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ABSTRACT Imitation learning is a promising approach for robots to learn complex motor skills. Recent
techniques allow robots to learn long-term movements comprising multiple sub-behaviors. However,
learning the temporal structures of movements from a demonstration is challenging, particularly when
sub-behaviors overlap and are not labeled in advance. This study applied time-varying synergies, which are
representations of spatial and temporal structures in human behavior in neuroscience, to imitation learning.
The proposed method extracts time-varying synergies from human demonstrations, with neural networks
that learn their activation patterns. Because time-varying synergies can decompose demonstrations into
linear combinations of primitives while allowing overlapping, neural networks can learn demonstrations
efficiently. This would make the model compact and improve its generalization ability. The proposed method
was evaluated with the task of cursive letter writing requiring overlapping sub-behaviors. Consequently, the
proposed method allows a neural network to generate new movements with a higher success rate and fewer
parameters than those without the proposed method. Moreover, the neural network worked robustly against
control deviations and disturbances in an actual robot.

INDEX TERMS Imitation learning, time-varying synergy, neural networks, neuroscience.

I. INTRODUCTION
Imitation learning allows robots to learn motor skills from
human demonstrations without requiring expert knowledge
of robot control. The structure of demonstrated movements
should be captured to learn complex motor skills through
imitation. Daily human movements involve multiple short-
term movements [1]. For example, a simple activity such
as pick-and-place can be decomposed into sub-behaviors:
reaching the hand to the object’s position, grasping, moving
it to the destination, and releasing the hand. Moreover, sub-
behaviors often overlap and combine over time. Capturing
such structures would be beneficial for learning and general-
izing using a small number of demonstrations. Additionally,
because collecting large numbers of demonstrations is labor-

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

intensive, it is necessary to learn them from small numbers of
demonstrations and generalize to new behaviors.

To learn efficiently from human demonstrations, an
approach based on the principle of human motor control is
effective. Neuroscience has revealed that human movements
can be accounted for by few primitive components, referred
to as synergies [2], [3], [4]. Synergies efficiently represent the
spatial and temporal coordinate patterns of movements using
a linear combination. The central nervous system can sim-
plify the control of complex and redundant bodies by linearly
combining several synergies [5], [6]. Therefore, synergies
are expected to adequately represent the structures of human
movement, even in a compact model. Synergies have also
been used in robotics to address joint redundancy, particularly
in robotic hands [7], [8], [9], [10].

However, synergies are yet to be used to capture the tempo-
ral structures of demonstrations concerning robotic learning.
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FIGURE 1. Method overview. The Blue, orange, and purple arrows indicate preprocessing, movement generation, and learning, respectively. ∗ indicates
convolution operation.

Although time-varying synergies [11], [12] indicating move-
ment primitives activating at different onset times while over-
lapping exist, it has not been applied to imitation learning.

This study proposes an imitation-learning method based
on time-varying synergies, that encode spatial and temporal
coordination in human movements. The proposed method
extracts time-varying synergies from human demonstrations
for neural networks (NNs) to learn their activation patterns,
as illustrated in Fig. 1. Because synergy extraction decom-
poses human demonstrations into short-term primitives, NNs
can focus on learning the spatiotemporal structures of move-
ments. The contributions of this study are as follows.

1) This study applied time-varying synergies to imitation
learning using NNs. Thus, NNs can focus on learning
how sub-behaviors are combined; this is possible even
when sub-behaviors overlap in time.

2) This study demonstrates that time-varying synergies
can make NNs robust against fluctuations in observa-
tions caused by robot control errors. Even when the
contact states of the robots with the environment fluc-
tuate, they can continue to move without confusion.

3) Finally, this study demonstrates that the proposed
method allows NNs to generate new movements
not included in human demonstrations. Because sub-
behaviors are encoded as synergies, NNs can generate
newmovement patterns by varying their activation tim-
ing and amplitude.

II. RELATED WORKS
A. IMITATION LEARNING
Recently, various studies have focused on learning move-
ments comprising multiple short-term movements [1].
A common method involves using hierarchical architectures
[13], [14]. These typically consist of low-level policies that
learn primitive behaviors and high-level policies that plan
sequences of low-level policies. Konidaris et al. used sym-
bolic representations to plan upper-level policies [15]. Choi

and Kim used a Bayesian model to learn experts’ behaviors
[16]. Kroemer et al. used probabilistic models to decompose
demonstrations into sequences of phases [17]. Lynch et al.
proposed learning from play, which learns long-term move-
ments [18]. In most hierarchical approaches, sub-movements
are completely separated (no overlap) in time. Additionally,
approaches to learning high- and low-level policies simulta-
neously tend to be unstable, as observed in hierarchical rein-
forcement learning. In contrast, ourmethod can automatically
extract primitive movements in advance and combine them
with nearly arbitrary timing (allowing overlap).

Embedding short-term sequences into single latent vari-
ables [19], [20] can be useful when providing low-level
behaviors explicitly or in advance. Long-term movements
can be generated by combining single latent variables with
model predictive control [21]. Furthermore, switching can
be made between multiple skills based on observations [22]
or external signals [23]. Our method also acquires low-level
behaviors in advance, but does not require them to be labeled
or separated manually; instead, they are extracted directly
from demonstrations. Methods that generate movements by
dividing them by a fixed time [24], [25] do not capture the
spatiotemporal structures of the task.

B. SYNERGIES
Synergies extracted from muscle activities or kinematic
observations [26], [27] are task-specific movement prim-
itives that account for human movements. They provide
biological and neuroscientific support, suggesting the ben-
efits of representing human demonstrations in imitation
learning. Moreover, they exhibit linearity, which is advan-
tageous for engineering applications. Additionally, syner-
gies emerge during motor learning tasks of gait [28] and
reaching [29], [30], [31].

A feature of synergies is that they can be generalized to
other movements. The same synergies are often observed in
different movements [32], [33], suggesting that synergies can
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be reused in new situations. Furthermore, studies reported
that even a few synergies can represent diverse movements
[30], [33], [34]. Therefore, synergies are expected to improve
the generalization ability of NNs for generating new move-
ments.

C. SYNERGIES IN IMITATION LEARNING
Synergies have also been applied to imitation learning.
A common application is the control of robotic hands, with
many degrees of freedom (DoF) [7], [8], [9], [10]. Chai et al.
used synergies in locomotion tasks to reduce the movement
dimensionality [35]. Reducing the dimensionality of the con-
trol inputs with synergies is effective for learning.

Although approaches using spatial coordination patterns
are common, applications of temporal coordination patterns
are rare. In particular, its application to online movement
generation is yet to be attempted. For example, Rückert
and d’Avella used time-varying synergies to represent spa-
tial and temporal patterns, whereas activation patterns were
determined before the task [36]. Chen and Qiao developed
a synergy-based musculoskeletal control system, where the
temporal parameters were determined at the beginning of the
task [37]. In contrast, this study aimed to determine how
synergies are used online.

Synergies are similar to dynamic movement primitives
(DMPs) [38], [39], which encode movements with small
numbers of primitives. DMPs are often used in imitation
learning because of their linearity and ability to reduce
dimensionality [40], [41]. Synergies possess these features
along with other unique features such as task-specificity and
representing shifts in time. These features allow encoding
temporal structures of human demonstrations with a smaller
number of primitives compared to DMPs, making them
advantageous for this study.

III. METHOD
A. OVERVIEW
The proposed method extracts time-varying synergies
and performs supervised learning of synergy activities.
An overview of this process is shown in Fig. 1.

We considered the displacement of the positions for each
time step, as follows, to extract synergies:

x[t] ≜ p[t + 1]− p[t], (1)

where x[t] and p[t] indicate the displacement and position at
time t .

B. TIME-VARYING SYNERGIES
Time-varying synergies represent movements by superim-
posing primitives while varying the onset times and ampli-
tude, as follows:

x̃[t] ≈
∑
i

ciwJ (i)[t − ti], (2)

where x̃[t] indicates a non-negative state of a movement at
discrete time t . wJ (i) indicates J (i)-th synergy with length K ,

where J (i) ∈ {1, . . . ,N };N is the number of synergies. Using
J (i) instead of i allows multiple uses of the same synergy
in a movement. ci and ti indicate the activation amplitude
and onset time of wJ (i), respectively. An overview of the
time-varying synergies is shown in Fig. 2. Time-varying syn-
ergies (hereinafter, synergies) are common in a set of move-
ments; however, the activation amplitude and onset times are
different for each movement. Therefore, diverse movements
can be represented by the same repertory of synergies by
varying the activation amplitude and onset times.

C. SYNERGY EXTRACTION
The synergies were extracted using the algorithm in [32].
This algorithm can only be applied to non-negative signals;
therefore, we first convert the original movements x[t] into
non-negative variables x̃[t] as follows:

x̃[t] = φ(x[t]) ≜

[
x+[t]
x−[t]

]
, (3)

where φ is a conversion function, and

x+[t] ≜ max(x[t], 0), (4)

x−[t] ≜ −min(x[t], 0). (5)

Thus, the M -dimensional variable x[t] was converted into a
non-negative 2M -dimensional variable x̃[t]. Inverse conver-
sion can be performed as follows:

x[t] = φ−1(x̃[t]) = x+[t]− x−[t]. (6)

We then initializeN synergies with a length ofK time steps
to random positive values, where N and K are determined by
the users. The synergies were optimized using the following
algorithm [32]:

1) Determine a set of onset times ti and synergy
indices J (i) using the matching pursuit procedure
[42]. This procedure selects the synergy having the
highest cross-correlation with signals x̃ until the
cross-correlation is less than the threshold value.

2) Calculate the activation amplitude ci based on the
cross-correlation.

3) Update the synergies with the gradient descent to
reduce the reconstruction error as follows:

w[t]← max

(
0;w[t]− η

∂

∂w[t]

∑
τ

∥E[τ ]∥2
)

, (7)

E[τ ] = x̃[τ ]−
∑
i

ciwJ (i)[τ − ti], (8)

where the maximum operation ensures that the ele-
ments of the synergies are zero or more.

4) Go back to 1) and repeat the steps until convergence is
achieved.

D. LEARNING ACTIVITIES OF SYNERGIES
After decomposing human demonstrations into synergies and
their activation patterns, an NN was trained to learn the
activation patterns. Here, we consider an NN that receives the
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FIGURE 2. Overview of time-varying synergies. A movement is
decomposed into two time-varying synergies with different onset times ti
and amplitudes ci . In this case, J(1) = 1, J(2) = 2, J(3) = 1.

current observation and generates current synergy activities,
as illustrated in Fig. 1. Training was performed using super-
vised learning.

To handle synergies with NNs online, we define the vari-
ables γ [t] that represent synergy activity, instead of ci and ti.
γ [t] are N -dimensional vectors, where the n-th element γn[t]
represents the activity of n-th synergy wn as follows:

γn[t] =

{
ci if J (i) = n and t = ti,
0 otherwise.

(9)

The NNs receive the current observation o[t] and predict
the synergy activity γ [t]. Therefore, synergy activities are
decoded as follows:

ˆ̃x[t] =
N∑
n=1

(wn ∗ γn)[t]

=

N∑
n=1

t∑
τ=0

wn[τ ]γn[t − τ ], (10)

where ∗ denotes convolution operation. Finally, the non-
negative ˆ̃x is converted to real-valued x̂ using (6). Further-
more, the positions were reconstructed by integrating the
displacements as follows:

p̂[t + 1] =
t∑

τ=0

φ−1
(
ˆ̃x[τ ]

)
. (11)

By substituting t − τ = ti into (10) and (9), (10) corresponds
to (2).

NNs were trained using the following loss functions:

L =
∑
t

(
∥p[t]− p̂[t]∥2 + α∥γ [t]∥

)
, (12)

where α is the hyper-parameter. The first term allows the
NNs to reproduce the demonstrated movements. The second
term is a regularization term that encourages the synergy
activities to be sparse (the smallest amplitude possible). This
regularization term is expected to drive the NN to reproduce
the ground-truth synergy activities because the synergies are
mostly inactive and activate only at a single time step at any
instant.

TABLE 1. Learned and unlearned patterns.

IV. EXPERIMENTS
To evaluate the proposed method, we applied it to writing
cursive-script letters. This specific task has several features
that are common to other tasks.

1) The task consisted of sub-behaviors, that is, movements
of writing individual letters or basic curves.

2) The order of the sub-behaviors (i.e., the order of letters)
varies.

3) The boundaries of each sub-behavior is uncertain and
often overlap.

Therefore, evaluating this task would demonstrate the poten-
tial for various imitation-learning applications.

A. TASK SETUP
The robot grasps the pen and moves it to write letters j,
q, and k. We chose these letters because their shapes were
significantly different, making it easy to determine successful
completion of the task. The robot writes the three letters in
one stroke based on a task signal, as explained in Section IV-
C.

B. DATA COLLECTION AND SYNERGY EXTRACTION
A motion capture system collects the demonstrations,
as shown in Fig. 3. A marker attached to the pen records
human movements. Another marker on the paper identifies
the paper’s position and pose. The Intel RealSense D455
captured the movements at 30 Hz. A third marker specifies
the pattern currently being measured.

We collected all combinations of three letters (27 patterns
in total) with three trials for each, that is, 81 demonstrations
in total. Fig. 4 shows the collected demonstrations. The time
series length is 9.57 s on average, with a standard deviation of
1.69 s. Sixteen out of 27 patterns used for synergy extraction
and NN training are given in Table 1.

We extracted synergies from the displacements of positions
1p to capture writingmovements regardless of their positions
as follows:

x[t] = 1p[t] ≜ p[t + 1]− p[t]. (13)

The trajectories of 1p were low-pass filtered at 1.1 Hz
and down-sampled to 20 Hz. Subsequently, synergies were
extracted using the method described in Section III-C.

C. NEURAL-NETWORK SETUP
The single-layer NN architecture is illustrated in Fig. 5. The
model consists of 256-long short-termmemory (LSTM) [43],
[44] and a linear output layer with softplus activation. For
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FIGURE 3. Demonstration setup.

FIGURE 4. Collected demonstrations. Three demonstrations are collected
for each pattern (overlaid). The orange patterns are excluded from
synergy extraction or training.

each time step, this model receives a five-dimensional obser-
vation consisting of a two-dimensional hand position p[t] and
a three-dimensional task signal z. This model then generates
synergy activity γ for each time step. The synergy activities
are then decoded into positions as follows:

1p̂[t] = φ−1

(
N∑
n=1

t∑
τ=0

wn[τ ]γn[t − τ ]

)
, (14)

p̂[t + 1] =
t∑

τ=0

1p̂[τ ], (15)

where φ−1 is defined in (6). During the training, we used the
loss function described in (12).

Task signal z represents the pattern of letters to be written.
It is a three-dimensional variable; the n-th component is −1,
0, or+1 if the n-th letter is j, q, or k, respectively. For example,
pattern j-q-k is expressed by [−1, 0,+1], and pattern q-k-q

FIGURE 5. Neural-network architecture.

TABLE 2. Hyperparameters for training.

is expressed by [0,+1, 0]. It is expected that NNs can learn
the correspondence between task signals and demonstrated
trajectories.

We additionally trained two baseline models, baseline-
A and baseline-B, for comparison with the proposed
model. The baseline-A model consisted of a single layer
with 256 LSTMs, followed by a linear output layer. This
architecture is nearly identical to that of the proposed model
except for the synergy decoder. The baseline-B model con-
sisted of three layers with 256 LSTMs, followed by a lin-
ear output layer. This model has more parameters than
the proposed and baseline-A models. We used this model
because the baseline-A model resulted in unsatisfactory per-
formance when used in the robot experiments, as described
in Section IV-E. Both baseline models directly generated
two-dimensional displacement commands of the hand,1p[t],
instead of synergy activities. The generated commands are
then converted to position commands as described in (15),
and passed to the robot controller. The hyperparameters used
for training are listed in Table 2. The codes are publicly
available.1

The main objective of the experiments was to compare
the performance with and without synergies. Accordingly,
we employed LSTM as a general method for time-series
generation, which is widely used in various fields, including
robotics.

D. ROBOT SETUP
We used a five-DoF robot with a gripper, as shown in Fig. 6.
This robotic arm has series elastic actuators provided by
HEBI Robotics, Inc. This robot was connected to a desktop
computer with Intel Core i7-10700 CPU using Ethernet. The
computer ran the control system and neural networks.

The robot is velocity controlled, using the control system
illustrated in Fig. 7, and the joint angle θ is observed. The
controller calculates the angular velocity command to the

1https://github.com/kyo-kutsuzawa/synergy-based-imitation-learning
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FIGURE 6. Robot appearance.

FIGURE 7. Control system. Blue blocks run at 1 kHz, while orange blocks
run at 10 Hz.

actuators, ωref, as follows:

ωref = J−1Kp(pcmd − p) (16)

where J is the Jacobian matrix of the robot, Kp =

diag[40, 50, 40, 20, 20], and pcmd indicates the positional
command. The x–y components of the position were com-
puted based on p̂ and the z-axis component was set to a
constant value to maintain contact with the paper. The pitch
and yaw components of the posture were set to ensure that
the pen was perpendicular to the paper. The NNs were run
at 20 Hz and the controller was run at 1 kHz; first-order
interpolation was applied to p̂ before passing to the controller
to account for the difference in computation intervals and
smoothen the position command values.

E. RESULTS
1) EXTRACTED SYNERGIES AND THEIR ACTIVITIES
First, we show how synergies encode demonstrations.
We also demonstrated that synergies could represent new
movement patterns. Figure 8 shows the extracted synergies
and examples of their activities in the demonstrations. The
convergence criterion was made using the variance accounted
for (VAF), denoted by R2:

R2 = 1−

∑
m
∑

t ∥x̃m[t]− ˆ̃xm[t]∥
2∑

m
∑

t ∥x̃m[t]− µ̃m∥
2 , (17)

where m is the index of the demonstrations and µ̃m is the
mean vector of x̃m over the demonstrations. The value ranges
from 0 to 1; the higher this value, the more accurate the
reconstruction with the synergies. The synergy extraction is
completed when the changes in R2 is less than 10−5.

Table 3 lists the reconstruction performance using the VAF
defined in (17) and validates how the synergies could account

TABLE 3. Reconstruction performance of demonstrations by synergies.

for the demonstrations. In N = 4,K = 25 and N =

6,K = 10, the VAFs were almost identical in the learned and
unlearned patterns, with more than 85% on average. For N =
3,K = 80, the VAFs were below 80%. Although we cannot
immediately state whether these values are sufficient, in most
cases, synergies could encode sub-behaviors accurately and
even represent new movements.

2) AUTOREGRESSIVE TRAJECTORY GENERATION
Here, we test the three NNmodels described in Section IV-C.
To evaluate the performance of the models without robots,
we let the models generate trajectories in an autoregressive
manner. Instead of receiving responses p[t] from robots,
the NNs received their previous position outputs, p̂[t]. This
setup corresponded to a case in which robots were ideally
controlled without any control delays or disturbances, which
was impossible in actual experiments. The initial positionwas
selected based on demonstrations.

Figures 9 and 10 show the letters generated by the NNs.
The success rates computed using demonstrations are sum-
marized in Table 4. A trajectory is labeled a success if more
than half of the top-two similarity demonstrations are correct.
The similarity was measured using the mean squared error;
when the two trajectories had different lengths, we truncated
them to match the shorter ones. In the baseline-A model,
the trajectories were significantly unstable in the learned
and unlearned patterns. In contrast, trajectories were gener-
ated stably in the baseline-B and proposed models, despite
the proposed model having a significantly smaller NN size.
Moreover, the success rates of the proposed models were
higher than that of the baseline-B model, except for the case
of N = 3,K = 80, suggesting that synergies influence
learning.

3) APPLICATION TO ROBOTS
Finally, we evaluate the performance of the proposed method
using an actual robot. Additionally, we assessed the gen-
eralization ability by commanding the model to generate
unlearned patterns (orange patterns in Fig. 4). We deployed
the proposed and baseline-B models to the robot and not the
baseline-A model, which could not generate stable move-
ments, even in the autoregressive scenario, as shown in
Fig. 9A. Figure 11 shows the hand-tip trajectories of the
robot. Furthermore, Fig. 12 shows examples of actual letters
written on paper. Figure 13 shows snapshots of the trial using
the proposed method.

The baseline model generated oscillating behaviors and
could not reproduce the letters correctly, despite generat-
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FIGURE 8. Results of synergy extraction varying parameters. Left column: Synergies extracted from demonstrations. The pink and gray waves
correspond to the positive and negative components, x+ and x−, respectively. The bottom row has the trajectories drawn by each synergy. Right
column: Examples of synergy activities in the demonstrations. The activities for all three trials were overlaid. The pattern j-q-k was not used in
synergy extraction. A–B: N = 4, K = 25. C–D: N = 6, K = 10. E–F: N = 3, K = 80.

ing the correct trajectories in the autoregressive situation.
In addition, most trials were halted during the task because
of strong oscillations that could damage the surrounding
environment. This was mainly due to the control deviations
of the robot, which did not appear in training. Moreover,
friction between the pen and paper makes it difficult to

model and compensate perfectly. In contrast, the proposed
models, except for N = 3,K = 80, could write letters
in the correct order in most trials, although not in perfect
shapes. In addition, these models can write letters in new
orders. Even when the contact states occasionally fluctu-
ated owing to the stick-slip phenomenon, as observed in
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FIGURE 9. Generated trajectories with the baseline models. The robot was not used in these results. The trajectories in orange were not used in
training. A: Baseline-A. B: Baseline-B.

Fig. 12, the proposed models could continue to write without
confusion.

The success rates are summarized in Table 4. The
baseline-B model could not achieve the task in most trials
owing to the oscillation. However, the proposed models could
write letters, although the success rate was slightly reduced
for unlearned patterns. In addition, the shapes of the written
letters barely oscillate. The proposed models with N =

4,K = 25 and N = 6,K = 10 resulted in almost consis-
tent success rates with those in the autoregressive scenario,
whereas those with N = 3,K = 80 performed poorly.
The proposed model failed in some unlearned patterns;

for example, in N = 6,K = 10, the generated trajectories
resembled q-q-k for the task signal k-j-k. Because the model
could generate nearly correctly in an autoregressive scenario
(cf. Fig. 10), the model may have gotten confused during
the experiment owing to the control deviations. However,
despite such failure cases, the proposed model did not behave
destructively, such as vibratory behaviors; instead, the mis-
takes were at an abstract level (i.e., writing a different letter).

Figure 14 shows that the proposed model activated syn-
ergies similar to the demonstrations. Although the synergies
are occasionally activated for several time steps, unlike in the
demonstrations, the activation patterns are similar to those of
the demonstrations.

V. DISCUSSION
A. REPRESENTATIONS OF EXTRACTED SYNERGIES
As shown in Fig. 8, the extracted synergies represent the
spatial features of the task at different scales depending on

TABLE 4. Success rate of the models.

N and K . In summary, the longer the length of the synergies,
the more global the features they represent. In addition, when
the number of synergies increases, some may not be used.

In N = 4,K = 25 (Fig. 8A), the synergies repre-
sented complex curves, as is often observed with cursive
letters. Additionally, most synergies move the pen to the
right (+x direction), whereas none moves the pen to the left
(−x direction). This observation makes logical sense because
the movement is to the right when writing Latin letters in
a cursive style. The synergies indicate smooth acceleration
and deceleration patterns, as observed in human writing
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FIGURE 10. Generated trajectories with the proposed model. The robot was not used in these results. A: N = 4, K = 25. B: N = 6, K = 10. C:
N = 3, K = 80.

movements, suggesting that they can be reused in different
orders from the demonstrations.

Moreover, their activation patterns correspond to the tem-
poral structures of the task (Fig. 8B). First, the activation
patterns are nearly regular and correspond to the letters.
For example, when writing the letter j, the first and second
synergies are activated in a specific order. The third and
fourth synergies were predominantly activated when writing
q and k, respectively. Moreover, the activation orders within

individual letters were nearly consistent, even when varying
the letter orders. However, certain modifications could be
observed depending on the previous and next letters. The
same tendency is observed for the pattern j-q-k, which was
not used in synergy extraction.

Synergies represent different types of features when using
different numbers and lengths. In N = 6,K = 10 (Fig. 8C),
the synergies represent simpler curves than those for N =
4,K = 25. The first, second, fourth, and sixth synergies
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FIGURE 11. Generated trajectories by the robot. The trajectories in orange were not used in training. Proposed model with A: N = 4, K = 25, B:
N = 6, K = 10, and C: N = 3, K = 80; D: baseline-B model.

represent straight movements toward the −y, +x, +y, and
−x directions, respectively. In contrast, because linear com-
binations of these synergies can express movement in any
direction, the third and fifth synergies represent meaningless
movements that remain at the origin. Their activation patterns
correspond to the temporal structures of the letter orders,
although they look complicated (Fig. 8D).
Each synergy clearly represents an individual letter in

N = 3,K = 80 (Fig. 8E). This captures the structure

of the demonstrations. However, the activation patterns in
Fig. 8F did not adequately correspond to the temporal struc-
tures. For example, in j-j-j, the third synergy is expected
to be used thrice; however, it was used only once at the
beginning of the task. Moreover, the first synergy, which
represents the shape of k, was used initially, although the
commanded pattern did not include the letter k. Similarly,
the activation patterns did not correspond to the letter orders
in j-q-j and j-q-k. A possible reason for these failures is
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FIGURE 12. Examples of actual letters written by the robot. Proposed
model with A: N = 4, K = 25, B: N = 6, K = 10, and C: N = 3, K = 80; D:
baseline-B model. In the baseline-B model, the robot was stopped while
writing because of strong oscillations.

FIGURE 13. Snapshots of the robot writing j-q-k (an unlearned pattern)
using the proposed method with N = 4, K = 25.

that the synergies could not represent the deviations in let-
ter shapes. Even the same letter varies in shape each time.
The shape also varies depending on the letters immediately
before and after it. However, such variations cannot be rep-
resented when only a single synergy exists for each letter.
Consequently, an undesirable synergy activity was obtained
by attempting to fit variations in letter shapes, as observed
in Fig. 8F.

B. PERFORMANCE OF MOVEMENT GENERATION
Time-varying synergies improved the performance of the
neural networks with fewer parameters, as shown in
Figs. 9–11 and Table 4. The time-varying synergies assisted
NNs in learning movements by providing the spatiotemporal
structures of the task. The proposed method decomposes
demonstrations into movement primitives and combination
patterns. Using these primitive patterns (synergies), NNs
could generate unlearned patterns relatively more easily than
learning demonstrations directly. However, without syner-

FIGURE 14. Synergy activities generated by the proposed model when the
robot is writing. A: N = 4, K = 25. B: N = 6, K = 10. C: N = 3, K = 80.

gies, NNs would need more layers, parameters, and training
data to capture these structures.

Moreover, the proposed models succeeded in the task in an
actual robot against control deviations owing to the controller
and disturbance by friction. This could also be due to syner-
gies. Because the synergies deal with short-term movements,
NNs could have focused on longer-termmovements and have
become robust against small deviations in the input-output
relationship. Additionally, the small number of parameters
and layers in the proposed model also contributed to sta-
ble movement generation; this was also realized owing to
synergies.
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C. LIMITATIONS AND FUTURE WORKS
Although time-varying synergies can help imitation learn-
ing, there are some limitations. First, providing guidelines
for designing N and K of synergy extraction is beneficial.
As shown in Fig. 11 and Table 4, the performance varied
depending on these hyperparameters. Although they were not
very sensitive, a technique to find the best ones for perform-
ing the task would be useful. Second, the proposed method
does not have a function to halt synergy activation once it
starts, causing delays in reacting to unexpected disturbances.
However, it has been reported that time-varying synergies
can account for human reaching movements when the target
positions suddenly change during a task [45]. Therefore,
we expect a certain amount of adaptability to be realizedwith-
out a synergy-activity interruption function. This evaluation
is a topic for future research. Third, extending the proposed
method to contact-rich tasks, such as assembly tasks, by com-
bining force and impedance controls is desirable.

VI. CONCLUSION
This study proposes an imitation-learningmethod using time-
varying synergies to decompose human demonstrations into
linear combinations of a few primitives activated at various
times. Owing to the spatiotemporal representation ability of
the synergies, even compact NNs could learn movements
comprising several sub-behaviors.

We evaluated the proposed method with the task of writ-
ing cursive-script letters. Consequently, the NN with the
proposed method could generate movements even for new
patterns using a small number of model parameters. In addi-
tion, the proposed method generated movements even when
applied to a robot. The proposed model focuses on tempo-
ral structures (synergy activities) because synergies encode
primitive temporal patterns, making it relatively easy for NNs
to generate new movements by varying the onset times and
amplitudes of the synergies. This contrasts with the base-
line models, which need to vary the entire behavior with-
out knowing the temporal structures of the demonstrations.
Therefore, the time-varying synergy is a promising represen-
tation method for improving the efficiency and generalization
ability of imitation learning.
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