IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 8 February 2023, accepted 23 March 2023, date of publication 3 April 2023, date of current version 6 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3264265

==l APPLIED RESEARCH

IXIAM: ISA EXtension for Integrated
Accelerator Management

BIAGIO PECCERILLO"'!, ELHAM CHESHMIKHANI2, MIRCO MANNINO"1,
ANDREA MONDELLI®>, AND SANDRO BARTOLINI*"

! Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy
2Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
3Huawei Technologies Research and Development (U.K.) Ltd., CB4 OWG Cambridge, U.K.

Corresponding author: Biagio Peccerillo (peccerillo@diism.unisi.it)

This work was supported by Huawei Technologies Research and Development (U.K.) Ltd.

ABSTRACT During the last few years, hardware accelerators have been gaining popularity thanks to
their ability to achieve higher performance and efficiency than classic general-purpose solutions. They are
fundamentally shaping the current generations of Systems-on-Chip (SoCs), which are becoming increasingly
heterogeneous. However, despite their widespread use, a standard, general solution to manage them while
providing speed and consistency has not yet been found. Common methodologies rely on OS mediation and a
mix of user-space and kernel-space drivers, which can be inefficient, especially for fine-grained tasks. This
paper addresses these sources of inefficiencies by proposing an ISA eXtension for Integrated Accelerator
Management (IXIAM), a cost-effective HW-SW framework to control a wide variety of accelerators in a
standard way, and directly from the cores. The proposed instructions include reservation, work offloading,
data transfer, and synchronization. They can be wrapped in a high-level software API or even integrated
into a compiler. IXIAM features also a user-space interrupt mechanism to signal events directly to the user
process. We implement it as a RISC-V extension in the gemS simulator and demonstrate detailed support
for complex accelerators, as well as the ability to specify sequences of memory transfers and computations
directly from the ISA and with significantly lower overhead than driver-based schemes. IXIAM provides a
performance advantage that is more evident for small and medium workloads, reaching around 90x in the
best case. This way, we enlarge the set of workloads that would benefit from hardware acceleration.

INDEX TERMS Hardware accelerators, domain-specific architectures, parallel architectures, heterogeneous
systems, RISC-V.

I. INTRODUCTION

Today hardware accelerators are employed in a variety of
contexts that span from wearable and embedded computing to
supercomputers and data-centers. Hwu and Patel [1] define a
hardware accelerator as “a separate architectural substructure
[...] that is architected using a different set of objectives than
the base processor, where these objectives are derived from

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu

the needs of a particular class of applications”.! They are now
regarded as the primary driving force of computer architec-
ture [3], thanks to their ability to improve non-functional met-
rics such as throughput and energy efficiency. With respect to
general-purpose resources, they can take advantage of effi-
cient forms of parallelism, local/optimized memories, ad-hoc

1Some works refer to them as loosely-coupled accelerators, to distinguish
them from tightly-coupled accelerators [2]. According to the definition,
tightly-coupled accelerators are rather specialized functional units integrated
into the processor.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

33768

VOLUME 11, 2023

https://orcid.org/0000-0002-4998-0092
https://orcid.org/0000-0003-3737-683X
https://orcid.org/0000-0003-1660-3984
https://orcid.org/0000-0002-7975-3632
https://orcid.org/0000-0003-1072-0792

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

datapaths, reduced fetch and decode overheads, and support
for special data-types [3], [4].

In the last years, accelerators have greatly influenced
the design of computing systems, with a profound impact
on Systems-on-Chip (SoCs) in particular [5]. These have
become increasingly heterogeneous, with various acceler-
ators integrated with the central general-purpose cores on
the same chip. Core-accelerator communication is achieved
through a dedicated Network-on-Chip (NoC) or a bus with a
standard interface such as ARM’s Advanced Microcontroller
Bus Architecture (AMBA) [6]. Usually, accelerators access
the system’s physical memory by connecting to a shared Last-
Level Cache (LLC) [7], [8] or the DRAM [9], [10], relying
on DMA techniques not to burden the CPU.

From a software perspective, functional units are usu-
ally targeted at the Instruction Set Architecture (ISA) level,
but on-chip accelerators commonly require a mix of user-
space and kernel-space drivers [S]. Programmers interact with
a high-level accelerator-specific Application Programming
Interface (API) that transparently invokes functions provided
by the underlying driver layer. Drivers, in turn, may rely
on system calls that ask for the Operating System (OS)
mediation in a variety of tasks: management of accelerators’
resources, scheduling of simultaneous accesses from differ-
ent processes, data consistency maintenance across differ-
ent privilege levels, virtual-to-physical address translation —
whether as the main actor or as an accelerator assistant [11],
[12]. The presence of many layers and different privilege
levels to achieve CPU-accelerator communication can be a
source of inefficiencies and limit the set of tasks eligible for
acceleration [2], [13], [14]. In fact, the latency associated with
CPU-accelerator interaction is significantly longer than the
conventional core operations. This communication overhead
can be amortized only when the accelerated task has a coarse-
grain nature, as fine-grain ones would be dominated by com-
munication latency and thus their acceleration would not be
convenient.

Albeit the driver-oriented solution is the most common
to achieve CPU-accelerator interaction, it is not the only
one [5]. Some hardware accelerator proposals rely on special
instructions added to the ISA of the processor [15], [16], [17],
[18], [19], [20]. These ISA extensions, however, are always
accelerator-specific, and as a result, they cannot be scaled.
By adding new accelerators, the ISA would have to be further
extended, leading to ISA bloating that would be particularly
harmful to fixed-size instruction sets and negatively impact
both the chip area and energy consumption of the decoding
phase.

Overall, both accelerator-specific ISA extensions and user-
space/kernel-space drivers have drawbacks — summarizing,
lack of generality and low scalability in the first case, and
high latency in the second. In this paper, we present an ISA
eXtension for Integrated Accelerator Management (IXIAM),
a low-latency, high-performance, general solution to orches-
trate on-chip accelerators from CPU cores. It is based on a

VOLUME 11, 2023

general ISA extension that supports a wide variety of accel-
erators and a limited hardware infrastructure. The proposed
instructions facilitate managing accelerator reservation, work
offloading, synchronization, and data transfers with fine-
grained control of accelerator local memories. It is paired
with a user-space interrupt mechanism to signal events such
as execution completion and error occurrence from the accel-
erators directly to the user process. The supported hardware
infrastructure implements communication and some tasks
normally delegated to the OS, such as reservation. As a result,
the entire proposal can be, in principle, implemented in user
space while still guaranteeing security and isolation.

We extend and enrich our previous proposal presented
in [21]. The main differences with the previous proposal are:
a) the possibility to have fine-grained control of accelerator
local memories, b) the user-space interrupt mechanism, c) the
support of a far broader class of accelerators, since we do not
require them to work according to a fixed finite state machine.
Moreover, in this work, we discuss further aspects such as
memory coherency and data consistency.

We implement our framework in the gem5 simulator [22]
by extending the RISC-V ISA and adding all the necessary
modules to simulate the proposed hardware infrastructure.
We evaluate it performance-wise in comparison with con-
ventional driver-based interfacing, on five different simu-
lated accelerators. We show that our proposal dramatically
improves performance for small workloads (around 90x)
and medium workloads (more than 4), surpassing in most
cases even an optimized CPU-only implementation — thus,
enlarging the set of workloads that benefit from hardware
acceleration.

The main contributions of this paper can be summarized as
follows:

« We propose IXIAM, an HW-SW framework articulated
in an ISA extension and hardware infrastructure to
manage on-chip accelerators, taking care of reservation,
work offloading, data transfers, fine-grained control of
accelerator local memories, and synchronization;

« We propose a user-space interrupt mechanism to signal
execution completion and errors directly to the user
process, with no OS mediation;

« We implement the whole proposal in the gem5 simulator
by extending RISC-V ISA and providing the necessary
hardware modules;

+ We evaluate our proposal in the case of five widely-
used accelerators and compare it against a conventional
driver-based solution, showing that we improve perfor-
mance in all the cases, but mostly for small and medium
workloads;

« We show that our proposal enriches the set of workloads
that are eligible for hardware acceleration, as we achieve
better performance than a non-accelerated implemen-
tation in cases where a driver-based one would not be
convenient.

33769

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

The remainder of the paper is organized as follows. In
Section II, we present the proposed framework in detail, and
in Section III we analyze it critically and discuss some lim-
itations and criticalities. Then, in Section IV we evaluate
the proposal by simulating various accelerators in the gem5
simulator. Section V presents some related work. Finally,
we conclude in Section VI.

Il. PROPOSED FRAMEWORK

In this section, we present the details of IXIAM, our proposed
general framework to implement instruction-based commu-
nication between accelerators and processors in SoCs. First,
we present the reference architectural context. Then, we dis-
cuss the hardware infrastructure that must be added to it
as part of our proposal. Finally, we present the additional
instructions that must be added to the processor ISA.

A. ARCHITECTURAL REFERENCE

In this work, we assume a heterogeneous SoC as our archi-
tectural reference. The SoC includes a general-purpose pro-
cessor with m cores and n accelerators.

With reference to the taxonomy presented in [5],
we assume these accelerators are integrated on-chip, non-
programmable, but may be reconfigurable and possibly
endowed with heterogeneous memory resources. They accel-
erate tasks in any application domain. From an architecture
point of view, they can have a register file (e.g., 32-bit, 64-bit
registers), any level of cache memories (also no caches),
and one or more addressable local memories. These can be
used to store input data to be consumed by the accelerated
task, or intermediate and output data produced during its
execution. We do not impose any constraint on the nature
of their computing engines. They have access to the phys-
ical memory of the system through a level of the memory
hierarchy. Without loss of generality, we assume that they are
connected to the LLC, which is located on the chip and shared
between cores and accelerators — which is a common choice
adopted by SoC designers [7], [8], [19], [23], [24]. They are
equipped with a DMA controller to load/store data from/to
the LLC without CPU intervention.

Cores and accelerators are connected through an intercon-
nect, which can be a simple bus or a ring-/mesh-based NoC.
We take as a reference a ring-based NoC, which is general
and is used in different kinds of conventional accelerator-
processor interconnections [25], [26]. The evaluation of dif-
ferent kinds of NoCs is beyond the scope of this paper and
is left as future work. The network allows any core to send
messages/packets to any accelerator and vice versa. We refer
to these messages as Accelerator-Core Messages (ACMs).

B. IXIAM HARDWARE INFRASTRUCTURE

IXIAM requires some hardware additions to the SoC
described above as a necessary infrastructure to allow the pro-
posed instructions to control on-chip accelerators. We iden-
tify these additions as the IXIAM Hardware Infrastructure.

33770

SoC

| USER-SPACE INTERRUPT MODULE |

1

queue register
Accelerator 0
[S

Reservation| | Status
queue register

Accelerator 1
[S

)
Reservation| | Status
queue register

Accelerator n

~ — b

[—

Core 0

interface
A
y
A
y
interface

core-interconnet

A
y
interface

INTERCONNECT

0

o

=

(]

core-interconnet
interface

A

\ 4

r

A\ 4

interface

Last-Level Cache

FIGURE 1. Reference SoC with IXIAM Hardware Infrastructure
components highlighted in green.

Figure 1 shows the reference SoC architecture, with the addi-
tions highlighted in green.

Each accelerator must be identified by a unique id (in the
following, accld). Without loss of generality, we assume an 8-
bit id, to support up to 256 different accelerators on the same
SoC. This id must be known to the NoC in order to deliver
ACMs coming from the cores to the right target accelerator.

Accelerators must be reservable to processes running on
the cores. To achieve this, each of them must be equipped
with a FIFO reservation queue where reservation requests
from different processes must be enqueued up until the queue
is full — then, the requests are dropped. An accelerator is
considered reserved to the process whose id (procld in the
following) is at the front of the queue. We denote this process
as the owning process. We adopt a process-based reservation
scheme rather than a core-based or thread-based one for two
main reasons:

o Processes are the natural entities to take advantage of
task acceleration by offloading portions of work to ded-
icated accelerators;

« In a standard multi-core environment, a process can be
made of various threads of execution, and the OS is free
to schedule them on any core at any time according to a
policy.

Some authors prefer a thread-based reservation scheme [2].
We could also adopt this solution with no substantial modi-
fications to our proposal. However, reserving an accelerator
to a single thread of execution would force the programmer
to concentrate all the accelerator-related code in the same
thread. With a process-based reservation scheme, conversely,
the code can be structured more freely: for instance, one
thread could be used to ask for reservation in a timer-like

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

Main Memory
A Y
Accelerator
A4
Memory L, Computation Reservation
i Unit queus
2 @
DMA E . =
7]
) E HO® ®E
engine o 7}

Memory
controller

l«— Controller

4 I

Status
register
[v

Accelerator-Interconnect interface |
3

A

A

Interconnect

FIGURE 2. Sample internal structure of an accelerator.

fashion, signaling another thread to transfer data/launch
accelerated tasks if reservation succeeds or execute non-
accelerated fallback code otherwise, etc.

We consider an accelerator busy when it is executing an
accelerated task. Each accelerator must be equipped with
a status register to summarize the accelerator’s status. Its
values are interpreted as pertaining to three possible statuses:

« “0” if the accelerator is not busy and no errors occurred;
“1” if the accelerator is busy and no errors occurred;
« error code if an error occurred.

The owning process can read the status register through a con-
venient instruction that will be discussed in Subsection II-D.
If the status register holds an error state, it is cleared upon
read. Figure 2 shows a block diagram of an accelerator with
internal details.

In order to support a user-space interrupt mechanism,
the SoC must be augmented with an ad-hoc module to let
processes register their routines and hold information about
occurred user-space interrupts, which include, for each inter-
rupt: the process that should handle it, the accelerator where
it originated, and some parameters to detail its reason. It will
be discussed in-depth in Subsection II-E.

The last components of the IXIAM Hardware Infrastruc-
ture are the modules that allow cores and accelerators to
deliver messages through the NoC. We denote them as the
core-NoC interface and the accelerator-NoC interface. Both
have sender and receiver complementary roles, as they take
command from their attached module (core in one case,
accelerator in the other) and send/receive messages through
the NoC.

Summarizing, the IXIAM Hardware Interface includes:

« aunique identifier accId for each accelerator;

VOLUME 11, 2023

e« areservation queue for each accelerator;

« a status register for each accelerator;

« auser-space interrupt module on the SoC;

« a core-NoC interface for each core;

« an accelerator-NoC interface for each accelerator.

C. ACCELERATOR-CORE MESSAGES
Every accelerator-oriented instruction causes an ACM send-
ing from the core where it is executed to the target acceler-
ator. We call it a request ACM, as opposed to the response
ACM that may be sent back from the accelerator to the core.
The majority of instructions do not need a response ACM.
In those cases, the instructions are committed immediately
right after a request ACM has been sent. Conversely, some
instructions need a response ACM to carry a return value that
will be written in an output register, typically specified as
instruction operand. Thus, they will be committed when the
response ACM is received.

Based on this, we define synchronous and asynchronous
instructions as follows:

« Asynchronous instructions are committed immediately
after sending a request ACM;

o Synchronous instructions are committed when the
response ACM is received on the core.

Although synchronous instructions need a response ACM
reception to be committed, they do not need to stall the
pipeline till such event. For instance, in a core with out-of-
order execution, no special care is needed apart from the
ordinary Read after Write (RAW) dependency management
among instructions: since these instructions have an output
register, successive dependent instructions (i.e., having such
register as input) are blocked until the synchronous instruc-
tion is committed.

Figure 3 shows the ACMs associated to the proposed
instructions, that will be discussed in-depth in the next sub-
section. Without loss of generality, we adopt a sample format
organized in indexed 64-bit packets.

Every ACM contains the parameters needed by the NoC
and the accelerator to execute the intended operations. The
first byte, Inst, identifies the executed instruction, and the
others are usually provided as instruction operands. coreId
and procId make an exception.

corelId is present only in CHECK, ISBUSY, and TRS,
which are the only synchronous instructions in our proposal.
It identifies the id of the core where the instruction has been
executed. This is necessary because, this way, the accelerator
can enrich the response ACM with the same coreId it
received in the request, so the NoC can deliver it to the right
core, the output register can be written and the instruction can
be committed.

procId is necessary to identify the process that want
to communicate with the accelerator. procId is used to
reserve the accelerator to the calling process, and to check
the legitimacy of subsequent requests, e.g., data transfers
and operation execution, that should be granted only to the

33771

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

PACKET IDX
RESERVE 0 Inst unused accld
RELEASE 0 78 5556 63
1 procld
0 63
CHECK 0 Inst unused coreld | accld
ISBUSY 0 78 47 48 5556 63
1 procld
0 63
EXEC 0 Inst unused opld accld
0 78 23 24 55 56 63
1 procld
0 63

PACKET IDX
TGL 0 Inst pnused| size accld
TGS 0 78 1516 5556 63
L 1 procld
TRL 0 63
2 src_cpu/src_acc
0 63
3 dest _cpu/dest _acc
0 63
TRS 0 | Inst |coreld size accld
0 78 1516 5556 63
1 procld
0 63
2 src_acc
0 63

FIGURE 3. Possible request ACMs generated by different instructions, organized in 64-bit packets.

owning process. Since this value determines uniquely what
can be done (or not) with an accelerator, it cannot be a
user-provided parameter for security reasons. A malevolent
process could easily disguise itself as another one by simply
using another procId value. For this reason, this value is
read automatically by the IXIAM Hardware Infrastructure
from the Control and Status Registers (CSRs). An example of
process identifier that would work in our proposal could be
the pointer to the page table, which uniquely identifies each
process.

The target accelerator is always determined with a user-
provided accId parameter, which is needed by all the
instructions and is present in all the related request ACMs.
In this example, 8 bits are dedicated to it, so 256 different
accelerators are supported. The NoC reads it to deliver the
ACM to the right accelerator, and generates an exception
like “Illegal Instruction” if this does not correspond to any
accelerator in the SoC.

The remaining parameters will be discussed in the next
subsection as operands of the proposed instructions.

D. ISA EXTENSION

In the following, we present our accelerator-oriented ISA
extension. In principle, it could be implemented as an exten-
sion to any existing ISA, as it is independent on existing
instructions. In this work, we design it as a RISC-V extension.
More precisely, we extend the RISC-V RV64I instruction
set with Zicsr instructions [27], and implement our instruc-
tions using the R-type format. All the operands are register
operands: they indicate the register in which the needed

33772

TABLE 1. Details of the proposed instructions. CPU-reg operands are
read from a conventional CPU register (e.g., t0). CSR operands are read
from Control and Status Registers.

Instruction Input Output CPU-reg CSR

RESERVE accld procld

CHECK accld ret procld

TGL size, src__cpu, accld procld
dest__acc

TGS size, src__acc, accld procld
dest__cpu

TL size, src_ acc, accld procld
dest_acc

TRL size, src__reg_ cpu, accld procld
dest__acc

TRS size, src__acc ret accld procld

EXEC accld, opld procld

ISBUSY accld ret procld

RELEASE accld procld

value is stored. Our instructions have the minimum privilege
level, so they can be executed by user-space code. Table 1
summarizes them.

1) RESERVE INSTRUCTION

Conventionally, accelerator-processor communication in
SoCs needs to start with some handshaking protocol between
the two entities involved. For instance, the processor could
ask if the requested accelerator is ready to work or not. If so,
it could reserve the accelerator and offload work to it until it
is done. Then, it can release it.

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

In this work, we adopt this scheme on a per-process
basis, allowing the process to reserve the accelerator for
itself and offload work to it from any thread of execution,
independently of the core where it is scheduled. We pro-
pose the RESERVE instruction to achieve this, with format
RESERVE <accId>.

RESERVE execution generates an ACM containing
accId, which is the only operand of the instruction, and
procId, which is provided by the IXIAM Hardware Infras-
tructure as specified. The instruction is asynchronous: it is
committed immediately, and the ACM is sent through the
NoC to the target accelerator identified by accId.

As discussed in Subsection II-B, if the accelerator is free,
the received procId is enqueued and the calling process
becomes the owning process. Conversely, if the queue is
not empty neither full and procId has not been previously
enqueued, it is enqueued to wait for its turn to own the
accelerator. Finally, if the queue is full the reservation request
is just dropped. Listing 1 shows the RESERVE algorithm.

This way, the accelerator reservation is compatible with a
multi-process environment, which is the most common use
case nowadays. However, the choice of having a reservation
queue in hardware permits implementing the whole logic in
a secure manner without asking for OS intervention, which is
beneficial from a latency point of view.

Algorithm 1 Micro-Operations of RESERVE

Instruction
RESERVE(accld, procld);
acc = accelerators[accld];
if acc.reservationQueue.empty() then
acc.reservationQueue.enqueue(procld);
acc.status = RESERVED;
else if not acc.reservationqueue.full() then
‘ acc.reservationQueue.enqueue(procld);
else
| /* NOP */
end

2) CHECK INSTRUCTION

As discussed, RESERVE instruction is asynchronous and no
feedback is sent back to the user. In order to query the accel-
erator about the reservation outcome, we provide the CHECK
instruction, with format CHECK <accId> <ret>.

Same as RESERVE, also CHECK causes an ACM sending
where accId is used to select the target accelerator and
procId is added by the IXIAM Hardware Infrastructure to
identify the calling process. Moreover, coreId is added to
the request to identify the core and send back the response
ACM.

The accelerator that receives the CHECK ACM accesses
the reservation queue and checks whether it contains
procId or not. Depending on this check, the outcome
can be threefold: a) it can be 0 (MISSING), if procId is

VOLUME 11, 2023

not contained in the queue; b) it can be 1 (ENQUEUED),
if procId is in the queue but it is not at its head; and c)
it can be 2 (RESERVED), if procId is found at the head of
the queue.

The outcome is written into a response ACM together with
coreIdand sentthrough the NoC. When itis received by the
core identified by coreId, it is written in the ret register
so it can be read by the program logic.

In Subsection II-E, we discuss user-space interrupts and the
possibility to employ that mechanism to avoid synchronous
instructions altogether. Listing 2 summarizes the CHECK
algorithm.

Algorithm 2 Micro-Operations of CHECK Instruc-
tion
CHECK(accld, procld, ret);
acc = accelerators[accld];
if not acc.reservationQueue.contains(procld) then
| ret=0; /% MISSING */
else if acc.reservationqueue.head() # procld then
| ret=1; /+ ENQUEUED =/
else
| ret=2;
end

/* RESERVED =/

3) TRANSFER INSTRUCTIONS

Accelerators can have various memory resources: a regis-
ter file, cache memories, and one or more local memo-
ries. These can serve different purposes and be optimized
for different tasks. NVIDIA GPUs’ local memories are an
example of such variability: shared memory is optimized for
coalesced accesses from neighbor CUDA threads, constant
memory is optimized to broadcast the same value to numerous
threads, and texture memory is optimized for spatially local
accesses [28], [29].

Local memories can be further grouped into non-
addressable and addressable memories. While the former
are managed by the accelerator transparently, e.g., to store
intermediate results, the latter can be explicitly managed by
the programmer. We propose five instructions to load data
from/store data into addressable local memories or registers
in a register file.

The operands of these instructions can refer to local mem-
ory locations or accelerator register files. To implement
them, we adopt the IXIAM Location Format, exemplified
in Figure 4. Bit 40 specifies whether a location indicates
an address in local memory (0) or a register 1. Bits 61-63
indicate the local memory number in the accelerator: since
there can be multiple local memories in each accelerator,
we dedicate 3 bits to specify the one referred by the memory
location — thus, we support 8 possible local memories for each
accelerator. If bit 40 is set, this field is meaningless and is
just ignored. Finally, bits 0-39 indicate the address in local
memory, if bit 40 is 0, or the register number, if bit 40 is 1.

33773

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

60 41 39 0

Reserved Address / Register number

1 40 Rég or mem

[+}]
© Local Mem Number|
N

FIGURE 4. IXIAM Location Format. Bits 0-39 are dedicated to the location,
which can be a memory address or a register number, depending on bit
40. Bits 61-63 indicate the local memory number in the accelerator.

Thus, we admit local memories with up to 2*° bytes (1 TiB)
or, equivalently, register files with 240 registers.

All the transfer instructions have four operands. Since the
RISC-V ISA is limited to 3 operands, we choose to pass the
fourth in a convenience register - e.g., t 0.

All the transfer instructions generate a request ACM that
contains a procId value read by the IXIAM Hardware
Infrastructure to identify the calling process. Its role, in this
case, is to let the target accelerator establish whether the
transfer operation can be performed or not: the operation is
performed only if the accelerator is reserved to the process
identified by procId, and the request is ignored otherwise.

a: TGL, TGS

Transfer Global Load (TGL) is used to load data from the
main memory into a location in the accelerator, and Transfer
Global Store (TGS) stores data from a location in the acceler-
ator into the main memory. Thus, load and store are expressed
from the accelerator point of view.

Their formats are: TGL <size, src_cpu, dest_
acc, accId> and TGS <size, src_acc, dest_
cpu, accIld>. accId, the fourth operand, is read by a
convenience CPU register.

size indicates the data size in bytes to load/store.
dest_acc in TGL and src_acc in TGS are locations on
the accelerator (local memory address or register) expressed
in the IXIAM Location Format described above. Finally,
src_cpu in TGL and dest_cpu in TGS are pointers to
locations in the main memory.

In this proposal, we suppose the virtual-to-physical address
translation is performed CPU-side. The programmer speci-
fies a virtual address in src_cpu or dest_cpu operands,
which is translated into a physical address phys_addr. This
is put in the request ACM that is sent to the accelerator,
so it can load/store data from/to phys_addr with DMA
techniques.

It is possible that the address range involved (i.e., [phys_
addr, phys_addr 4+ size)) spans more than one physical
memory page. If that is the case, a single TGL/TGS instruc-
tion generates multiple ACMs, each with a physical address
and a partial size that refers to a piece of the buffer located in
the same memory page.

At this point, a page fault can occur on the accelerator if the
accessed physical page has been swapped out. In this case,
the accelerator can send an interrupt to the OS that would be

33774

served by loading the page and letting the accelerator retry the
memory transfer. In general, pinning the memory involved in
transfers is sufficient to avoid page faults.

b: TL

The Transfer Local (TL) instruction is used to move data
between different locations on the accelerator. Its formatis TL
<size, src_acc, dest_acc, accId>, with both
src_accand dest_acc expressed in the IXIAM Location
Format. What said about size and accId operands in
TGL/TGS description applies also here. In this case, no mem-
ory translation is involved, since both locations are on the
accelerator.

c: TRL, TRS

Transfer Register-wise Load (TRL) and Transfer Register-
wise Store (TRS) are two convenient instructions to load/store
data into/from the accelerator without accessing the main
memory. The source in TRL and the destination in TRS
are CPU registers. TRL reads a value from a CPU register
and loads it into an accelerator location, while TRS reads a
value from an accelerator location and stores it into a CPU
register. Since TRS has an output register, it is a synchronous
instruction — as such, it is committed when a response ACM
is received. Thus, coreId is added to its request ACM with
the usual role.

The instruction formats are TR, <size, src_reg_
cpu, dest_acc, accId> and TRS <size, src_
acc, accld> <ret>. dest_acc and src_acc are
locations expressed in the IXIAM Location Format. Also in
this case, accId is read from a convenience register in both
TRL and TRS.

4) EXEC INSTRUCTION

The EXEC instruction permits executing an operation on the
accelerator. It is intended to trigger the actual computation on
the accelerator, usually manipulating data previously stored
in registers and local memories.

The EXEC formatis EXEC <accId, opId>.Asusual,
accId indicates the target accelerator. Since an accelerator
can be capable of performing various operations, we dedicate
the opId parameter to specify the operation to perform.
As shown in the EXEC request ACM in Figure 3, 32 bits
are dedicated to this value — so 232 possible operations can
be performed. This does not limit the number of possible
operations: real accelerators can take advantage of registers
to let programmers specify operation parameters (e.g., start
address in local memory, size, operation mode, etc.) and use
opId as a coarse-grained operation identifier. In principle,
all the parameters needed could be written in registers and
opId remain unused. We will discuss some possibilities in
Section I'V.

The EXEC instruction causes a request ACM to be sent
with procId parameter with the usual meaning. Same as the
transfer instructions, it is used by the accelerator to check if
the request is legitimate or not. If it is, the accelerator sets

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

the status register to “busy” 1 and the intended operation
can start execution. Since the operation can last for several
clock cycles, EXEC has been designed as an asynchronous
instruction: it is committed immediately, and the process can
continue executing different instructions without waiting for
operation completion. In principle, its thread of execution
could even be de-scheduled by the OS while the accelerator
completes its task.

When the operation completes, the accelerator updates the
status register with “non-busy” (0) or an error code if the
execution was not successful.

5) ISBUSY INSTRUCTION

The ISBUSY instruction is used to query the status of the
accelerator, which is stored in the status register. Its format
is: ISBUSY <accId> <ret>.

As usual, accId denotes the target accelerator. ret
denotes the register where the return value, which is read from
aresponse ACM, is written. As explained in Subsection II-B,
the possible values are O if the accelerator is not busy, 1 if
it is busy, or an error code. The error code informs of the
failure of a previous transfer or EXEC instruction, which are
the only ones that can fail accelerator-side.” If that is the case,
the status register is cleared and set to 0.

Since ISBUSY is a synchronous instruction, its request
ACM contains coreId as well as procId. In principle, the
accelerator status could be communicated also to processes
that do not own it. However, revealing this information could
constitute a security risk, as a malevolent process could gather
information about the accelerator usage of another process.
For this reason, the procId value is checked and, if it does
not correspond to the owning process, an error is written in the
ret register or a default value (whether O or 1) independently
of the actual accelerator status.

6) RELEASE INSTRUCTION
Finally, the RELEASE instruction is intended to release the
accelerator when the owning process finishes using it. Its
format is: RELEASE <accId>, with accId denoting the
target accelerator as usual.

The instruction execution causes a request ACM sending
containing the procId of the calling process. When the
instruction is received, it is eliminated from the reservation
queue of the accelerator. If the calling process’ procId
occupies the head of the queue, the accelerator is assigned
to the next procId in the queue or is set idle if the queue is
empty.

E. IXIAM USER-SPACE INTERRUPT MECHANISM

In this subsection, we discuss our proposal for a user-space
interrupt mechanism. Before presenting its details, we briefly
examine instruction synchronicity.

2 All instructions can fail before being delivered if accId does not refer
to any existing accelerator.

VOLUME 11, 2023

1) INSTRUCTION SYNCHRONICITY

Among the proposed instructions, summarized in Table 1,
only CHECK, TRS, and ISBUSY are synchronous. These
need a return value from the accelerator, which they read from
a response ACM and write it into an output register in the
calling process.

For CHECK and ISBUSY instructions, the accelerator
should immediately manage the request and send a value
independently of its activity: even if it is busy executing a
long operation, CHECK and ISBUSY requests should not
be enqueued and should be managed immediately. This way,
their latency would be known upfront and would amount to
roughly the NoC round-trip time.

Conversely, the TRS case may be more critical, as the
accelerator could be occupied in a long transfer operation
that may involve the target local memory, and thus it could
be forced to enqueue the transfer demanded by the TRS
request and perform it later. So, the latency associated to a
TRS instruction cannot be known in advance, and the core
executing it could remain stalled for many clock cycles in the
presence of RAW dependencies.

Another instruction that, in principle, could be designed
as synchronous is EXEC, with the calling process waiting
for the execution completion and getting a return value that
informs it of the execution outcome. However, the execution
of an operation on the accelerator can take up to thousands or
even millions clock cycles, depending on the accelerator, and
the possibility that a RAW dependency could stall the core for
so much time makes this solution unfeasible: it could cause
a huge performance degradation and would even have an
impact on the whole system, since the OS could not dispose
of the stalled core — e.g., to schedule other processes’ threads
of execution. Hence, the core should be able to continue its
normal operation after delivering the EXEC instruction to
the accelerator and should work in parallel with accelerator
computations. For this reason, we keep EXEC asynchronous
and rely on the ISBUSY synchronous instruction, that has
a predictable and short latency, to allow the programmer to
query the execution state. The intended use of ISBUSY is thus
as part of a polling mechanism: after executing an EXEC, the
process keeps calling ISBUSY in loop until it returns O or an
error code, sleeping for a custom time interval or doing other
work in-between loop iterations. In both cases, the process
keeps a core busy-waiting.

2) IXIAM INTERRUPT MODULE

In all the aforementioned scenarios, an interrupt-based solu-
tion could prove beneficial. Synchronous instructions could
be made asynchronous by eliminating the output registers and
committing the instructions immediately upon sending their
associated request ACM; the return value could be retrieved
in the management of an interrupt originated on the acceler-
ator. EXEC completion could be communicated through an
interrupt as well, freeing the calling process from depending
on multiple ISBUSY invocations.

33775

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

Although it is possible to utilize the inherent interrupt han-
dling mechanism in the core, its significant overhead asso-
ciated with context switching and Interrupt Service Routine
(ISR) invocation motivate us to propose a new lightweight
interrupt mechanism. It could be used to make synchronous
instructions asynchronous and also to inform the process
of execution completion. In line with our ISA extension,
we design the IXIAM User-space Interrupt Mechanism to live
mostly in user-space.

As anticipated in Subsection II-B, the IXIAM User-space
Interrupt Mechanism requires an ad-hoc module on the SoC
—in the following, the IXIAM User-space Interrupt Module.
This module is necessary to gather interrupt messages from
the accelerators, keep information, and deliver messages to
the cores. The whole mechanism is synthetically depicted in
Figure 5 and explained in the following.

In order to handle user-space interrupts, each process
should select a function that acts as a User-space Inter-
rupt Service Routine (UISR). To achieve this, we propose
the Register User-space Interrupt Service Routine (RUISR)
instruction, with the following format: RUISR <accId,
func_addr>, where func_addr indicates the address
of the UISR, and accId specifies the accelerator whose
interrupts should be handled by that routine. Without loss of
generality, a possible UISR C signature is the following:

void sample_uisr (const uisr_params* params);

Where the only parameter is a pointer to a C struct con-
taining the interrupt parameters, such as the accId where
the interrupt originates, an enum to indicate the interrupt
reason, and other possibly useful values to handle it. RUISR
execution stores the UISR address in a convenient location
of the program memory (e.g., in the Process Control Block),
so it can be retrieved and invoked when a user-space interrupt
occurs. It is sufficient that a process executes RUISR once for
each accelerator it intends to use.

When an interrupt occurs on an accelerator, this sends a
User-space Interrupt Message (UIM) to the IXIAM User-
space Interrupt Module. The module stores the interrupt
information into a private table that can be indexed per
accId, since at most one process at once can own an
accelerator — a fixed size of 256 entries would be sufficient
in our proposed implementation. This information includes
the aforementioned interrupt parameters, the procId of the
owning process, and a coreId. The latter refers to the
core that sent the request ACM carrying the command that
originated this accelerator-side interrupt. As we specified, the
interrupts can be associated to make synchronous instructions
asynchronous or inform the core of the execution completion
event. In the first case, the request ACMs already include the
id of the originating core, as shown in Figure 3. In the second,
it must be added to the EXEC request ACM for this purpose.

Then, the IXIAM User-space Interrupt Module sends the
UIM to the core identified by coreId and erases its entry.
At this point, that core may be executing a thread associated to
procId (it was the case when the request ACM was sent),

33776

or not. In the first case, the core will handle the user-space
interrupt by jumping into the stored UISR like a classic user-
space function, adopting the same calling conventions dic-
tated by the ISA. If the second case occurs, different policies
can be adopted: the user-space interrupt could be elevated to
a classic interrupt that the OS would be responsible to serve
(or discard it if the owning process died), also accessing the
owning process’ UISR; conversely, it could be enqueued and
served later.

Ill. DISCUSSION

In this Section, we do an in-depth discussion of some aspects
that affect our proposal at various levels, as well as we intro-
duce possible development and implementation variations of
the proposed scheme.

A. MEMORY COHERENCY

In the proposed configuration, accelerators and processor’s
cores share the memory space, as they have access to the same
physical memory through the on-chip LLC. Through TGL
and TGS instructions, they load data buffers from the main
memory and store data buffers into it, respectively. Since
these buffers are located in a memory space shared with the
cores, data coherence issues may arise: a datum write from
the accelerator, issued with a TGS, would update the value in
the LLC (and DRAM, if LLC is a write-through cache), but
an older copy could be cached also in the lower levels of one
or more cores’ cache hierarchy — L1 and L2. If no coherence
mechanism is enforced, a subsequent read performed by such
acore of its local copy in the L1 would read an outdated value.
The opposite is true, as a core could modify a local datum and
the updated value would not be read by a subsequent TGL,
unless both L1 and L2 caches adopt write-through policies or
some coherence mechanism is enforced.

Core-accelerator coherence is an issue that needs to be
addressed in order to have correct programs. According to
state-of-the-art, accelerator coherence (or lack of) in SoCs
can be addressed in four different ways [24], [30]:

o Non-Coherent;
o LLC-Coherent;
e 1/O-Coherent;

« Fully-Coherent.

Non-Coherent Accelerators access directly the DRAM
through DMA bypassing the cores’ cache hierarchy.
In order to get coherent data, the processor caches must
be flushed upon accelerator access, so to store updated
values in the main memory. This protocol is affordable
if large DMA bursts are supported, if few accelerators
are connected to the system and each of them executes
long operations — i.e., at least 1 x or 2x DRAM access
time. In order to use this protocol, data read/written by
the accelerator must be locked.

LLC-Coherent Accelerator’s memory requests are sent
directly to the LLC. The accelerator is kept coherent
with the LLC, but not with the private caches of the

VOLUME 11, 2023

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

accld| coreld [procid [params accld| coreld [procid [params accld| coreld [procld |params
° ‘ ‘ UM 0 ‘ ‘ um 0
. 1 [| 2 X Cone . . 1 [[westooe]| 1 1 .
o —— o[= e
e e e Sy 255
user-space interrupt table user-space interrupt table user-space interrupt table
CPU IXOAM User-space Interrupt Module accelerators CPU IXOAM User-space Interrupt Module accelerators CPU IXOAM User-space Interrupt Module accelerators

(a) An interrupt occurs on accelerator n. It
sends a UIM containing the interrupt infor-

(b) The module stores the interrupt informa-
tion carried by the UIM at the n-th row of its

(¢) The module forwards the UIM to the m-
th core, which delegated to the accelerator

mation to the IXIAM User-space Interrupt
Module.

FIGURE 5. The IXIAM User-space Mechanism.

processor cores, which must be flushed before accel-
erator’s reads and invalidated after accelerator’s writes.
This model is efficient only if the LLC has high hit rates.

I/0-Coherent Similar to the LLC-coherent accelerator,
since accelerator requests are sent directly to the LLC
also in this case. The main difference is that the cache
hierarchy itself maintains full hardware coherence, and
the LLC is responsible for invalidating or recalling data
in the lower-level caches.

Fully-Coherent Accelerators are included in the coher-
ence protocol of the processor cores, usually MESI or
MOESI. This is a common choice for accelerators that
have their own private caches. This protocol permits
achieving data coherence transparently, but can be harm-
ful for the system performance if the accelerator has
frequent memory accesses, since it would block the bus
to the cores most of the time.

In the state-of-the-art, each of these protocols are used
based on the requirements and system design. Often, coher-
ence choices are done based on the nature of the accelerator.
For instance, the coherence protocol used by GPUs is entirely
software-based, with this usually assuming race-free data
accesses, regular data storage, and coarse-grained synchro-
nizations [31]. Cache invalidations and flushes are performed
at synchronization points. An alternative is DeNovo [31],
which does not require writer-initiated invalidation, because
it assumes property of written data. Conversely, readers are
responsible for invalidations and are tracked by the hardware.

Putting it all together, although our proposed instructions
are compatible with any coherence protocol, in this work we
assume LLC-coherent accelerators. From the architectural
point of view, as shown in Figure 1, all the accelerators are
connected to the LLC. Before a TGL instructions that would
load data into the accelerator, private L1 and L2 caches of
the cores must be flushed in order to update data values at
least in the LLC. If supported by the architecture, the best
option would be to flush only the dirty cache lines involved.
Before a TGS instruction that would store data from the
accelerator into the LLC, all private copies in L1 and L2
caches must be invalidated. Again, if supported, the best
option would be to invalidate only the relevant lines —i.e., do
a selective invalidation. This means that, in the LLC-coherent

VOLUME 11, 2023

user-space interrupt table.

the command that generated this user-space
interrupt.

case, our instructions should be integrated with proper signals
addressing the caches. It could be done by invoking cache-
oriented instructions before ours, if provided by the ISA, or by
sending the proper signals during TGL and TGS execution.

B. DATA CONSISTENCY

Another problem that may arise from different processing
elements (i.e., cores and accelerators) loading data from /
storing data to a shared memory space in parallel is the
difficulty to maintain data consistency. This issue is relevant
in our proposed framework.

To illustrate it in the context of our proposal, let’s consider
Listing 3. The registers in the example hold the following val-
ues: £ 0 holds an accelerator id accId, t1 holds a pointer to
the main memory cpu_ptr, t 2 holds alocation in the accel-
erator’s local memory expressed in IXIAM Location Format
acc_ptr, t3 holds a buffer size in bytes size, and t4
can hold any value. Therefore, the first instruction instructs
the accelerator to store size bytes of data from the loca-
tion acc_ptr to the main memory, at address cpu_ptr.
The following instruction loads 64-bit from cpu_ptr into
the register t4. So, it is a classic Read-After-Write (RAW)
dependency: the LD instruction loads a value from a memory
location that should have been just written by the previous
TGS instruction — thus, it should read an updated value.

Algorithm 3 Sample Code Causing Memory Con-
tention

/+ tO0=acclId, tl=cpu_ptr,
t2=acc_ptr, t3=size, td=any */

TGS 3, t2, t1;

LD t4, 0(t1);

TGS, as previously specified, is committed immediately
on the core side as soon as the request ACM is sent. It is
possible that, while the following load instruction LD enters
the pipeline stages to be fetched, decoded, and executed, the
data transfer is not complete, or did not even start if the
request ACM has not reached the accelerator yet. Even worse,
in principle, if the processor implements Out-of-Order (O00)
execution, the LD instruction may be executed even before the

33777

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

TGS instruction. In both cases, it is possible that LD reads
an outdated value and the correctness of the program is not
guaranteed.

This is a very well-known and studied problem. Various
solutions have been proposed during the years to address it,
since its emergence that dates back to the diffusion of multi-
tasking execution [32], [33].

Commonly, the processes use semaphores to access shared
memory in a mutually exclusive manner [34]. They disallow
shared data swapping and allow the OS kernel to avoid the
internal page locking code. In this regard, some levels of
concurrency control is applied to maintain data integrity in
the shared memory.

Atomic Read-Modify-Write (RMW) instructions used in
different ISAs, e.g., x86, IBM Power, ARMVS, and RISC-V
are another solution to synchronize operations [35]. They
are used either directly by programmers or OS libraries
to provide higher-abstraction synchronization mechanisms.
Locks, barriers, and other constructs are utilized to estab-
lish mutual exclusion among threads of parallel applica-
tions in those synchronization mechanisms [36]. The atomic
RMWs in current Intel x86 processors serialize all out-
standing load and store operations, and block subsequent
memory operations until their commit [37]. Through the
use of memory fences, i.e., fetch-and-increment, test-and-
set, and compare-and-swap, this serialization can be easily
implemented [38], [39].

Another way to guarantee consistency is Load Linked/-
Store Conditional (LL/SC) pairs [40]. LL/SC are pairs of
instructions that can be used to implement, in software, the
same atomic operations as RMWs. Unlike the latter, how-
ever, LL and SC are distinct instructions, usually used to
surround another operation. Thus, the whole primitive can be
interrupted, e.g., by a context switch in-between. Moreover,
an LL/SC pair will fail due to relevant external events such as
coherence invalidations and cache evictions [35].

Another option are memory arbitration mechanisms, which
have been proposed to decrease the impact of memory con-
tention in contexts with multiple cores [32], [41]. This arbitra-
tion mechanism have been presented by the PREM execution
model [42], [43], BWLOCK [44], and MEMGUARD [45].

In the rather common case of a CPU paired with an
integrated GPU, both computing elements have access to
the same physical memory — so, a reliable synchronization
and memory consistency support is needed [31]. Two main
memory consistency models widely used in GPUs are Dara-
Race-Free (DRF) [31], [46] and Heterogeneous-Race-Free
(HRF) [47]. Common implementations of DRF and HRF
enforce a program order requirement. DRF ensures sequen-
tial consistency to datarace-free programs, while HRF is
defined similarly to DRF to handle scoped (i.e., a hardware-
inspired mechanism that exposes the memory hierarchy to
the programmer) synchronization problem of DFR. Each
synchronization access has a scope attribute in the pro-
posed HRF [31], [48]. Although HRF is a very well-defined

33778

model, it cannot hide the inherent complexity of using
scopes.

The CUDA programming language for NVIDIA GPUs
defines two memory fences, __ threadfence and
__threadfence_block, to enforce consistency between
loads and stores [29], [49]. VectorPU expands CUDA with
C++ functions that act as access specifiers for buffers [50].
This protocol realizes automatic creation of on-demand
copies of to-be accessed elements in device memory, with
all the copies kept coherent and data transfers performed only
when needed. Global Memory for Accelerators (GMAC) [51]
expands CUDA as well with device-independent alloca-
tion/deallocation primitives that enforce coherence.

Some works are based on data-containers, sometimes also
referred to as smart containers: objects to perform coher-
ent software caching of accessed elements in the different
memory spaces [52], [53]. Therefore, they can be reused in
order to avoid unnecessary data transfers, which are usually
transferred lazily when needed.

As manually managing data to ensure programmers to
have a consistent program state between the CPU and GPU
memories is tedious and error-prone, some semi-automatic
techniques have been proposed. These techniques are usually
annotation-based, with programmers specifying the access
modes of buffers in memory [52].

There are also completely automatic solutions to man-
age data and optimize communication. Some examples are
Inspector-Executor (IE) [54], CPU-GPU Communication
Management (CGCM) [55], and DyManD, an automatic sys-
tem to manage complex and recursive data-structures without
static analyses [56].

In general, relying on an explicit use of ad-hoc fences is the
most straightforward solution to address consistency issues.
In its most basic version, it puts the burden on the applica-
tion programmer, but it could be easily wrapped in library
constructs or be integrated in (semi-)automatic techniques.

In this work, we define our fence and show how to use it
explicitly. We leave an in-depth analysis of alternative, more
sophisticated techniques to future work.

We propose an ad-hoc fence instruction: Accelerator
FENCE (AFENCE). We take inspiration from the simple
RISC-V FENCE instruction, which blocks all the subsequent
loads and stores. Its format is AFENCE <accId>, where
accId identifies the target accelerator. Also in this case,
procId is added to the associated request ACM with the
usual role: to check if the process executing the instruction
is the same as the owning process, so to ignore the request if
that is not the case.

The AFENCE instruction should be selectively inserted
in the code flow to enforce consistency. It should be placed
between a read instruction and a write instruction involving
overlapping memory locations. Listing 4 shows the three
RAW hazards solved by using AFENCE this way, with the
first one being the example from Listing 3 corrected with the
fence.

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

Algorithm 4 Three Possible Core-Accelerator RAW
Hazards Solved With AFENCE Instruction
/+ tO=accld, tl=cpu_ptr,
t2=acc_ptr, t3=size, t4=dummy =*/
/* acc—>core x/
TGS t3, t2, t1;
AFENCE t0;
LD t4, 0(t1);
/x core—>acc %/
SD t4, 0(t1);
AFENCE t0;
TGL t3, t1, t2;
/* acc—>acc */
TGS 13, t2, t1;
AFENCE t0;
TGL t3, t1, t2;

We implement AFENCE as a synchronous instruction.
It drains the Load-Store Queue (LSQ), and prevents any
subsequent load or store instruction from surpassing it,
being it core-oriented (e.g., LD, SD) or accelerator-oriented
(e.g., TGS, TGL). It causes a request ACM to be sent to
the accelerator and instruct it to do the same with its flying
loads and stores: wait for their completion and prevent any
subsequent memory operation to surpass the AFENCE. When
these are complete, the accelerator sends the response ACM
to the core to instruct it to commit the AFENCE and proceed.
Should the accelerator be controlled by a single in-order
instruction queue, the implementation of its logic would be
trivial. It would be sufficient that the response ACM is sent
when the AFENCE is popped from the head of the instruction
queue. Moreover, in that case, the third RAW issue depicted
in Listing 4 would not need any fences and would be solved
by design.

C. WATCHDOG

It is possible that a process does not release the accelerator
after the demanded job is completed. This can happen for
various reasons: a code bug, malicious behaviour, the process
died before executing the release instruction, etc. To prevent
this scenario, we design a hardware wartchdog mechanism that
keeps track of the accelerator utilization.

The watchdog lays in the accelerator interface logic cir-
cuitry and interacts with it: when an accelerator completes
an EXEC operation, the watchdog’s stopwatch starts. If a
RELEASE request is not received after a configurable num-
ber of clock cycles, the watchdog releases the accelera-
tor automatically. The same mechanism can be applied for
any request sent to the accelerator that is not followed,
within a reasonable and configurable time-span, by a request
that would come in a normal utilization flow. An exam-
ple is a RELEASE that would normally be followed by a
CHECK.

VOLUME 11, 2023

D. OS-BASED ARBITRATION

Our instruction extension is designed so all instructions can
be executed from user-space, with the minimum privilege
level. Tasks that would normally require higher privilege lev-
els (e.g., reservation management), usually delegated to the
OS, are implemented in hardware. This way, we are reducing
the latency associated to many operations, as we will show in
the next section.

These functionalities implemented in hardware, despite
taking advantage of a reduced latency, necessarily require a
higher chip area to host the transistors to implement them.
Moreover, the flexibility that can be adopted in a hardware-
based solution is generally significantly lower than that
achievable in software.

Focusing on reservation queues and their management
logic, the hardware reservation mechanism allows users to
leverage accelerators with no OS intervention, pushing their
requests in hardware queues that will extract them with a
FIFO policy. Although this solution could be sufficient for
various real use cases, it could be too limiting for others.
For instance, in heavily virtualized environments, a finer
grain distinction between what users (and their processes)
can do or cannot do would certainly be needed. Configurable
access policies based on subscription options could be needed
as well, even preventing some accelerators from user-space
programs altogether. Thus, a more strict control from the OS,
despite not being the solution with the lowest latency, may be
needed.

We could achieve this by elevating RESERVE and
RELEASE instructions at kernel privilege level. This way,
user processes would rely on apposite system calls to ask
for an accelerator reservation/release, and the system call
execution in kernel-space would implement custom logic
to allow/prevent reservation/release and execute the high-
privilege RESERVE/RELEASE instructions as part of its
code.

Apart from allowing a finer-grained access control, this
solution would simplify the management of other relevant
scenarios. First, watchdog logic could be delegated to the
OS, that could force release of inactive processes, or even
monitor (and limit) the accelerator usage after a configurable
time interval. Any scheduling policy could be implemented
by the OS - e.g., round robin or priority-based schedul-
ing. In the round robin case, the preemption implementation
would require the OS to release the accelerator from the own-
ing process, reserve it for itself, save its state to convenient
locations, restore the state of the next process (if present),
release the accelerator, and reserve it for the newly-scheduled
process. The backed-up state would be restored the next
time the preempted process is scheduled. This is doable by
adding to the high-privilege instructions an explicit procId
operand, which is a safe choice because it would be limited
to kernel-space code.

One of the advantages of relying on user-space instructions
is that the code would work also in virtual environments

33779

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

TABLE 2. System configuration details.

CPU Quad-core, 3.4GHz, RISC-V

L1 I/D Cache 32KB, 8-way, write-back, 64B block size, non-
blocking, 2-cycles access time, private

L2 Cache 512KB, 8-way, write-back, 64B block size, non-
blocking, 10-cycles access time, private

L3 Cache 8MB, 16-way, write-back, 64B block size, non-
blocking, 36-cycles access time, shared

Interconnection | ring-based, 15-cycles average latency

Main Memory DRAM-DDR3, 2GB, 300-cycles access time

with no substantial modifications. Elevating RESERVE
and RELEASE privilege level would not change the
virtualization-friendliness of the proposal, as it would require
only a proper extension of the hypervisor to take care of the
system calls associated to them. This hypervisor modification
would allow an implementation of the subscription policies
mentioned above, and would be possible with a limited effort
from kernel programmers.

IV. EXPERIMENTAL RESULTS

In order to assess the value of our proposed interfacing for
a variety of accelerators, we implement five different accel-
erators that meet the constraints expressed in Section II and
pertain to different domains:

MatMul accelerates matrix-matrix multiplication;

Crypto accelerates data encryption/decryption;

DisparityMap accelerates disparity map calculation;

FFT accelerates Fast Fourier Transform;

CNN accelerates Convolutional Neural Network computa-
tion.

We model them as part of a simulated SoC in the gem5 sim-
ulator v21.2.1 [22]. The SoC includes a quad-core RISC-V
processor, three levels of on-chip caches, and a dedicated
NoC to connect the cores to the accelerators. We enrich the
SoC with the additions dictated by the IXIAM Hardware
Infrastructure, the IXIAM User-space Interrupt Module, and
all the logic necessary to execute the proposed instructions
and the user-space interrupt mechanism. The accelerators are
connected to the L3 cache to access the main memory. The
details of the system configuration are depicted in Table 2.

For each accelerator, we implement a benchmark in which
the accelerator performs one offloaded operation. We execute
each benchmark with two different interfacing and compare
the obtained performance. In one case, we adopt our proposal,
in the other, we use a conventional driver-based solution.

A. SIMULATED ACCELERATORS
We select five accelerators from different domains and with
different characteristics, so to show the flexibility of our
approach in terms of the variety of accelerators supported.
Table 3 lists the CPU-side and accelerator-side latencies
associated to the fetch and decode of each instruction. Accel-
erators receive these commands in request ACMs together
with their parameters, through the interconnect. The latencies

33780

TABLE 3. Latencies associated to the proposed instructions. L¢py is the
number of CPU cycles needed to fetch and decode instructions on the
CPU. Lacc is the number of accelerator cycles needed to fetch and decode
commands on the accelerator.

Command Lcpu Lace Command Lcpu Lace
RESERVE 2 3 TRS 2 1
CHECK 2 3 EXEC 2 1
TGL 2 1 BUSY 2 1
TGS 2 1 RELEASE 2 3
TL 2 1 AFENCE 2 1
TRL 2 1

in the table are expressed with respect to their clock cycles
and are the same for all the simulated accelerators.

1) MatMul

We design a Matrix Multiplication accelerator, MatMul in
this paper, that calculates the matrix C € RM*P as the
product of matrices A € R¥*N and B € RV*P, according
to Eq. 1.

N
Cj= D Ai-By fori=1,....M;j=1,....P (1)
k=1

Figure 6 shows the block diagram of the MatMul accel-
erator. Each element is represented as an IEEE-754 single
precision floating-point value. It has three local memories to
hold the three matrices: LMO, LM1, and LM2 for matrices
A, B, and C, respectively. Its register file has three 32-bit
registers to hold matrix dimensions M, N, and P.

The accelerator performs the matrix-matrix multiplication
by multiplying fixed-side tiles together. Its computing core
is a matrix of Processing Elements (PEs), each one capable
of performing one tile-tile multiplication and one tile-tile
addition. An internal controller fetches tiles from the input
matrices, multiply them together, and stores the resulting tile
into LM2 until all the output matrix has been covered.

We assume each PE is equivalent to an NVIDIA Tensor
Core, and can perform a multiplication between two 4 x 4 tiles
in one clock cycle [57]. Analyzing the die-shot of an NVIDIA
TU102 chip [58], considering it features 72 Streaming Mul-
tiprocessors (SMs), each with 8 Tensor Cores [28], and con-
sidering the whole die area is 754 mm? [59], we calculate
that each SM occupies around 1.98 mm? (0.263% of the total
area), and thus each Tensor Core occupies at most 0.25 mmZ.
We assume PEs in our MatMul accelerator have this size.

We design an accelerator with a 7 mm? die area, similar to
a Kirin 990 5G NPU [60]. It has three 1 MiB local memories,
that take 0.46 mm? with a 12 nm technology node (i.e., the
same as the Tensor Core), as we estimate with CACTI [61].
This way, the MatMul accelerator can host up to 16 PEs
arranged in a 4 x 4 matrix, as they would occupy 4 mm? and
leave 2.54 mm? (36.28%) for the remaining uncore logic.

The fetching logic can fetch up to 4 tiles from A, each one
broadcasting to a PE row, and 4 from B, each one broadcasting
to a PE column.

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

J L >
< 1= LMO
bl :
N DMA i
1 '
Controller ! iz
LM1 > .
i Matrix
Main >
Memory Register file 0 ,
T Lm2 :
| e
el oL ; :
(o | I e
| Controller |
¢
| Interconnect |

FIGURE 6. Block diagram of the MatMul accelerator.

Figure 7 shows the steps performed by the accelerator. For
simplicity, we show a 2 x 2 PE matrix. Five distinct phases
can be identified as follows:

Fetch (F) 4 tiles from matrix A are fetched from LMO and
broadcasted to each row of PEs. At the same time, 4 tiles
from matrix B are fetched from LM 1 and broadcasted to
each column of PEs.

Multiply (M) in each PE, the two tiles are multiplied
together.

Add (A) in each PE, the result tile extracted from the multi-
plication is added to an all-zero block at the first itera-
tion, and to the partial result of the PE in the following
iterations.

Accumulate (Ac) in each PE, the result tile extracted from
the addition is stored in an accumulator large enough to
hold one tile.

Store (S) in each PE, when the last tile from a row in A and
the last tile from a column in B are multiplied together
and added to the partial result in the accumulator, the
resulting C’s tile is available and is stored to LM2.

As depicted in Figure 7, some phases are independent and can
be safely overlapped in a pipeline. Considering the matrices
A, B, and C in the figure, the resulting pipeline will be as
follows:

FM A Ac
FMAAc
FMAS

In order to operate the accelerator with our proposed inter-
face, the programmer needs to write the matrix dimensions in
the registers (TRL instructions), the matrix data in the local
memories (TGL instructions), and trigger the matrix mul-
tiplication operation (EXEC instruction). The accelerator’s
controller will take care of performing all the steps needed to
multiply the matrices together in the tiling fashion expressed
above and write the resulting matrix C to LM2. When done,
the programmer can read C from LM2 and copy it into the
main memory (TGS instruction).

Table 4 summarizes the accelerator configuration
parameters.

VOLUME 11, 2023

TABLE 4. Configuration parameters of the MatMul accelerator.

Frequency 1.0 GHz LMO size 1 MiB
Add latency 1 cycle LM1 size 1 MiB
Mul latency 1 cycle LM2 size 1 MiB
PEs 4x4 LMs latency 1 cycle
tile dims 4x4

2) CRYPTO

Cryptography accelerator, which is called Crypto in this
paper, encrypts/decrypts a given message using NIST
Advanced Encryption Standard (AES) cipher [62]. The AES
algorithm involves dividing the input into 16-byte blocks,
represented as 4 x 4 byte matrices called state and applying
the encryption/decryption algorithm to each block separately.
According to the standard, there are three key lengths that can
be used: 128, 192, and 256 bits [62]. Commonly, the algo-
rithm is denoted as AES128, AES192, or AES256 depending
on the key-length.

The classic AES algorithm requires the execution of the
same sequence of operations for each round, with the number
of rounds being 10, 12, or 14, according to the key length
being 128, 192, or 256 bits, respectively. Since each round
needs its own key, the initial key is expanded into an array of
keys through the so-called KeyExpansion phase.

Then, for the encryption algorithm, the rounds are per-
formed as fixed sequences of operations involving byte
substitution (SubBytes), byte permutation (ShiftRows, Mix-
Columns), and byte-key XORring (AddRoundKey). The
decryption algorithm is similar, but the plain operations are
replaced with their inverses. In both cases, the final round
does not comprise MixColumns nor its inverse operation.

The accelerator implementation is based on the AES
Engine IP core by Xilinx [63], which provides some variants
of AES128, AES192, and AES256 ciphers. In our design,
shown in Figure 8, we add a controller, a DMA controller,
a small register file, and a global buffer alongside the AES
Engine. These components are used to communicate with the
AES Engine and orchestrate the cipher execution on it.

The global buffer is used to store both input (i.e., mes-
sage and initial key) and output data locally. The input is
retrieved from the main memory and the output is stored in the
main memory, with the DMA controller managing the trans-
fers. The register file provides three registers to store data
addresses in the global buffer (i.e., message, initial key, and
output) and one to store the message length. The controller
is in charge of interpreting commands received as request
ACMs from the interconnect and execute the necessary oper-
ations related to them. It also orchestrates execution on the
AES engine by providing message blocks in a streaming
fashion, taking advantage of the pipelining capabilities of the
AES Engine [63].

In order to use the accelerator, a programmer needs to load
the message length into the size local register (TRL instruc-
tion), the initial key into the global buffer (TGL instruction),

33781

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

LM1
—>]
.
s
[0 TB01]
yor
=D
o N
= =
- —> -
>

Boo Boi

Ago| Ao Aoz _

3 [E]| |
B2U le

(a) Fetch tiles from matrices A in LMO and B in LM1. Tiles from

LMO are broadcasted to all the PEs in a row, while tiles from LM1
are broadcasted to all PEs in a column.

LM1

LMO

200801 g
3

10800

B B
Ao |Aor| Aoz BT: B‘:‘l _
Ao A Arp By B

(c) Add the partial results together, picking an all-zeros tile at
the first iteration and the partial result at the following iterations.
Fetch the next tiles from both LMO and LM1

LM1
—>
3
0
o
s ! s
- —> -
>
0
men]
[A00| Ao Aoz]x gnn gm _
[Ao] A Ar Blﬁ R;:
(b) Multiply the tiles together.
LM1
—
>
ﬂ S
o - N o
= — =
- —> -

B B
[f\tm Aot f‘nz] « B‘]‘:: B?: _ | Ao0Boo AooBot
Ao |Ann| Arz Bao Bar A10Boo AvoBor

(d) Store the partial result in the PE’s memory and multiply the
previously fetched tiles together. At the last iteration, this step
will be replaced with a store in LM2.

FIGURE 7. Highlight of a MatMul accelerator with a 2 x 2 PE matrix and its functioning.

TABLE 5. Configuration parameters of the Crypto accelerator.

Frequency 250 MHz Global buffer size 2 MiB
Encr AES128 block 12 cycles Global buffer latency 2 cycles
Decr AES128 block 22 cycles

and the message into the global buffer (TGL instruction).
Then, execution can be triggered (EXEC instruction) and,
when it completes, the result can be retrieved by reading from
the global buffer (TGS instruction).

Table 5 summarizes the accelerator configuration
parameters.

3) DisparityMap
A disparity map accelerator is used to compute the disparity
map of two stereo images (i.e., left image and right image).
Given a stereo image pair, a disparity map can be used to
reconstruct depth information about the scene represented in
the two images.

We simulate the disparity map accelerator described by
Ibarra-Manzano et al. in [64], where the authors discuss an
FPGA-based implementation. They use an algorithm based
on the correlation of census transforms [65] of input images.

33782

DMA : :
Controller Global H H
buffer . . 1
! AES Engine !
Main H E
Memory . ' '
: | P ——— *
Controller |
¢
| Interconnect |

FIGURE 8. Block diagram of the Crypto accelerator.

Initially, through arithmetic mean filter, input images
are smoothed to remove acquisition noise (Image pre-
processing). This process is carried out using a 3 x 3 pixels
window. In the next step, filtered images are processed by the
census transform unit, producing images in which each pixel
is represented as a binary string that encodes intensity with
respect to neighbor pixels (Census transformation). In this
case, a 7 x 7 window is used. Finally, census transforms are

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

Preprocessing
unit

Census
transform unit

-» left-LM

DMA
Controller

right-LM

Main
Memory

Register file
A<~

'
'
'
' Mem
'
'
'
'

H Census
output-LM ''| correlation unit

7 eyl]

[1:ElEE

| Controller |
A

v

| Interconnect |

FIGURE 9. Block diagram of the Disparity accelerator.

TABLE 6. Configuration parameters of the DisparityMap accelerator.

Frequency 1.0 GHz left-LM size 2 MiB
192X 144 latency 34500 cycles right-LM size = 2 MiB
384 x 288 latency 138000 cycles out-LM size 2 MiB
640 x 480 latency 384000 cycles LMs latency 3 cycles

used as input of census correlation unit, that is able to find dis-
parity measures (Census correlation). The maximal disparity
measure selected is 64. Each algorithm step is implemented
as a separate module in the accelerator.

The implemented accelerator has three 2 MiB local mem-
ories used to store input left image (left-LM), input right
image (right-LM), and processing output (out-LM). In addi-
tion, each module is equipped with memories used to save
temporary values during computation transparently. The total
amount of these memories is 104 Kib.

In order to use the disparity map accelerator, the pro-
grammer needs to write configuration parameters, such as
census transforms window dimension and input images
size, in accelerator registers (TRL instructions). Then, input
images must be loaded in the local memories (TGL intruc-
tions). Execution is triggered (EXEC instruction) and, after
processing, the result is retrieved from accelerator local mem-
ory and copied into main memory (TGS instruction).

Table 6 summarizes the accelerator configuration
parameters.
4) FFT

FFT accelerator is used to calculate the Fourier Transform of
an N-point array of IEEE-754 single precision complex num-
bers and its inverse, transforming it from time to frequency
domain (Eq. 2) and vice versa (Eq. 3). The transformed array
is an N-point array as well.

N-—1
—i2mkn
X = Z(xneT) 2)
n=0
1 N=! —i2rk
Xy =]v];)(xke V) 3)

VOLUME 11, 2023

.................

FFT-PE [0] H
Butterfly unit [0] || |
'
l-1-- DMA Gbk;:)al 1 || pata | [Buttertly unit (17 !
Controller uffer H v '
- > ' TwiddieRom| |}
. '
X . E FFT-PE [1] H
Main 1 H : Butterfly unit [0] H
Register file [CORDIC-based | 1 '
Memory S 1| bata | [Butterty unit 11 '
Voo y y '
O o ' twiddle factor ' TSR] '
. :________:”__e__"_:

O R x A

v . .

H— h h
| Controller |

i
| Interconnect |

FIGURE 10. Block diagram of the FFT accelerator.

TABLE 7. Configuration parameters of the FFT accelerator.

Frequency 1.0 GHz 256 elems latency 277 cycles

LM size 4 MiB 1 Kelems latency 1380 cycles
LM latency 3 cycles 4 Kelems latency 21600 cycles

4 elems latency 2 cycles 16 Kelems latency 76900 cycles
16 elems latency 9 cycles 64 Kelems latency 306300 cycles
64 elems latency 52 cycles 256 Kelems latency = 1285400 cycles

We implement an FFT accelerator based on the accelerator
proposed in [66]. The algorithm used to address the trans-
formation is a modified version of the well-known Cooley-
Tukey algorithm [67], which uses matrix transposition in
order to better exploit memory access.

The accelerator includes two processing elements called
FFT-PEs. Each FFT-PE is composed by two butterfly units
and a 16 KiB dedicated dual port multi-banked memory.

FFT-PEs share a 4 MiB local memory used to store initial
input points and final transformed output. During computa-
tion, each FFT-PE fetches and saves intermediate data in that
memory.

The authors adopt a performance optimization technique
called hybrid twiddle factor generation. This technique uses
a ROM to store M twiddle factors, which are used by the
butterfly units. The higher order factors are generated by a
CORDIC-based [68] compensated twiddle factor generator,
to accommodate higher size FFT. Figure 10 shows the block
diagram of the implemented FFT accelerator.

Each FFT-PE can compute transform of at most 2!° points.
It is possible to compute the FFT of up to 220 points by com-
bining the two FFT-PEs. In the latter case, the computation is
split into two smaller batches that are assigned to each FFT-
PE.

In order to use the accelerator, a programmer needs to
write the input array size in the dedicated register (TRL
instruction), send input data (TGL instruction), trigger the
execution (EXEC instruction) and, finally, retrieve output
data from accelerator local memory (TGS instruction).

Table 7 summarizes the accelerator configuration
parameters.
5) CNN

CNN accelerator is used to accelerate the convolu-
tion between a three-dimensional tensor (input) and a

33783

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

PE
Matrix

DMA

Controller

, Global
, buffer

Main
Memory

Register file

| Controller |
A

v

| Interconnect |

bommmmeme o

FIGURE 11. Block diagram of the CNN accelerator.

four-dimensional one (weight, filter or kernel), to produce
a three-dimensional output tensor. This operation is the heart
of Convolutional Neural Networks (CNN). The tensor dimen-
sions are height (H), width (W), depth (C), and batch size (N).

The output is obtained multiplying elements of input and
weight through a multiply-and-accumulate operation, accord-
ing to Eq. 4. An activation function « (e.g., sigmoid, hyper-
bolic tangent, ReLU) is applied to each output element in
order to introduce non-linearity.

Wr G

Hf
Oho,wo,cg = Z z Zlh0+n,w0+m,i * Fn,m,i,cg “@

n=0 m=0 i=0

We implement CNN accelerator based on Eyeriss [69]. The
computation is carried out by a 12 x 14 matrix of processing
elements (PEs). Data is fetched from accelerator’s local mem-
ory to PEs and orchestrated by the internal controller accord-
ing to row-stationary dataflow (i.e., a particular dataflow that
allows to efficiently reuse both output and weight elements
during computation [69]). The accelerator has a 192 KiB
local memory (global buffer), used to store each type of
tensor involved in the convolution (input, weight, and output).
Figure 11 shows the block diagram of the CNN accelerator.

Hyperparameters for convolution operation, such as tensor
dimensions, are stored in the accelerator register file (TRL
instruction). Input, weight and, eventually, partial sums are
transferred from main memory to accelerator’s global buffer
(TGL instruction). After data loading, execution is triggered
(EXEC instruction) and an internal controller orchestrates
data movement according to a row-stationary dataflow. When
execution finishes, output data are retrieved from a dedicated
local memory and stored in main memory (TGS instruction).

It can happen that local memories are not big enough
to store tensors involved in the whole computation. In this
case, a tiled execution is mandatory. TRL, TGL, and TGS
instructions can be used accordingly to a tiling strategy to
move data from/to the accelerator.

Table 8 summarizes the accelerator configuration
parameters.

33784

TABLE 8. Configuration parameters of the CNN accelerator.

Frequency 200 MHz
LM size 192 KiB
LM latency 3 cycles
Throughput 40 GMACs

B. COMPARISON

For each accelerator, we implement a benchmark where
the user code offloads one operation to the corresponding
accelerator. The nature of the offloaded operations can be
described as follows:

MatMul Multiplication between two square matrices;

Crypto Buffer ciphering through the AES128 algorithm;

DisparityMap Calculation of a single image disparity map;

FFT Fast-Fourier Transform of a vector of complex num-
bers;

CNN Convolution between a three-dimensional input tensor
and a four-dimensional filter tensor.

In the following, we study the performance achieved by the
benchmarks in correspondence of various workload sizes.

1) BASELINE LINUX DRIVER

We evaluate our proposal by comparing the performance
obtained with the IXIAM interfacing and that obtained with a
traditional reference interfacing. We implement the latter as a
Linux driver designed according to high-performance princi-
ples adopted in modern kernel modules such as UACCE [70]
and io_uring [71].

The driver is organized as a kernel module and a user-
space driver. The user-space driver wraps the communication
with the kernel module, giving a suitable interface to user-
processes. In the kernel module, two single-consumer single-
producer ring buffers are allocated for each user-process
opening the device file associated. One, the submission ring-
buffer, is used by a user-space process to enqueue commands
(producer) and by the kernel to retrieve them (consumer). The
other, the completion ring buffer, is used in a specular manner:
the kernel enqueues the outputs from executed commands
(producer) and the user-space process reads them (consumer).
These buffers are made available to the user-process through
memory mapping.

The core of the kernel module is a kernel thread that waits
in a waiting queue for commands to arrive. The notification to
wake the thread up comes from a ioctl system call and must be
called from the user-space once one or more commands have
been enqueued in the submission ring buffer. Once the thread
wakes up, it cycles over the commands in the submission ring
buffer, executes them in sequence, and enqueues their outputs
in the completion ring buffer. The single-producer single-
consumer nature of the ring buffers is such that no synchro-
nization is necessary between user-process and kernel-thread:
each of them can safely write data in the ring buffer where
it acts as a producer and increment the index when done.
Also, no synchronization between different user-processes is

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

-]
o

g 308X (Merw < Toann < Taer
5 43.33x
2 UToam < Terw < Tarier
S 40
g 31.05x DOTam < Tarver < Teru
< 30
=
S
220
[
2 10.09%
0 3.36
I 29X 159x 1.14x 1.03x
0 - | — —
4x4 8x8 16x16 32x32 64x64 128x128 256x256 512x512

Workload size (matrix dimensions)

FIGURE 12. Speedup of IXIAM-based vs driver-based matrix-matrix
multiplication on a MatMul accelerator, shown for eight workload sizes.
In the legend, Tcpy, Tixiam- and Ty iver refer to the execution time of a
CPU-only, IXIAM-based, and driver-based implementation, respectively
(lower is better).

necessary, since each user-process has its exclusive pair of
ring buffers.

2) BENCHMARKS

Figure 12 shows the speedup given by our proposal with
respect to a conventional driver-based interfacing (in the
following, just “speedup”) when accelerating a multiplication
between two square matrices of the same size on a MatMul
accelerator, in the case of eight different workloads. The
speedup decreases as the workload size increases, with the
maximum speedup amounting to 49.06x for a multiplication
between two 4 x 4 matrices. Up to 64 x 64 matrices the
speedup is still above 3x (3.36x), and it decreases down to
around 3% with 512 x 512 matrices.

In Figure 12, we identify three areas: in the first area,
in light orange, a CPU-based implementation achieves better
performance than both accelerated solutions (i.e., IXIAM and
driver-based); in the second area, in light green, an IXIAM
implementation surpasses a CPU-only one, but this is still
better performance-wise than a driver-based solution; in the
third area, in light purple, both accelerated solutions achieve
better performance than a CPU-only one, with IXIAM still
being preferable to a driver-based interfacing. Looking at
these areas, it is evident that our proposal enlarges the set of
workloads where an accelerated implementation is palatable
(second area, with 8 x 8 and 16 x 16 workloads). Even for
those that already benefit from acceleration (third area), the
speedup gain makes our proposal a more convenient solution
with respect to drivers (e.g., 10.09x for 32 x 32 matrices),
and even more with respect to CPU-only.

Figure 13 shows the speedup achieved by accelerating an
AES block cipher on a Crypto accelerator in the case of eight
workload sizes. Also in this case, the speedup decreases as
the workload size increases: from 78.71 x with 16 bytes, it is
still more than 10x with 1 KiB workload, around 3.71x
with 4 KiB, down to circa 19% with 64 KiB, and it reaches
less than 4% from 256 KiB on.

VOLUME 11, 2023

78.71x
80
_ E|
% 70 63.60x
2 M Taam < Tenw < Tariver
S 60
g 50 L Tovam < Tariver < Tepu
g
= 40 34.25x
s
230
¢
&20 12.15x
10 I 371X 173 119x 1.04x
0 - — — —
16 64 256 1K aK 16K 64K 256K

Workload size (bytes)

FIGURE 13. Speedup of IXIAM-based vs driver-based AES ciphering on a
Crypto accelerator, shown for eight workload sizes. In the legend, Tcpy,
Tixiam- and Tqriver refer to the execution time of a CPU-only, IXIAM-based,
and driver-based implementation, respectively (lower is better).

98.25x

88.41x OTer < Toaa < Torver

80 (1 Twam < Tepw < Tarier
O Touan < Tar < Terw
60
20 36.11x
20 12.37x
l 4.00x 160x 1.16x 1.03x 1.01x
0] — — — —
4 16 64

256 1024 4096 16384 65536 262144
Workload size (complex numbers)

Speedup (IXIAM vs driver)

FIGURE 14. Speedup of IXIAM-based vs driver-based FFT calculation on
an FFT accelerator, shown for nine workload sizes. In the legend, Tcpy,
Tixiam: and Tqriver refer to the execution time of a CPU-only, IXIAM-based,
and driver-based implementation, respectively (lower is better).

As for the comparison against a CPU-only solution, we use
the AES implementation provided by libcrypto, which is
shipped with OpenSSL 3.2.0 and includes highly tuned
RISC-V assembly source code [72], [73]. In this case, even
the smallest workload (16B) benefits from IXIAM-based
acceleration, as the absence of a light orange area testifies.
The driver-based acceleration, conversely, is faster than a
CPU-only implementation for workloads of 16 KiB and
higher. Also in this case, our proposal enlarges the set of
workloads that benefit from acceleration.

Figure 14 shows the achieved speedup of a Fast Fourier
Transform performed on nine workloads on the FFT acceler-
ator. Also in this case, we observe the speedup monotonically
decreasing as the workload size increases. With 4 complex
numbers, it amounts to 98.25x, and decreases down to 4 x
with 1024 numbers. It stays above 3% up to 65536 elements
and drops below 1% for more than 262144 elements.

The CPU-only implementation is based on FFTW3 [74]
compiled for RISC-V. Its performance surpasses that achiev-
able with an IXIAM interfacing only in the case of the
smallest workload considered (4 complex numbers). With
16 and up to 1024 numbers, the workloads are in the light

33785

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

=
n

1.38x

1.10x 1.03x

[

Speedup (IXIAM vs driver)
=3
v

192 x 144 384 x 288

Workload size (width x height)

640 x 480

FIGURE 15. Speedup of IXIAM vs a driver-based disparity map calculation
on a DisparityMap accelerator, shown for three workload sizes.

green area, when an IXIAM-based interfacing is preferable
to a CPU-only solution, but a driver-based one is not. From
4096 complex numbers on, a CPU-only solution is not con-
venient anymore in terms of performance. Summing up, our
interfacing makes the acceleration of workloads in the range
16-1024 numbers convenient performance-wise.

In Figure 15, we show the speedup of a disparity map
calculation offloaded to the DisparityMap accelerator. Again,
it decreases monotonically in the three workloads considered:
38% for 192 x 144 images, 10% for 384 x 288 images,
and 3% for 640 x 480 images. In this case, we only test the
three workloads for which performance results are available
in the original paper describing the accelerator [64]. Although
the achieved speedups seem less than those achieved in the
two previous cases, it is due to the higher computation times
required even by the smallest of the workloads, which is
two and three orders of magnitude higher than the smallest
workload executed on the Crypto and MatMul accelerator,
respectively, as it emerges from Tables 4, 5, and 6.

We do not show the comparison against a CPU-only imple-
mentation in Figure 15, as the whole chart would be in a light
purple area. In fact, even the smallest workload is demanding
for a CPU, and thus even the driver-based implementation
achieves higher performance.

Figure 16 shows the speedup of a convolution calculation
between two tensors (i.e., a three-dimensional input and a
four-dimensional filter) performed on a CNN accelerator.
The workloads are characterized by the dimensions of the
tensors involved. These dimensions reflect those used in the
convolutional layers of three popular CNNs: LeNet-5 [75],
AlexNet [76], and ResNet [77]. The actual sizes of the tensors
are displayed in Table 9.

The results on the convolutional layers are in continuity
with those observed on other accelerators: the performance
advantage of an IXIAM interfacing is higher when the work-
load is small. In particular, we achieve better results on
LeNet-5 (at most, 4.34x), which is a smaller network with
respect to AlexNet and ResNet. On these, the performance
advantage is negligible (less than 1% on all the ten layers

33786

TABLE 9. Tensor dimensions of the convolutional layers of LeNet-5,
AlexNet, and ResNet CNNs. We show stride (s), padding (p), height (H),
width (W), number of channels (C), and batch size (N).

Input Filter

s |lp H W C H W C N
S l1]o 32 32 1 5 5 1 6
2|10 14 14 6 5 5 6 16
S l1]0 5 5 6 |5 5 16 120
. |40 227 2271 3 11 11 3 96
g1 |2 27 27 96 |5 5 96 256
¥ 1|1 13 13 256 |3 3 256 384
Z |1]1 13 13 384|3 3 384 384

11 13 13 384 |3 3 384 256

2 |3 224 224 3 7T 7T 3 64
3 [1|1 5 5 64 |3 3 64 64
Z 121 5 56 64 |3 3 64 128
e |21 28 28 1283 3 128 256

2 |1 14 14 25 |3 3 256 512

considered). Also in this case, even the smallest workloads
are too onerous for a CPU-only implementation, and thus they
would all be placed in the light purple area — i.e., with lower
performance than both accelerated solutions.

Overall, the results shown so far on five different accel-
erators depict a similar scenario: the performance advantage
introduced by an IXIAM interfacing is more evident for small
and medium workloads than for bigger ones. By replacing
drivers with CPU instructions backed by an ad-hoc hardware
infrastructure, we allow faster communication between cores
and accelerators, but do not intervene on the accelerator-side
execution time. Its weight is higher for big workloads, and
thus the performance advantage we introduce gets diluted
accordingly, leading to smaller speedups that asymptotically
tend to 1. Small and medium workloads, conversely, present
very high speedups that are even close to two orders of
magnitude, in some cases. Historically, these workloads have
not been taken into consideration for acceleration because
the time needed to communicate with the accelerators and
move data dominates the total execution time, eliminating the
possible performance advantage that an accelerated execu-
tion would have provided. With an IXIAM interfacing, the
communication time is significantly reduced, to the point
that the set of workloads eligible for acceleration is enlarged
for each accelerator except CNN. In any case, CNN is no
different: we suppose that there could be a network with
a convolutional layer even smaller than those in LeNet-5
that would benefit from an IXIAM-based acceleration, but
not a driver-based one. Another consequence of this is that,
as accelerators improve and achieve higher and higher perfor-
mance, our proposal becomes more valuable, as the weight of
the accelerator-side execution reduces.

V. RELATED WORK
In this section, we discuss some related work in which the
authors extend ISA for acceleration purposes.

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

LeNet-5

4.34x

>
s

3.43x

w
n

1005 10045

w

25

up (IXIAM vs driver)

1.0024x

~
[
2

1.23x

3 1002
8
1

conv-1 conv-2 conv-3 conv-1 conv-2
Convolutional Layer

-

Speedup (IXIAM vs driver)
°
ot min

(a) LeNet-5

AlexNet

Convolutional Layer

(b) AlexNet

ResNet

10071 1.009 1.0080x

1.0076x

1.0051x 1.0051x

1.007
1.006 1.0054x
1.005 — 1.0044x e
1.004
2 1.003
3
@ 1.002
2
& 1.001
1

(IXIAM vs driver)

conv-3 conv-4 conv-5 conv-1 conv-2 conv-3 conv-4 conv-5

Convolutional Layer

(c) ResNet

FIGURE 16. CNN accelerator. Speedup of IXIAM vs a driver-based interface. A plain convolution between two tensors is executed. The tensor dimensions
are those used in the convolutional layers of three popular CNNs: LeNet-5, AlexNet, and ResNet.

As we already specified in the Introduction, this work
extends our previous proposal, presented in [21]. In this
case, we define fine-grained transfer instructions that per-
mit addressing local memories directly, and also transfer
data from CPU registers to the accelerator, without the need
to access the main memory. This enlarges the set of sup-
ported accelerators, as two instructions in the current proposal
(TGL and TGS) can be easily interpreted as the TRANSFER
instruction from the previous work on accelerators that work
according to a fixed finite state machine — which were the
target of the previous paper. Moreover, we design a user-
space interrupt mechanism that may reduce the use cases for
synchronous instructions.

The work that, most of all, is close to ours in intentions is a
paper by Cong et al. [2], in which the authors aim at extend-
ing the ISA to control various on-chip hardware accelerators.
They propose a central entity, which is called Global Acceler-
ator Manager (GAM) to manage the communication between
accelerators and processor cores. They propose 4 instructions
to interact with the GAM and the accelerators, and 2 to
implement a lightweight interrupt mechanism.

With respect to our work, there are some fundamental
differences. The most important is the presence of the GAM,
which acts as a central manager for all the accelerators and all
the cores in the SoC — as such, it can be a bottleneck for the
whole system. Conversely, we aim to augment the hardware
support of the individual accelerators and avoid central mod-
ules. The GAM is designed to work in an “accelerator-rich”
SoC, and thus supports a mechanism of accelerator discovery
based on capabilities, while we address accelerators directly
by id, which can be more appropriate for the current genera-
tion of SoCs.

Another fundamental difference is the fact that the core
asking for accelerator availability needs to know in advance
how long the accelerator should be reserved for it. We prefer
to adopt a reserve-release mechanism with hardware (watch-
dog) or software (high-privilege reserve and release) support
to manage violations. In [2], it is not clear whether there are
system-wide policies to manage accelerator and processor
states in case of wrong estimations.

In [2], the work is delegated to the accelerator by stor-
ing a task description in memory and passing the memory

VOLUME 11, 2023

address to the accelerator. In this regard, we opt for a finer
grain control of the accelerators’ internal structures, like
local memories, and also support small data transfers directly
from/to host core registers to/from accelerator memory space.
We admit the possibility of using low-latency, dedicated
channels between accelerators and host cores (smaller latency
than going through the system memory hierarchy), which is
not mentioned [2].

As far as we know, [2] is the only work proposing an ISA
extension to target generic accelerators. Other notable works
propose ISA extensions as a way of letting the core communi-
cate with their particular accelerator. In the following, we list
some of the most recent solutions of this kind.

In [19], Nowatzki et al. propose Softbrain, a Coarse-
Grain Reconfigurable Array (CGRA) accelerator for stream-
dataflow applications. It can be integrated on an SoC, access-
ing the memory system either from the LLC or from the
DRAM. They design an ad-hoc ISA to control Softbrain
which includes 14 instructions, including instructions to read-
/write from/to input and output ports or local memory, load
the configuration from a given address, and some memory
barriers.

PROMISE [18] is an in-SRAM mixed-signal accelerator
for Machine Learning workloads. The authors identify the
main operations in Machine Learning and propose a com-
prehensive ISA to target them. They propose 48-bit VLIW
instructions that can specify up to 4 operations to be exe-
cuted in sequence. There are 18 operations that include dig-
ital and analog reads/writes, scalar distance calculations,
ADC, and threshold operations. They complete their proposal
with a compiler that translates high-level Julia code into a
PROMISE-oriented binary that leverages their ISA.

In [20], Jain et al. design an accelerator based on in-
memory computing with Spin-Transfer Torque Magnetic
RAM (STT-MRAM). In order to achieve integration with a
general-purpose system, they propose architectural modifi-
cations to on-chip buses and an extension for the ISA. Their
instructions act on pairs of address lines and address simple
logical and arithmetic operations like XOR, NOT, AND, and
ADD.

Fritzmann et al. propose RISQ-V to accelerate lattice
post-quantum cryptography [15]. Since post-quantum

33787

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

cryptography requires mathematical elements and operations
which are usually not easy to implement on standard pro-
cessors, they propose an enhanced RISC-V architecture that
integrates a set of powerful tightly coupled accelerators. They
extend the RISC-V ISA with 29 new instructions to efficiently
perform the needed operations.

In [78], Rao et al. design IntersectX, an accelerator for
pattern enumeration with stream instruction set extension
and architectural support. The proposed ISA extension is
considered a natural extension to the traditional instructions
that operate on scalar values. IntersectX architecture is com-
posed of: a table to record the mapping between stream
ID and stream register; a streaming cache that enables effi-
cient stream data movements; a unit that implements sparse
value computations; and the nested intersection translator
that generates micro-operation sequences for implementing
nested intersections. To employ all these steps in the proposed
architecture for graph pattern mining by Intersect accelerator,
11 instructions in x86 are proposed as stream ISA extension.

Saarinen extend RISC-V ISA for Advanced Encryption
Standard (AES) and SM4 block ciphers [79]. They propose
sixteen instructions to implement an AES round, reducing the
number of instructions down from 80. In their paper, RISC-V
extensions are used to protect against cache timing side-
channel attacks and eliminate slow, secret-dependent table
lookups.

In [80], Amor et al. define a RISC-V ISA (RV32IM)
extension for ultra-low power software-defined wireless IoT
transceivers. The authors add 14 custom instructions tai-
lored to the needs of 8/16/32-bit integer complex arithmetic
typically required by quadrature modulations. The proposed
extension instructions are designed to have a near-zero energy
cost.

Arrow is a configurable hardware accelerator architecture
that implements a subset of the RISC-V v0.9 vector ISA
extension aimed at edge machine learning inference [81].
It is a kind of co-processor, which executes a suite of vector
and matrix benchmarks fundamental to machine learning
inference.

In [82], Albicocchi proposes a way to accelerate a post-
quantum algorithm called Kyber and Dilithium. He chooses
to embed lighter and more specific hardware accelerators
directly in the core architecture to eliminate the overhead of
communication and area. In order to use the hardware inside
the core pipeline, he designs new RISC-V instructions to
drive the accelerators. He extends the RISC-V ISA with three
new instructions, which let the programmer use the hardware
accelerators directly from the software layer.

In [83], Paulin et al. introduce RISC-V instruction exten-
sions coupled with software optimizations for maximizing
the throughput of a radio resource management that is crit-
ical in 5G mobile communications. Their radio resource
management algorithm is based on models that use multi-
layer perceptrons and recurrent neural networks. They extend
the ISA by adding two new single-cycle HW instructions

33788

implemented as linear function approximations within cer-
tain intervals. They introduce another new instruction that
combines the other two, which is capable of loading data and
calculating the 16-bit packed SIMD sum-dot-product.

In [84], Manor et al. propose an ISA extension to sup-
port floating-point Coordinate Rotation Digital Computer
(CORDIC), which is a dedicated low-power accelerator for
mathematical functions used in Neural Network oriented non-
linear equations. They propose a DMA-based ISA extension
approach to perform repeated array calculations, offering
speedup over software implementations.

All these works propose extensions deeply tailored to
address a single accelerator. We think that such an approach
has the impossibility of scaling as its biggest downside. The
adoption of more of these solutions on one SoC would lead
to ISA bloat, increasing power consumption and complexity
of the decoding phase proportionally with the number of
supported accelerators.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented IXIAM, a SoC-oriented HW-SW
framework to control a wide variety of integrated accelerators
directly from the CPU cores. It features a set of additional
RISC-V instructions and a limited hardware infrastructure
to support instruction execution, both on the core-side and
accelerator-side. These instructions allow users to reserve/re-
lease accelerators, transfer data to/from their local memories,
delegate execution, and query state. The instruction execu-
tion causes message exchange on the dedicated interconnect
between cores and accelerators. We described also a user-
space interrupt mechanism, which needs an ad-hoc module
on the SoC to support it, to signal accelerator-side events to
the cores without relying on the OS interrupt mechanism.
We analyzed some other aspects related to our proposal,
showing that:

« memory coherency between cores and accelerators can
be achieved in various ways, as IXIAM does not limit
the choice;

« data consistency can be achieved by relying on a sim-
ple fence instruction on the core and adding another
instruction (AFENCE) that constitutes a fence on the
accelerator;

« awatchdog can be added to the system to protect against
malevolent use and cleanup in case the accelerator’s
owning process dies without releasing;

« more sophisticated arbitration mechanisms can be
achieved by elevating RESERVE and RELEASE privi-
lege levels, implementing custom logic in ad-hoc system
calls.

Then, we showed the performance achieved by an IXIAM-
based interfacing with respect to a canonical driver-based
one in the case of five different accelerators — i.e., Mat-
Mul, Crypto, DisparityMap, FFT, and CNN. We showed that
IXTIAM improves performance dramatically with respect to
drivers in the case of small to medium workloads, thanks to

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

the reduced interfacing costs. For those workloads, a CPU-
only implementation is generally preferred to an accelerated
one, as the communication dominates over computation.
However, with an IXIAM interfacing, acceleration becomes
a viable solution for many workloads, as one can have
the advantages of acceleration (i.e., smaller computation
time) without the disadvantages of a driver-based interfacing
(i.e., high communication latencies). For bigger workloads,
we showed that our proposal does not hamper performance,
offering speedups that tend to 1x asymptotically.

As future work, we plan to investigate NoC design in order
to better determine the topology and the characteristics that
better suit IXTAM. Moreover, we plan to investigate more
sophisticated mechanisms to achieve data consistency, like
those listed in Subsection III-B.

Finally, we plan to extend the span of this work addressing
also the additional requirements of programmable accelera-
tors, which can execute binary kernels sent from the cores,
like in GPUs.

ACKNOWLEDGMENT

The authors would like to express their deepest gratitude to
Jonathan Cameron and Anthony Jebson for their fundamental
teachings on the state of the art of Linux driver development.

REFERENCES

[1] W.-M. Hwu and S. Patel, “Accelerator architectures—A ten-year retro-
spective,” IEEE Micro, vol. 38, no. 6, pp. 56-62, Nov. 2018.

[2] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, ‘““Archi-
tecture support for accelerator-rich CMPs,” in Proc. 49th Annu. Design
Autom. Conf., Jun. 2012, pp. 843-849.

[3] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, pp. 48-60, Jan. 2019.

[4] W.IJ. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware acceler-
ators,” Commun. ACM, vol. 63, no. 7, pp. 48-57, Jun. 2020.

[5] B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini, “A survey on
hardware accelerators: Taxonomy, trends, challenges, and perspectives,”
J. Syst. Archit., vol. 129, Aug. 2022, Art. no. 102561. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762122001138

[6] ARM. AMBA Overview. Accessed: Feb. 8, 2023. [Online]. Available:
https://developer.arm.com/architectures/system-architectures/amba

[71 Apple. (2020). M. [Online]. Available: https://www.apple.com/uk/
mac/ml/

[8] L. Codrescu. (2013). Qualcomm Hexagon DSP: An Architecture
Optimized for Mobile and Multimedia Communications. [Online].
Available: https://developer.qualcomm.com/qfile/27696/qualcomm-
hexagon-architecture.pdf

[9] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,

and X. Qian, “GraphP: Reducing communication for PIM-based graph

processing with efficient data partition,” in Proc. IEEE Int. Symp. High

Perform. Comput. Archit. (HPCA), Feb. 2018, pp. 544-557.

R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,

A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable

architecture for parallel paterns,” in Proc. 44th Annu. Int. Symp. Comput.

Archit., Jun. 2017, pp. 389-402.

E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “‘An analysis

of accelerator coupling in heterogeneous architectures,” in Proc. 52nd

Annu. Design Autom. Conf., Jun. 2015, pp. 1-6.

P. Vogel, A. Kurth, J. Weinbuch, A. Marongiu, and L. Benini, “Efficient

virtual memory sharing via on-accelerator page table walking in hetero-

geneous embedded SoCs,” ACM Trans. Embedded Comput. Syst., vol. 16,

no. 5s, pp. 1-19, Sep. 2017.

Y. Hao, Z. Fang, G. Reinman, and J. Cong, ““Supporting address transla-

tion for accelerator-centric architectures,” in Proc. IEEE Int. Symp. High

Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 37-48.

[10]

[11]

[12]

[13]

VOLUME 11, 2023

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

Y.-K. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “A quan-
titative analysis on microarchitectures of modern CPU-FPGA platforms,”
in Proc. 53rd Annu. Design Autom. Conf., Jun. 2016, pp. 1-6.

T. Fritzmann, G. Sigl, and J. Sepilveda, “RISQ-V: Tightly coupled RISC-
V accelerators for post-quantum cryptography,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, pp. 239-280, Aug. 2020.

G. H. Eisenkraemer, F. G. Moraes, L. L. de Oliveira, and E. Carara,
“Lightweight cryptographic instruction set extension on xtensa proces-
sor,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1-5.
D. W. Todd, “Tightly coupling the PicoRV32 RISC-V processor with
custom logic accelerators via a generic interface,” Ph.D. dissertation, Dept.
Comput. Eng., Clemson Univ., Clemson, SC, USA, 2021.

P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve,
N. S. Kim, and N. Shanbhag, “PROMISE: An end-to-end design of a pro-
grammable mixed-signal accelerator for machine-learning algorithms,” in
Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2018,
pp. 43-56.

T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, *‘Stream-
dataflow acceleration,” in Proc. 44th Annu. Int. Symp. Comput. Archit.,
Jun. 2017, pp. 416-429.

S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory
with spin-transfer torque magnetic ram,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 3, pp. 470-483, Dec. 2017.

E. Cheshmikhani, B. Peccerillo, A. Mondelli, and S. Bartolini, “A general
framework for accelerator management based on ISA extension,” IEEE
Access, vol. 10, pp. 120702-120713, 2022.
J. Lowe-Power, “The gem5 simulator:
arXiv:2007.03152.

Y. S. Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Toward cache-
friendly hardware accelerators,” in Proc. HPCA Sensors Cloud Archit.
Workshop (SCAW), 2015, pp. 1-6.

J. Zuckerman, D. Giri, J. Kwon, P. Mantovani, and L. P. Carloni,
“Cohmeleon: Learning-based orchestration of accelerator coherence in
heterogeneous SoCs,” in Proc. MICRO 54th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Oct. 2021, pp. 350-365.

P. Shantharama, A. S. Thyagaturu, and M. Reisslein, ‘“Hardware-
accelerated platforms and infrastructures for network functions: A survey
of enabling technologies and research studies,” IEEE Access, vol. 8,
pp. 132021-132085, 2020.

V. Gupta, P. Brett, D. Koufaty, D. Reddy, S. Hahn, K. Schwan, and
G. Srinivasa, “The forgotten ‘Uncore’: On the energy-efficiency of het-
erogeneous cores,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC),
2012, pp. 367-372.

A. Waterman, K. Asanovi¢, and J. Hauser, The RISC-V Instruction Set
Manual, Volume I1: Privileged Architecture, document Version 20211203,
RISC-V International, 2015.

NVIDIA. (2020). NVIDIA Ampere GA102 GPU Architecture. [Online].
Available: https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-
gpu-architecture-whitepaper-v2.1.pdf

NVIDIA. (Nov. 2019). CUDA C Programming Guide. [Online]. Available:
docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

D. Giri, P. Mantovani, and L. P. Carloni, “Accelerators and coherence: An
SoC perspective,” IEEE Micro, vol. 38, no. 6, pp. 3645, Nov. 2018.

M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient GPU synchronization
without scopes: Saying no to complex consistency models,” in Proc. 48th
Int. Symp. Microarchitecture, Dec. 2015, pp. 647-659.

R. Cavicchioli, N. Capodieci, and M. Bertogna, “Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms,” in Proc. 22nd IEEE Int. Conf. Emerg. Technol.
Factory Autom. (ETFA), Sep. 2017, pp. 1-10.

L. Chai, Q. Gao, and D. K. Panda, “Understanding the impact of multi-
core architecture in cluster computing: A case study with Intel dual-core
system,” in Proc. 7th IEEE Int. Symp. Cluster Comput. Grid (CCGrid),
May 2007, pp. 471-478.

D. Bovet and M. Cesati, Understanding the Linux Kernel. Sebastopol, CA,
USA: O’Reilly & Associates Inc, 2005.

A. Asgharzadeh, J. M. Cebrian, A. Perais, S. Kaxiras, and A. Ros, “Free
atomics: Hardware atomic operations without fences,” in Proc. 49th Annu.
Int. Symp. Comput. Archit., Jun. 2022, pp. 1-13.

L. Hammond, M. Willey, and K. Olukotun, ““Data speculation support for a
chip multiprocessor,” ACM SIGPLAN Notices, vol. 33, no. 11, pp. 58-69,
Nov. 1998.

Version 20.0+,” 2020,

33789

IEEE Access

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Intel Corporation. (2011). Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual—Volume 3B. Accessed: Feb. 8, 2023. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html

B. Rajaram, V. Nagarajan, S. Sarkar, and M. Elver, “Fast RMWs for
TSO: Semantics and implementation,” in Proc. 34th ACM SIGPLAN Conf.
Program. Lang. Design Implement., Jun. 2013, pp. 61-72.

M. M. Michael and M. L. Scott, “Implementation of atomic primitives
on distributed shared memory multiprocessors,” in Proc. 1st IEEE Symp.
High Perform. Comput. Archit., Jan. 1995, pp. 222-231.

E. H. Jensen, G. W. Hagensen, and J. M. Broughton, “A new approach
to exclusive data access in shared memory multiprocessors,” Lawrence
Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep. UCRL-97663,
1987.

G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo, ““Global real-time
memory-centric scheduling for multicore systems,”” IEEE Trans. Comput.,
vol. 65, no. 9, pp. 2739-2751, Sep. 2016.

R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for COTS-based embedded
systems,” in Proc. 17th IEEE Real-Time Embedded Technol. Appl. Symp.,
Apr. 2011, pp. 269-279.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, ““Memory access
control in multiprocessor for real-time systems with mixed criticality,” in
Proc. 24th Euromicro Conf. Real-Time Syst., Jul. 2012, pp. 299-308.

H. Yun, S. Gondi, and S. Biswas, ‘‘Protecting memory-performance critical
sections in soft real-time applications,” 2015, arXiv:1502.02287.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “MemGuard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms,” in Proc. IEEE 19th Real-Time Embedded Tech-
nol. Appl. Symp. (RTAS), Apr. 2013, pp. 55-64.

S. V. Adve and M. D. Hill, “Weak ordering—A new definition,” ACM
SIGARCH Comput. Archit. News, vol. 18, no. 2SI, pp. 2-14, 1990.

D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D. Hill,
S. K. Reinhardt, and D. A. Wood, ‘“Heterogeneous-race-free memory
models,” in Proc. 19th Int. Conf. Architectural Support Program. Lang.
Operating Syst., Feb. 2014, pp. 427-440.

L. Howes and A. Munshi, The OpenCL Specification, Version 2.0. Beaver-
ton, OR, USAKhronos Group, 2015.

T. Sorensen, G. Gopalakrishnan, and V. Grover, “Towards shared memory
consistency models for GPUs,” in Proc. 27th Int. ACM Conf. Int. Conf.
Supercomputing, Jun. 2013, pp. 489—490.

L. Li and C. Kessler, “VectorPU: A generic and efficient data-container
and component model for transparent data transfer on GPU-based hetero-
geneous systems,” in Proc. 8th Workshop 6th Workshop Parallel Program.
Run-Time Manage. Techn. Many-Core Archit. Design Tools Archit. Multi-
core Embedded Comput. Platforms, Jan. 2017, pp. 7-12.

1. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-M.-W. Hwu,
“An asymmetric distributed shared memory model for heterogeneous
parallel systems,” in Proc. 15th Int. Conf. Architectural Support Program.
Lang. Operating Syst., Mar. 2010, pp. 347-358.

L. Henrio, C. Kessler, and L. Li, “Ensuring memory consistency in hetero-
geneous systems based on access mode declarations,” in Proc. Int. Conf.
High Perform. Comput. Simul. (HPCS), Jul. 2018, pp. 716-723.

B. Peccerillo and S. Bartolini, “PHAST—A portable high-level modern
C++ programming library for GPUs and multi-cores,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 30, no. 1, pp. 174-189, Jan. 2019.

S.-J. Min and R. Eigenmann, ““Optimizing irregular shared-memory appli-
cations for clusters,” in Proc. 22nd Annu. Int. Conf. Supercomputing,
Jun. 2008, pp. 256-265.

T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and
D. I. August, “Automatic CPU-GPU communication management and
optimization,” in Proc. 32nd ACM SIGPLAN Conf. Program. Lang. Design
Implement., Jun. 2011, pp. 142-151.

T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August, “Dynamically
managed data for CPU-GPU architectures,” in Proc. 10th Int. Symp. Code
Gener. Optim., Mar. 2012, pp. 165-174.

S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“NVIDIA tensor core programmability, performance precision,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),
May 2018, pp. 522-531.

TechPowerUp. (2018). NVIDIA TUI02. [Online]. Available: https://
www.techpowerup.com/gpu-specs/nvidia-tu102.g813#gallery-6

33790

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
(71]
(72]

(73]

[74]

(751

[76]

(77

(78]
(791

(80]

(81]

(82]

(83]

VideoCardz. (2018). NVIDIA TU102 Graphics Processing Unit (GPU).
[Online]. Available: https://videocardz.net/gpu/nvidia-tu102

Andrei Frumusanu. (Nov. 2019), The Huawei Mate 30 Pro Review:
Top Hardware Without Google. [Online]. Available: https://www.
anandtech.com/show/15099/the-huawei-mate-30-pro-review-top-
hardware-without-google

S. J. E. Wilton and N. P. Jouppi, “CACTI: An enhanced cache access
and cycle time model,” [EEE J. Solid-State Circuits, vol. 31, no. 5,
pp. 677-688, May 1996.

M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced encryption standard (AES),” Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, Tech. Rep. 197, Nov. 2001.

Xilinx. (Apr. 2022). Advanced Encryption Standard (AES) Engine v1.1.
[Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/
documents/ip_documentation/aes/v1_1/pg383-aes.pdf

M. A. Ibarra-Manzano, D.-L. Almanza-Ojeda, M. Devy, J.-L. Boizard,
and J.-Y. Fourniols, “Stereo vision algorithm implementation in FPGA
using census transform for effective resource optimization,” in Proc. 12th
Euromicro Conf. Digit. Syst. Design, Archit., Methods Tools, Aug. 2009,
pp. 799-805.

R. Zabih and J. Woodfill, “Non-parametric local transforms for computing
visual correspondence,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzer-
land: Springer, 1994, pp. 151-158.

X. Chen, Y. Lei, Z. Lu, and S. Chen, “A variable-size FFT hardware
accelerator based on matrix transposition,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 10, pp. 1953-1966, Oct. 2018.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp. 297-301,
1965.

P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna,
“50 years of CORDIC: Algorithms, architectures, and applications,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 1893-1907,
Sep. 2009.

Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
May 2016.

Kernel Development Community. (2022). Introduction of Uacce. [Online].
Available: https://docs.kernel.org/misc-devices/uacce.html

Shuveb Hussain. (2020). Welcome to Lord of the 10_Uring. [Online].
Available: https://unixism.net/loti/

The OpenSSL Project. (1999). OpenSSL Cryptography and SSL/TLS
Toolkit. [Online]. Available: https://www.openssl.org/

The OpenSSL Project. (2022). OpenSSL Cryptography and SSL/TLS
Toolkit GitHub Repository. [Online]. Available: https://github.
com/openssl/openssl

M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”
Proc. IEEE, vol. 93, no. 2, pp. 216-231, Feb. 2005.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, May 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

G. Rao, J. Chen, J. Yik, and X. Qian, “IntersectX: An efficient accelerator
for graph mining,” 2020, arXiv:2012.10848.

M.-J. O. Saarinen, “A lightweight ISA extension for AES and SM4,” 2020,
arXiv:2002.07041.

H. B. Amor, C. Bernier, and Z. Prikryl, “A RISC-V ISA extension for ultra-
low power IoT wireless signal processing,” IEEE Trans. Comput., vol. 71,
no. 4, pp. 766-778, Apr. 2022.

1. Al Assir, M. El Iskandarani, H. R. Al Sandid, and M. A. R. Saghir,
“Arrow: A RISC-V vector accelerator for machine learning inference,”
2021, arXiv:2107.07169.

F. Albicocchi, “A RISC-V ISA extension for speeding-up post quantum
crystals algorithms through HW accelerators integrated in the ariane core
pipeline,” M.S. thesis, Dept. Electron. Eng., Dept. Inf. Eng., Univ. Pisa,
Pisa, Italy, Apr. 2021.

G. Paulin, R. Andri, F. Conti, and L. Benini, “RNN-based radio resource
management on multicore RISC-V accelerator architectures,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 9, pp. 1624-1637,
Sep. 2021.

VOLUME 11, 2023

B. Peccerillo et al.: IXIAM: ISA EXtension for Integrated Accelerator Management

IEEE Access

[84] E. Manor, A. Ben-David, and S. Greenberg, ““CORDIC hardware accel-
eration using DMA-based ISA extension,” J. Low Power Electron. Appl.,
vol. 12, no. 1, p. 4, Jan. 2022.

BIAGIO PECCERILLO is currently a Postdoc-
toral Researcher with the Department of Infor-
mation Engineering and Mathematical Sciences,
University of Siena. He participated in vari-
ous research and development projects involving
high-productivity solutions to program heteroge-
neous architectures, hardware accelerators, hap-
tic algorithms in virtual and augmented reality
environments, and pharmaceutical supply chain
simulation. His research interests include hetero-
geneous architectures, productivity-oriented high-level abstraction mecha-
nisms, hardware accelerators, and parallel algorithms.

ELHAM CHESHMIKHANI received the B.Sc.
degree in computer engineering from the Iran
University of Science and Technology (IUST),
in 2011, the M.Sc. degree in computer engineer-
ing from the Amirkabir University of Technol-
ogy (Tehran Polytechnic), in 2013, and the Ph.D.
degree in computer engineering from the Sharif
University of Technology (SUT), Tehran, Iran,
in 2020. She was a member of the Design and

: Analysis of Dependable Systems (DADS), AUT,
from 2011 to 2015, the Dependable Systems Laboratory (DSL), SUT,
from 2016 to 2018, and the Data Storage, Networks and Processing Lab-
oratory (DSN), SUT, from 2018 to 2021. From 2021 to 2022, she was a
Postdoctoral Researcher with the Department of Information Engineering
and Mathematics, University of Siena, Siena, Italy. Since 2022, she has been
with Tehran Polytechnic. She is currently an Assistant Professor with the
Department of Computer Engineering, Tehran Polytechnic. Her research
interests include hardware accelerators, SoC design, RISC-V ISA design,
emerging nonvolatile memory technologies, processing-in-memory, depend-
able systems design, and storage systems. During her Ph.D. career, she
received the Best Paper Award from IEEE/ACM Design, Automation, and
Test in Europe (DATE), in 2019.

MIRCO MANNINO received the B.Sc. and M.Sc.
degrees in computer engineering from the Uni-
versity of Siena, where he is currently pursu-
ing the Ph.D. degree with the Department of
Information Engineering and Mathematical Sci-
ences. His research interests include the opti-
mization of deep learning algorithms, parallel
algorithms, high-performance computing, and
hardware accelerators.

ANDREA MONDELLI received the Ph.D. degree
in computer architecture. He was a Researcher and
an Architect in various countries, such as Italy, the
USA, France, China, and the U.K. He is currently
the CPU Chief Architect with Huawei and a Prin-
cipal Researcher of cybersecurity and architecture
design. He is also a Technology Manager and is
responsible for Huawei research projects and col-
laborations with European universities. He pub-
lished multiple manuscripts and conference papers
and a book on memory coherence protocols. His research interests include
high-performance and low-power CPUs. He was part of RISC-V Interna-
tional as the Chair of the virtual memory area.

SANDRO BARTOLINI is currently an Associate
Professor with the Department of Information
Engineering and Mathematical Sciences, Univer-
sity of Siena. He has led and participated in vari-
ous research and development projects. His main
research interests include high-performance chip
multiprocessors (CMPs), new approaches to pro-
ductive programming of heterogeneous architec-
tures (CPUs and GPUs), integrated photonics for
CMPs, feedback-driven compiler optimizations
for cache hierarchy performance and low power, and hardware accelerators.
He is an active member of the HIPEAC NoE. He is an Associate Editor
of EURASIP Journal of Embedded Computing. He has been a Co-Guest
Editor of Transactions on High-Performance Architectures and Compilation
(Springer) and ACM SigArch Computer Architecture Newsletter.

Open Access funding provided by ‘Universita degli Studi di Siena’ within the CRUI CARE Agreement

VOLUME 11, 2023

33791

