

FIGURE 16. Time response curves for yaw angle error with different
initial values.

is out of bounds. The comparison results from Figs.3-6 verify
the advantages of the fault-tolerant controller with the new
PPF designed in this paper. Fig.10 and Fig.11 show mainly
the time profiles of the estimation errors of the state and
intermediate variables of the integrated observer. The results
verify the validity of the observer. Fig.12 is the time response
curve for the drift angle, which is within the safe range
allowed for the high speed of the ACV.

Then the simulation results in Figs.13-15 demonstrate that
the controller designed in this paper can guarantee that the
tracking error can converge in a fixed time for different

initial values. The initial values of the state of the ACV’s
kinematic model are chosen as x(0) = −300m, y(0) = 250m,
ψ(0) = 35◦, x(0) = −20m, y(0) = 100m, ψ(0) =

45◦,x(0) = −100m, y(0) = −50m, ψ(0) = 10◦,x(0) =

−200m, y(0) = 450m, ψ(0) = −10◦.

V. CONCLUSION
This paper proposes an adaptive fault-tolerant controller
based on a new prescribed performance function. The main
focus is to improve the transient performance of the Tra-
jectory tracking control of ACV, provided that system sta-
bility in the presence of actuator faults and environmental
disturbances is also ensured. The proposed new prescribed
performance function is no longer limited by the initial value
and is more suitable for applications in hovercraft tracking
control with particular operating environments. The method
incorporates an observer that does not require perturba-
tion upper bound information, improving the overall system
robustness and reducing the stress on the controller. The
performance function used has the advantage of fixed-time
convergence, further ensuring the transient performance of
the ACV’s tracking control. Transient performance is critical
to the safety of ACV that often travel at high speeds in
complex environments. Due to the large mass and high speed
of ACV, failures such as stalling and actuator saturation occur
frequently. Further improvements to the fragility performance
of the PPC method after failure saturation of the ACV will
therefore be considered in future work inspired by [7] and [8].
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