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ABSTRACT Themain bearing is the core component of gas-fired generator, and its reliability directly affects
the stability of the whole system. Therefore, it is of great significance to study the fault diagnosis of the main
bearing of gas-fired generator. In the bearing fault diagnosis based on vibration signal, how to extract the
signature features of fault effectively is the key to achieving accurate fault diagnosis. Based on extracting the
signature features of faults, how to classify the fault features efficiently is another key to achieving accurate
fault diagnosis. Based on this, we propose a bearing fault diagnosis method based onMel frequency cepstrum
coefficient (MFCC) and deformable space-frequency attention network (DSFAN). In view of the inconsistent
feature distribution of different types of faults, the MFCC algorithm is introduced to preprocess the original
fault signals and extract their signature features. Then, the network model DSFAN is constructed based
on the space-frequency feature attention mechanism (SFFAM). DSFAN can extract the global constraint
features and distributed constraint features of fault signals and realize bearing fault diagnosis. To make
full use of classification information, the data processed by MFCC is constructed into a three-dimensional
data cube as the input of DSFAN. Finally, the validity of the proposed method MFCC-DSFAN is verified on
CWRU, XJTU, and gas-fired generator data sets. The experimental results show the excellent performance of
MFCC-DSFAN for fault diagnosis and prove the effectiveness of the attention module in feature extraction.

INDEX TERMS Frequency attention, space attention, deformable convolution networks, Mel frequency
cepstrum coefficient, fault diagnosis.

I. INTRODUCTION
Bearing is a basic and important mechanical component in
gas-fired generators. Once the bearing fails, and the fault is
not diagnosed and dealt with in time, the degree of bearing
damage will gradually increase over time, which will affect
the normal operation of gas-fired generator [1]. Therefore,
it is of great significance to study bearing fault diagnosis and
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gradually improve the diagnosis efficiency for maintaining
the stable operation of gas-fired generators. In the bearing
fault diagnosis based on vibration, temperature, and acoustic
signals, vibration signals containing rich equipment operating
status information are the most widely used [2]. Fault feature
extraction and classification are two key steps of bearing fault
diagnosis based on vibration signal [3].

How to extract the signature features of faults from fault
signals is the key to achieving accurate fault diagnosis [4],
[5]. Therefore, researchers have done a lot of research
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and proposed many fault feature extraction methods. Time
domain feature analysis is the earliest feature extraction
method, which is intuitive and accurate. However, due to
the complexity of the environment, the collected signals are
nonlinear and unstable, which leads to an increase in the
amount of computation. Therefore, the Fourier transform,
which can convert signals from the time domain to the
frequency domain, has gradually attracted attention. It can
decompose complex signals into simple signal superposition,
which is easier to analyze. For example, Zhao et al. [6] use
Fourier transform to process fault signals and extract signal
spectrum features for fault diagnosis. Compared with the
time-domain analysis method, the frequency-domain analysis
method can extract more complex and iconic fault features,
which is helpful for accurate fault diagnosis. In addition,
there are some frequency domain features such as envelope
spectrum and high-order spectrum [7], [8]. However, in the
process of signal conversion from the time domain to the
frequency domain, it is difficult to obtain the location of
each frequecncy signal in the time domain. Single-dimension
analysis in the time domain or frequency domain can not
fully reflect the signal characteristics. Therefore, feature
extraction methods based on time-frequency domain analy-
sis are gradually developed. For example, Zhang et al. [9]
proposed a feature extraction method based on empirical
wavelet transform, which can extract more iconic fault fea-
tures from complex signals, improve its resistance to noise,
and finally obtain better diagnostic results. All the above
methods are committed to extracting the signature features
of fault signals, which is very important for accurate fault
diagnosis.

Based on signature feature extraction, how to classify
faults effectively is another key to achieving accurate fault
diagnosis. Recent years, the bearing fault diagnosis method
based on deep learning can adaptively extract deep fault fea-
tures and realize fault classification, which has been widely
used in bearing fault diagnosis. Convolutional neural network
(CNN) has become one of the most popular classification
network models in bearing fault diagnosis due to its powerful
nonlinear feature extraction ability. Xia et al. [10] used a
convolutional neural network to achieve bearing fault diag-
nosis. However, the traditional convolutional neural network
often needs a large number of training samples for training
to obtain higher diagnostic accuracy, which will limit its
application in fault diagnosis [11], [12], [13], [14]. There-
fore, Huang et al. [15] addedmulti-scale learning on the basis
of CNN and proposed a multi-scale cascade convolutional
neural network model. This model can integrate multi-scale
information from original vibration signals and extract more
abundant fault features. Compared with the traditional CNN,
it can achieve higher fault diagnosis efficiency under nor-
mal or noise conditions with fewer samples. However, it is
worth noting that the original fault signal contains not only
frequency distribution information but also spatial informa-
tion [16], [17], [18]. Due to the inherent structure of CNN,

it tends to ignore the spatial constraint information between
fault data, which cannot extract complete fault features [19],
[20], [21].

Based on the above analysis, inspired by the attention
mechanism of feature in [22] and the law of human visual
attention, a bearing fault diagnosis method based on Mel
frequency cepstrum coefficient (MFCC) and deformable
space-frequency attention network (DSFAN) was proposed.
First, MFCC was introduced to process the original sig-
nal and extract the signature features of the fault signal.
Then to fully extract the space and frequency information
of the signal data, we further process the data and construct
three-dimensional data cubes. In terms of feature extrac-
tion, DSFAN was constructed based on the space-frequency
feature attention mechanism (SFFAM), which can extract
deep spatial frequency features from fault data. We first
design a frequency attention module (FeAM) to learn the
three-dimensional data cubes, which can extract more impor-
tant frequency distribution features and reduce the interfer-
ence of useless information to fault diagnosis. In addition,
we hope to pay more attention to the categories with the
same label as the center category or those useful for center
classification, and less attention to the categories with dif-
ferent labels or those useless for classification. Therefore,
a space attention module (SaAM) is designed to learn the
importance of surrounding categories and give them appro-
priate attention. In order to further extract spatial information
between categories and refine the extracted space-frequency
features, we constructed a deformable convolution block
(DeCB) inspired by the deformable convolution network.
The performance of the proposed method MFCC-DSFAN
is tested on three bearing datasets, including Case Western
Reserve University (CWRU) bearing dataset, Xi’an Jiaotong
University (XJTU) bearing dataset, and the experimental
dataset. The experimental results show that the proposed
method can achieve good diagnostic results. The contribution
of this paper is mainly analyzed from the following three
aspects.

1) In view of the inconsistency of feature distribution
of different types of fault signal data, this paper intro-
duces MFCC, a classical signal processing method in
speech recognition, into fault signal processing. It constructs
Mel filter banks to extract the signature features of fault
signals.

2) In order to extract the constraint features of fault signals,
a space-frequency feature attention network structure was
proposed in this paper, and the data after MFCC processing
was constructed into a three-dimensional data cube as the
input data of the network. The network structure can extract
the global and distributed constraint features of the fault
signal, and realize the fault diagnosis of the main bearing of
gas-fired generator.

3)We have verified the effectiveness of MFCC-DSFAN on
three bearing datasets, which will provide some ideas for the
problems of feature extraction in other fields.
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TABLE 1. Abbreviation.

The rest of this paper is described in the following
way. In Section II, we introduce the work related to
MFCC-DSFAN, such as deformable convolution networks.
In Section III, we illustrate the method of this paper in
detail. In Section IV, we show the setting and results of the
experiment and analyze the results. Conclusions are drawn in
Section V. Table1 lists the full names of all abbreviations in
the paper.

II. RELATED WORK
A. MEL FREQUENCY CEPSTRUM COEFFICIENT
Mel frequency cepstrum coefficient (MFCC) is proposed
based on the human auditory feature, which converts the
signal to a frequency domain and filters it. MFCC can use
the nonlinear relationship between Mel frequency and Hz
frequency to obtain the Hz spectrum features with stronger
robustness. Its effectiveness in voice recognition has been
proved in [23]. Subsequently, MFCC is widely used in many
directions of voice recognition. Compared with other kinds
of acoustic features, MFCC can obtain better recognition
results [24], [25]. As we all know, due to the complexity
and diversity of the working environment of mechanical
equipment, the collected signals are nonlinear, unstable, and
affected by noise, which is disadvantageous to the realization
of accurate fault diagnosis [26]. In view of the good perfor-
mance of MFCC in feature extraction of acoustic signals,
we use it to process the collected original fault signals and
extract the signature features of the signal.

The processing steps of MFCC include pre-emphasis,
framing, windowing, discrete Fourier transform(DFT), Mel
band-pass filter, and discrete cosine transform(DCT). The
first step is to pre-emphasis the original fault signal, which
is equivalent to a high-pass filter. Pre-emphasis processing
can not only amplify the high-frequency part of the signal,
increase the signal-to-noise ratio of the high-frequency part,
and make the spectrum of the signal flatter, but also avoid
the numerical problems in the follow-up work, especially
in Fourier transform. The second step is to segment the

pre-emphasized signal by frame, and then apply Hamming
window to each frame signal. The third step is to perform a
discrete Fourier transform on each frame signal to obtain the
frequency spectrum, and then calculate the power spectrum.
The fourth step is to construct a group of Mel filters to
make the power spectrum smoother and eliminate the effect
of harmonics. The conversion between Mel frequency and
actual frequency is shown in Eq.(1).

fMel = 2595log10(1 +
f

700
) (1)

where f and fMel represents actual frequency and Mel fre-
quency respectively.We know that the filter banks obtained in
step 4 are overlapping. Therefore, the correlation between the
power spectrum obtained by different filters is very strong,
which will bring some trouble to the machine learning algo-
rithm. We use discrete cosine transform to eliminate the
correlation between power spectrums and obtain MFCC.

B. DEFORMED CONVOLUTION NETWORKS
How to adapt to the spatial transformation of targets is
a very key problem in the field of visual recognition.
To solve the above problems, two new modules, includ-
ing deformable convolution and deformable RoI pooling,
are proposed in [27], and the constructed network is called
a deformable convolution network (DCN). Compared with
convolutional neural network (CNN), DCN has a stronger
ability for geometric transformation modeling and obtains
better results in visual recognition, such as target tracking and
image recognition.

In fault diagnosis, the original fault signal contains rich
spatial information. We hope to extract domain spatial infor-
mation useful for center category classification. Inspired by
the application of DCN in visual recognition, this paper
introduces deformable convolution module in DCN to further
extract the spatial features between categories. Deformable
convolution adds 2D offsets based on a standard convolution
kernel. It can adaptively adjust the sampling position accord-
ing to the characteristics of the data through offset learning,
so as to capture richer features that are more conducive to
classification. We assume that the input feature map is x and
the regularized grid is R. The outputs of standard convolution
and deformable convolution can be obtained by Eq.(2) and
Eq.(3), respectively.

p(b0) =

∑
bq∈R

w(bq) · x(b0 + bq) (2)

p(b0) =

∑
bq∈R

w(bq) · x(b0 + bq +1bq) (3)

where b0 represents every point on the feature map x; bq
enumerates the locations in R. The weight and offset of bq are
w(bq) and 1bq, respectively. They are obtained by training.
The offset learning of deformable convolution involves a

small number of parameters and calculations, and the param-
eters can be trained by backpropagation. The module can
easily replace the standard convolution.
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FIGURE 1. The framework of the proposed method.

III. METHODOLOGY
A. OVERVIEW OF THE PROPOSED METHODOLOGY
Through data preprocessing, redundant information of data
is reduced and three-dimensional data cubes are constructed,
which are more conducive to extracting useful classifica-
tion features in the follow-up work. A deformable space-
frequency attention network (DSFAN) is constructed to
extract the space-frequency feature from the preprocessed
signal data pertinently and adaptively to ensure the efficiency
of diagnosis. Fig.1 shows the framework of the proposed
method.

Mel frequency cepstrum coefficient (MFCC) is first
used to preprocess the original one-dimensional signal,
which can extract the fault signature features from the
signals. The feature data obtained after MFCC processing
are still one-dimensional and labeled with specific labels.
To fully extract the frequency and space information of
the feature data, we further process the data and construct
three-dimensional data cubes. Suppose that there are N sig-
nal data S = {S1,S2, . . . ,SN } ∈ R1×C and K types of bear-
ing statesT = {T1, T2, . . . , TK}. ThroughMFCC processing,
we can get N labeled data D = {D1,D2, . . . ,DN } ∈ R1×c.
According to different categories, construct all the data into a
bearing dataset blockH ∈ Ra×b×c, where a×b×c represents
the spatial dimension of the constructed dataset block. In this
block, the interval between different categories of data is 10,
as shown in the gray part of the data block in Fig.1. In these
intervals, the values corresponding to all data points are set to
0. Then, in the data block, we can construct three-dimensional
data cubes P = [P1,P2, . . . ,PN ] ∈ Rω×ω×c centered at
the category data in D, where ω × ω × c represents the
size of each cube. To make the label data of the edge also
serve as the center and build a data cube, we fill the dataset
block to obtain a new block H1 ∈ R(a+2ω)×(b+2ω)×c, where
(a+2ω)×(b+2ω)×c represents the spatial dimension of the
new block, in which the filling data is all set to 0. The labels

FIGURE 2. The structure of FeAM.

of the constructed data cubes are consistent with that of the
central data.

Data cubes are taken as the input of the DSFAN model,
which can extract the space-frequency features that are help-
ful to the classification of the center category. The constructed
frequency attention module (FeAM) is used to learn the
importance of the neighborhood category data in the data
block to the center category classification and give a certain
weight, which can further reduce the influence of useless
information. This process can extract sufficient frequency
distribution features from the input three-dimensional data
block. After FeAM, a spatial attention module (SaAM) is
designed to adaptively learn and extract neighborhood spatial
features that are useful for center category classification.
A deformable convolution block can extract more detailed
spatial information between different categories and refine
the extracted frequency and space features. The fully con-
nected layer is used to integrate the features obtained from
the previous layer and realizes the classification of the center
category of data blocks. The details of the network model are
described in the following subsections.

B. FREQUENCY ATTENTION MODULE
The purpose of constructing FeAM is to adaptively focus
more attention on the frequency-domain data that help to
extract important frequency distribution features by learning
the input data. In order to achieve this goal, we are required
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FIGURE 3. The structure of SaAM.

TABLE 2. Setting of FeAM.

to design a feature mapping function. All frequency-domain
data are adaptively assigned appropriate weights by this
mapping function and a weight vector about frequency dis-
tribution features is obtained. In the process of mapping,
FeAM also needs to pay attention to the relationship between
different frequency-domain data, which is to avoid the loss
of feature information useful for classification as much as
possible. Fig.2 shows the structure of FeAM. Table2 shows
the configuration of the different types of layers in FeAM.
The two pooling layers are adaptive average pooling and
adaptive max pooling.

To obtain the global frequency distribution features f avg ∈

R1×1×c, global adaptive average pooling is used for each
frequency domain feature on the a×b spatial dimension [28].
The f avg of each element in the direction of c is calculated by
Eq.(4).

f avgc =
1

a× b

a∑
i=1

b∑
j=1

vc(i, j) (4)

where vc(i, j) is the value at point (i, j) on the vc channel.
In addition to average pooling, inspired by [29], we consider
the complementary effect of global max pooling on average
pooling in extracting global information. Therefore, we also
use adaptive max pooling to extract global feature informa-
tion from input data. Like adaptive average pooling, global
adaptive max pooling operates on each frequency domain
feature on a × b spatial dimension. f max is calculated by
Eq.(5).

f max
c = max(vc(i, j)) (5)

To obtain data features with better expressive, limit the
complexity of themodel and facilitate migration applications,
we introduce two fully connected layers after the pooling lay-
ers. The first fully connected layer reduces the dimension of f
obtained from the pooling layer by adjusting P1 parameters.
Then, the rectified linear function (ReLU) is used to reduce

the interdependence of parameters. The second fully con-
nected layer increases the dimension of f obtained from the
ReLU by adjusting P2 parameters and then uses the sigmoid
function to enhance the recognition of features. To reduce the
complexity of the model and the training time, we share the
parameters of two fully connected layers. The results yavg and
ymax of the two pooling branches are calculated by Eq.(6).
Then, yavg and ymax are added by Eq.(7).

y = F1(f ,P) = ψ (g(f ,P)) = ψ (P2(φ(P1f ))) (6)

y = yavg + ymax (7)

whereψ and φ represent sigmoid function and ReLU, respec-
tively. Then we use y to rescale the input features v to get the
final output of FeAM.

uc = F2(vc, yc) = ycvc (8)

where u = [u1, u2, . . . , uc] and F(vc, yc) represent the
frequency-wise multiplication of the scalar yc and the feature
map vc ∈ Ra×b.

C. SPACE ATTENTION MODULE
By learning the importance of surrounding categories to the
classification of the center category, SaAM can enhance the
attention to the categories with the same label as the center
category and reduce the attention to the categories with dif-
ferent labels from the center category. Therefore, the features
obtained by SaAM should be consistent with the input block
in height and weight. If the category at a certain position in
the neighborhood has the same label as the center category,
the value of this position is set to 1, otherwise, it is zero. Fig.3
shows the structure of SaAM. Table3 shows the parameters of
the convolutional layer in SaAM.

As can be seen from Fig.3, SaAM first takes the mean and
max values on the channel dimension of the input feature
block. The results after pooling are calculated by Eq.(9) and
Eq.(10).

havgi,j =
1
c

c∑
η=1

uc(i, j) (9)

hmax
i,j = max(uc) (10)

where uc(i, j) is the value at point (i, j) on the uc channel.
Unlike FeAM, in SaAM, the results after pooling are spliced
horizontally, then used as the input of the convolution layer,
and finally passed through a sigmoid function.

h = ψ([havg, hmax] ∗ P3) (11)

where ψ represents sigmoid function and ∗ refer to convolu-
tion operation. Then we use h to rescale the input features uc
to get the final output of SaAM.

u′
= F3(u, h) = hu (12)

where u′
= [u′

1,1, u
′

1,2, . . . , u
′
i,j] and F(u, h) represent the

frequency-wise multiplication of the scalar h and the feature
map ui,j ∈ R1×1×c.
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FIGURE 4. The structure of DeCB.

TABLE 3. Setting of SaAM.

TABLE 4. Setting of DeCB.

D. DEFORMABLE CONVOLUTION BLOCK
In view of the excellent ability of deformable convolution
to extract spatial constraint information, we construct DeCB
to further extract spatial information between categories and
refine the extracted space-frequency features. Fig.4 shows
the structure of DeCB. Table4 lists the related parameters of
DeCB.

As can be seen from Fig.4, DeCB is composed of two
regular convolutional layers, a deformable convolution layer,
two batch normalizations, an average pooling layer, and a
fully connected layer. The following equations show the cal-
culation process of the module.

um+1
= φ

(
ϕ(um ∗ Pm+1

+ dm+1)
)

(13)

um+2
= φ

(
ϕ(um+1

∗ Pm+2
+ dm+2)

)
(14)

um+3
s0 =

∑
sn∈R

w(sn) · um+2(s0 + sn +1sn) (15)

um+4
= F4(Pm+3, um+3) = Pm+3um+3 (16)

where ϕ represents batch normalization. um, dm+2 and ∗ refer
to the output result of the m layer, the bias of the m+ 1 layer,
and convolution operation respectively. s0 represents every
point on the feature map um+3; sn enumerates the locations in
R. The weight and offset of sn arew(sn) and1sn, respectively.
They are obtained by training.

IV. EXPERIMENTS
In this section, we first verify the algorithm on the CWRU and
XJTU data sets. Four factors affecting the performance of the
proposed model are tested and analyzed on CWRU bearing
dataset and XJTU bearing dataset. The model is configured
based on the results of parameter experiments and compared

TABLE 5. Numbers of training and testing samples for the CWRU dataset.

with several classical deep learning-based fault diagnosis
algorithms on two public datasets. The influence of each
module in the network model on the diagnosis performance
of the model is analyzed. Then the proposed model is further
tested on the gas-fired generator data set.

All experiments run on aWindows system with an Intel(R)
Core(TM) I7-11800H processor, 16.0 GB of memory, and an
NVIDIA GeForce RTX 3060. In addition, we use PyTorch as
the deep learning framework and Python as the programming
language.

A. ALGORITHM VERIFICATION
1) DATA SET DESCRIPTION
CWRU dataset: CWRU bearing data set is obtained from
Case Western Reserve University bearing data center [30].
This data set is mainly for two different bearings, including
drive end bearing SKF 6205 and fan end bearing SKF 6203.
Five types of faults are set according to fault locations. Under
the sampling frequency of 12kHz and 48kHz, the fault data
are collected from the fan end, drive end, and base end. Due
to the difference in fault diameters and motor speeds, each
fault category often contains a large amount of fault data.
The acceleration data used in this paper are the fault data
of the drive end bearing collected at the 12kHz sampling
frequency. There are five fault types: rolling element fault
(RF), inner race fault (IF), outer race 3 o’clock fault (OF@3),
outer race 6 o’clock fault (OF@6), and outer race 12 o’clock
fault (OF@12), including three fault diameters: 0.1778mm,
0.3556mm, and 0.5334mm.

The CWUR data set used in this paper contains 80 training
samples and 720 testing samples for each fault type. Each
sample data is a data cube with a size of 11 × 11×1000.
This paper only uses one channel signal collected from the
sensor on the fan end. To obtain more sample data, signal
data with the size of 1 × 8000 are selected repeatedly from
the collected channel signals at a certain step size to prepare
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TABLE 6. Numbers of training and testing samples for the XJTU dataset.

the sample dataset. MFCC is adapted to process the signal
data size of 1 × 8000 and get the data with the size of
1×1000. According to different types, all the data processed
byMFCC are constructed into a 90×90×1000 dataset block.
In the dataset block, the interval between different categories
of data is 10. In these intervals, the values corresponding
to all data points are set to 0. Because the total number of
samples in each category is less than 900, there are some
blanks in each type of data block. We set the data values
of all blank points to 0. Then, the data cubes with the size
of 11 × 11×1000 are constructed with each labeled data as
the center in this 90 × 90×1000 dataset block. To make the
label data of the edge also serve as the center and build a
data cube, the 90× 90×1000 dataset block is filled to obtain
a dataset block with the size of 100 × 100×1000. Finally,
4000 sample data cubes with the size of 11 × 11×1000 can
be obtained. Then 10% of the labeled data cubes are taken as
training samples and the rest as testing samples. The details
of training samples and testing samples of each fault category
are shown in Table5.

XJTU dataset: XJTU bearing data set is obtained from the
Joint Laboratory of mechanical equipment health monitor-
ing [31]. The test bearing of the data set is LDK UER204
rolling bearing. There are three working conditions (2100
r/min and 12 kN; 2250 r/min and 11 kN; 2400 r/min and
10 kN) and five bearing faults under each working condition.
This data set contains two channels of data, including hori-
zontal vibration signal and vertical vibration signal, which are
collected by sensors fixed in the horizontal and vertical direc-
tions of the test bearing. In the experiment, we consider five
types of faults under the 12KN working conditions and use
the horizontal vibration signal in fault data. XJTU data sets
are made in the same way as CWRU data sets. 1 × 8000 sig-
nal data is selected repeatedly from the horizontal vibration
signal with a certain step size, and then MFCC is used to
process it. According to different types, all the data processed
byMFCC are constructed into a 90×90×1000 dataset block.
To make the label data of the edge also serve as the center and
build a data cube, the 90× 90×1000 dataset block is filled to
obtain a dataset block with the size of 100×100×1000. Then,
the data cubes with the size of 11×11×1000 are constructed
with each labeled data as the center in this 100 × 100×1000
dataset block. Finally, 3500 sample data cubes with the size
of 11 × 11×1000 can be obtained. Then 10% of the labeled
data cubes are taken as training samples and the rest as testing
samples. The details of training samples and testing samples
of each fault category are shown in Table6.

FIGURE 5. Accuracy of the proposed method under different learning
rates on the CWRU and XJTU datasets.

FIGURE 6. Accuracy of the proposed method under different sizes of
spatial input on the CWRU and XJTU datasets.

On the CWRU and XJTU data sets, we randomly select
10% of the samples as the training samples and the remaining
samples as the testing samples. The batch size of all experi-
ments is set to 16.

2) PARAMETER SETTING
In the process of model training and testing, selecting appro-
priate parameters is very important to improve the diagnos-
tic performance of the model after training. In this section,
we analyze the influence of some key parameters, including
the learning rate, the size of spatial input, and the scale
of training samples. These parameters that need to be set
manually are also called hyper-parameters. The batch size is
set to 16. In each parameter experiment, we set 50 epochs and
then select the model with the best classification result on the
testing set for comparison.

Learning rates: The learning rate controls the learning pro-
cess in the training model. Choosing the appropriate learning
rate on different data sets can speed up the convergence
of the model to the local minimum. Therefore, we use the
parameter sweep method to select the appropriate learning
rate from {0.01, 0.003, 0.001, 0.0003} on each data set. The
experimental results are shown in Fig.5. According to the test
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FIGURE 7. Accuracy of the proposed method under different scales of
training samples on the CWRU and XJTU datasets.

TABLE 7. Accuracy under different input data.

results under different learning rates shown in Fig.5, we set
the learning rate of CWRU and XJTU data sets to 0.003 in
subsequent experiments.

Size of spatial input: The size of spatial input affects
the amount of spatial information and then affects the final
recognition result. Choosing the appropriate space input
size can extract useful spatial information for classification
and improve the efficiency of fault identification. Therefore,
we set several spatial input sizes on two data sets. The results
are shown in Fig.6. The input size is 11× 11 on both CWRU
and XJTU data sets.

Scale of training samples: Fig.7 shows the classification
results of the method in this paper under different training
sample proportions. As shown in Fig.7, the classification
accuracy gradually improves with the increase of training
samples on two data sets. When the proportion of training
samples is 10%, our method can achieve 100% classification
accuracy on CWRU and XJTU data sets.

3) PERFORMANCE ANALYSIS AND COMPARISONS
Themethod proposed in this paper mainly includes two parts:
one is to pre-process the original data by Mel frequency cep-
strum coefficient (MFCC); the other is to extract deep fault
features and realize classification by using the deformable
space-frequency attention network (DSFAN) constructed in
this paper. The network model of this method is configured
according to the results of the hyper-parameter experiments.
To evaluate the performance of this method, we tested this
method on CWRU and XJTU data sets and compared it
with other methods. These methods include using data not
processed by MFCC, using different network structures, and
several advanced algorithms.

FIGURE 8. The classification accuracy of all categories.

TABLE 8. Parameters of different network models.

TABLE 9. Accuracy of different models.

On the CWRU dataset, we first analyze the impact of
different input data on the performance of the method pro-
posed in this paper. The data processed by MFCC and the
original data are respectively input into DSFAN for feature
extraction and classification. To avoid accidental phenom-
ena, we repeated the experiments ten times. The classifica-
tion results are shown in Table7. The results are presented
in the form of average±standard deviation of ten experi-
ments. As can be seen from Table7, the average accuracy of
MFCC-DSFAN reaches 100%, which is 1.62% higher than
that of Original-DSFAN. Compared with Original-DSFAN,
MFCC-DSFAN can obtain better diagnosis results, which
proves the superiority of the data preprocessingmethod based
on MFCC in extracting signature features of fault data and
increasing the discrimination between different categories
of data. Combined with the DSFAN model, MFCC-DSFAN
can accurately identify the bearing fault status in a shorter
time. Fig.8 shows the classification results of all categories.
We can see that MFCC-DSFAN can accurately classify each
category.

In order to verify the performance of our proposed DSFAN
model, we compare it with several common deep neural net-
works in fault diagnosis, including CNN, deformable convo-
lution network(DCN), and residual network(ResNet). CNN
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FIGURE 9. Accuracy and loss convergence with training epochs on the
CWRU dataset.

model includes two convolution layers, two max pooling
layers, one average pooling layer, and two fully connected
layers. DCN consists of two ordinary convolution layers, two
deformable convolution layers, one average pooling layer,
and one fully connected layer. The 34-layer ResNet model
has onemax pooling layer, one average pooling layer, and one
fully connected layer. In comparison experiments, the learn-
ing rates of three fault diagnosis methods based on convo-
lutional neural network, deformable convolutional network,
and residual network are 0.03, 0.01, and 0.05, respectively.
Batch size and training epochs are 16 and 50, respectively.
The structural parameters of the network models, includ-
ing kernel size, stride, and padding, are listed in Table8.
We mainly discuss the performance of network models.
Therefore, the inputs of network models are all the data
processed by MFCC.

Table9 shows the classification results of different network
models. It can be seen from Table9 that the average accuracy
of MFCC-DCN is 0.16% higher than that of MFCC-CNN.
It can be analyzed that compared with CNN, DCN can learn
more abundant spatial constraint features from data cubes and
has better recognition ability. The spatial constraint informa-
tion of data can indeed contribute to improving diagnosis
accuracy, and the time-frequency features of fault data are
also important. Therefore, compared with DCN, the proposed
DSFANwith frequency attention and space attentionmodules
has a 2.67% higher diagnosis accuracy and more stable per-
formance. Moreover, DSFAN requires a shorter processing
time and has higher efficiency than DCN and ResNet. These
results demonstrate the effectiveness of the proposed DSFAN
model in extracting deep fault features and fault recognition.
Fig.9 shows the accuracy and loss convergence of different
models over 50 training epochs on the CWRU data set. From
Fig.9, we can see that the convergence is achieved in about
20 epochs, which proves the fast convergence of DSFAN.
The experimental results show that the DSFAN model which
can fully extract space-frequency features has the most sta-

FIGURE 10. T-SNE feature visualization of different methods on the
CWRU dataset.

TABLE 10. Performance comparison of different algorithms on the CWRU
dataset.

ble classification performance and the highest classification
efficiency.

In order to intuitively analyze the ability of all methods
to extract classification features, we use T-SNE to visualize
the features extracted by all methods. Feature visualization is
shown in Fig.10. It can be seen from Fig.10 that the method
proposed in this paper can obtain better clustering results. The
spatial differentiation between different categories of feature
data is great and the boundary is smooth because DSFAN
uses the attention module to learn the frequency domain
distribution information and spatial constraint relationship
from data cubes.

The above experimental results show that the fault diag-
nosis method combined with MFCC and DSFAN pro-
posed in this paper can obtain good classification per-
formance. In order to further evaluate the performance
of the method, we compare it with the state-of-art deep
learning-based fault diagnosis methods. These methods
include CNN-gcForest hybrid model(CNN-gcForest) [32],
EWDCNN-LSTM hybrid method(NHDLM) [33], improved
residual dense networks(IRDN) [34]. Table10 shows the sta-
tistical results. As can be seen from Table10, compared with
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FIGURE 11. Accuracy and loss convergence with training epochs on the
XJTU dataset.

FIGURE 12. T-SNE feature visualization of different methods on the XJTU
dataset.

the current advanced methods, the diagnosis results of the
method proposed in this paper can achieve the highest classi-
fication accuracy.

XJTU bearing data set is used to further test the per-
formance of the method proposed in this paper. On the
XJTU dataset, we also consider the influence of input data
and network model and compare the method proposed in
this paper with other methods. Table11 shows the statistical
results. It can be seen from Table11 that the fault diagnosis
method combined with MFCC and DSFAN model proposed
in this paper can obtain the highest average recognition
accuracy on the XJTU data set, which is much higher than

TABLE 11. Accuracy of different methods.

TABLE 12. Performance comparison of different algorithms on the XJTU
dataset.

the method of using original data as DSFAN input and the
methods of inputting MFCC processed data into other mod-
els, indicating that the proposed method MFCC-DSFAN has
good performance in fault feature extraction and recognition.
Fig.11 shows the accuracy and loss convergence of differ-
ent models over 50 training epochs on the XJTU data set.
From Fig.11, we can see that the convergence is achieved in
about 30 epochs. Compared with other methods, the proposed
method DSFAN has a faster convergence speed and more sta-
ble performance. The T-SNE feature visualization is shown in
Fig.12.

On the XJTU data set, to further test the performance
of the method in this paper, we compare it with the state-
of-art deep learning-based fault diagnosis methods. These
methods include the hybrid multimodal fusion with deep
learning(HMF-DL) [35], composite fault diagnosis based on
ACMD, Gini Index Fusion, and AO-LSTM(ACM-GIF-AO-
LSTM) [36], improved residual dense networks(IRDN) [34].
The comparison results are shown in Table12. As can be
seen from Table12, the average classification accuracy of our
method is higher than that of other advanced methods.

4) ABLATION
In the above experiments, our DSFAN model shows good
performance in fault classification. In this section, we analyze
the impact of the attention modules on the performance of the
DSFAN model. Firstly, we construct a new network model
according to the presence or absence of the attentionmodules.
Secondly, we retain the frequency attention module or the
space attention module. Finally, we exchange the positions of
the two attention modules, which the space attention module
being placed in front of the frequency attention module. For
the convenience of comparison, we take the data processed
byMFCC as the input of all networkmodels. The comparison
results on CWRU and XJTU data sets are shown in Table13
and Table14 respectively.

It can be seen from Table13 and Table14 the fault recog-
nition accuracies of the models with attention modules are
higher than that of the model without attention modules,
which shows that the attention modules can select the useful
data and conduce to the extraction of classification features.
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TABLE 13. The impact of attention modules on the performance of the proposed network model on the CWRU dataset.

TABLE 14. The impact of attention modules on the performance of the proposed network model on the XJTU dataset.

FIGURE 13. Gas-fired generator bearing test rig.

The frequency distribution feature extracted by the frequency
attention module is the essential feature of fault data, which is
very important for fault diagnosis. For data with more useless
information, the frequency attention module can often obtain
better classification results than the space attention module.
However, it is not easy to accurately identify each type of fault
only based on the frequency distribution features of fault data.
Proper adjustment of the spatial position of the two atten-
tion modules can obtain higher fault recognition accuracy
than other models. FeAM is first used to extract frequency
distribution features from the constructed three-dimensional
data cube, and then the SaAM is used to extract spatial
constraint features, which can obtain more accurate diagno-
sis results. Therefore, the proposed method MFCC-DSFAN
extracts the spatial constraint features between different types
of data based on preserving the essential information of fault
data to obtain the deep space-frequency features. Finally, the
extracted space-frequency features are refined by DeCB.

B. ENGINEERING VERIFICATION
To verify the reliability of MFCC-DSFAN, experiments are
carried out on the gas-fired generator dataset. The experimen-
tal parameters are set according to the parameter experiment,
where the learning rate is 0.003, the network input size is
11 × 11, and the proportion of training samples is 10%.

TABLE 15. Numbers of training and testing samples for the gas-fired
generator dataset.

TABLE 16. Classification results on the gas-fired generator dataset.

1) DATA SET DESCRIPTION
Gas-fired generator dataset: The bearing data is from the
gas-fired generator main bearing fault test rig. The test rig is
shown in Fig.13. Three vibration sensors are arranged along
the X, Y, and Z directions on the main bearing components
of the gas-fired generator. The vibration sensors are used
to sample the vibration signal of the main bearing of the
gas-fired generator at a sampling frequency of 8KHz and a
sampling period of 12 seconds.

The duration of bearing from fault occurs to complete
damage is short. Fig. 14 visualizes the degradation process
of bearing through the RMS curve. In order to facilitate fault
maintenance and ensure the normal operation of the generator
set, the working conditions of the bearing are divided into five
categories according to the degree of damage: normal, first-
level fault, second-level fault, third-level fault, and fourth-
level fault. It can be seen from Fig. 14 that the first, second,
third, and fourth level fault data correspond to the sample data
of RMS curves 0-70, 73-126, 130-187, and 189-216 respec-
tively. When the fault reaches the four-level, the bearing is
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TABLE 17. The impact of attention modules on the performance of the proposed network model on the gas-fired generator dataset.

FIGURE 14. The visualization of fault stages.

seriously damaged and needs to be replaced in time. It can
be seen from the RMS curve that the bearing is in normal
working condition at the stage of 250-300.

The vibration signals in the X direction are used as the
experimental data. Taking the normal state data as an exam-
ple, 1 × 1000 data can be obtained by taking the vibration
signal data with the size of 1 × 8000 as input and using
MFCC for processing. Other types of data are processed in
the same way as normal state data. According to different
types, all the data processed by MFCC are constructed into
a 90 × 90×1000 dataset block. To make the label data of
the edge also serve as the center and build a data cube, the
90×90×1000 dataset block is filled to obtain a dataset block
with the size of 100 × 100×1000. Then, the data cubes with
the size of 11 × 11×1000 are constructed with each labeled
data as the center in this 100 × 100×1000 dataset block.
Finally, we can obtain 3000 sample data cubes with the size
of 11 × 11×1000. Then 10% of the labeled data cubes are
taken as training samples and the rest as testing samples. The
details of training samples and testing samples of each fault
category are shown in Table15.

2) EXPERIMENTAL RESULT
The classification results are shown in Table16. It can be seen
from Table16 that the average recognition accuracy of ten
experimental results of the proposed method MFCC-DSFAN
can reach 100%, and the standard deviation is 0. Com-
pared with other algorithms based on deep learning, MFCC-
DSFAN has excellent and stable diagnostic performance.
Fig. 15 shows the accuracy and loss convergence of different
models over 50 training epochs on the gas-fired generator

FIGURE 15. Accuracy and loss convergence with training epochs on the
gas-fired generator dataset.

dataset. From Fig. 15, we can see that the convergence is
achieved in about 30 epochs. In addition, we also analyzed
the effect of eachmodule. The experimental results are shown
in Table17. It can be seen from Table17 that the model based
on the frequency attention-space attention module can still
obtain the best diagnostic results on the gas-fired generator
dataset.

V. CONCLUSION
In order to extract the signature features of different types of
fault data and realize fault diagnosis, this paper proposes a
bearing fault diagnosis method based on Mel frequency cep-
strum coefficient (MFCC) and deformable space-frequency
attention network (DSFAN). First, MFCC is used to prepro-
cess the original fault signal and extract the signature features
of different categories of data. Second, the space-frequency
attention network is designed to extract frequency distribu-
tion constraint features and the global constraint features,
and realize fault diagnosis. Finally, we test the performance
of our method on CWRU, XJTU, and gas-fired generator
datasets. The results are summarized as follows: 1) Compared
with the original data, the fault data processed by MFCC
is easier to be identified; 2) Compared with CNN, DCN,
and other network models, DSFAN can obtain the best diag-
nosis results. The fault diagnosis accuracy of DSFAN can
reach 100% and maintain the minimum standard deviation;
3) Compared with other fault diagnosis algorithms based on
deep learning, MFCC-DSFAN still shows the best diagnosis
performance; 4) The performance analysis of the attention
modules shows that the model DSFAN constructed based
on the frequency attention-space attention module has better
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and more stable performance than other models. Most fault
diagnosis methods are offline diagnosis, which is unfavorable
for the timely detection of bearing faults. Therefore, we will
take the realization of bearing fault online diagnosis as the
research focus in future work.
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