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ABSTRACT Powered by IoT technologies, smart home systems effectively support aging-in-place. How-
ever, they have some limitations in comprehensive event perception and timely appropriate action. Homecare
robot systems have been proven to be effective in homecare task executions but still have significant
technological challenges. To address this problem, this paper proposes a smart home system architecture
integrating a mobile robot with better event perception and task execution performance. To support the
proposed system architecture, an ontology of the smart home is built to address the data heterogeneity issue.
Then an event perception method is built upon multi-data integration. To perform complex tasks, this work
implements an improved genetic algorithm for task planning. Finally, simulations and physical experiments
are conducted to validate the feasibility of the proposed system architecture.

INDEX TERMS Smart home, sensors, service robot, homecare robot, aging-in-place.

I. INTRODUCTION

Research has shown that the global aging population (over
65 years old) will reach 1.6 billion by 2050 and 3.1 billion
by 2100 [1]. The huge aging population is a very challenging
problem, especially in developed regions such as the United
States, Canada, and Europe [2]. Most elderly prefer to stay at
home rather than in a nursing facility [3]. Independent living
is quite a big challenge for the elderly, especially those with
geriatric diseases and mobility problems [4]. The “‘aging-in-
place” strategy based on the smart home is quite a promising
solution to address this problem, attracting attention from
both academic and practical fields [5].

The smart home performs three main functions in the
“aging-in-place” context: 1) monitoring living environment
quality for the elderly, 2) monitoring activities of daily living
(ADL) of the elderly, including fall detection, 3) long-term
health monitoring of the elderly, among which the early
diagnosis and intervention of geriatric diseases are quite
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beneficial [6], [7], [8]. However, those smart home systems
primarily focused on monitoring functions are pretty weak in
everyday manipulation tasks [9]. For example, when a person
falls, the system can only recognize the fall and notify the
first-aid personnel rather than taking more proactive actions
like conversation and further investigations.

To remedy this situation, a robot with good mobility and
interaction capability should be an essential agent in the smart
home. However, there are some significant technological
challenges [10], for example:

« To couple the robot into the smart home to sense states
beyond its onboard sensors’ perception range.

o To recognize the complex or vaguer tasks by the system.

o To plan complex tasks in quick response to emergencies.

This paper proposes a smart home system architecture called
CareBot-Assisted Smart Home (CBASH) to cope with these
challenges. In CBASH, a self-developed robot called CareBot
is the primary sensing and actuation equipment responsible
for event sensing and task execution. At the same time, a cen-
tral data servo makes task decisions based on the integrated
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data from the embedded sensor networks, smart devices,
and CareBot within the smart home. This paper makes the
following contributions:

1) An adaptive and scalable system architecture is
designed by integrating a robot into the smart home.
This system architecture can improve event perception
and task execution abilities in smart home environ-
ments.

2) Anontology of CBASH is proposed to address the data
heterogeneity issue, and a task rule base is therefore
built to support the event sensing and task planning.

3) A task planning method is presented with a focus
on implementing complete tasks in quick response to
emergencies under the constraints of robot charging.

The rest of this paper is organized as follows: Section II
reviews the related work. Section III describes the proposed
system design, including hardware design, software design,
ontology, event perception, and task planning. Section IV
presents the system implementation. Section V concludes the
paper and discusses future research directions.

Il. RELATED WORK

A. DEVELOPMENT OF A SMART HOME SYSTEM FOR THE
ELDERLY

With the advantages of data collection, processing and auto-
mated operations in home systems, growing applications and
related research are observed in the “aging-in-place” field.
Helal et al. [11] designed the Gator Tech Smart House system
at the University of Florida to perceive the daily activities
of the elderly to detect emergencies like falls. Moutacalli
et al. [12] presented an intelligent activity recognition system
to recognize the elderly’s daily activities to analyze chronic
diseases of the elderly. Matsui [13] proposed a method to
collect sensor data using a home energy management system
(HEMS), which can adjust the indoor environment. Wood
et al. [14] designed a system called AlarmNet to monitor
the environment’s safety and supervise chronic diseases, such
as medical data collection and medicine-taking reminders.
Jaouhari et al. [15] developed a method that provides sensor-
based healthcare and energy management services to improve
residents’ overall quality of life.

The above studies have made great contributions to
“aging-in-place” but were mainly focused on monitoring.
Tasks requiring constant interactions between robots and the
elders and physical manipulations cannot be fulfilled entirely
solely on the smart home.

B. INTEGRATING ROBOT INTO SMART HOME

To implement the services of complex activities, many
researchers have integrated service robots into smart homes to
provide comprehensive services for the elderly [16]. Yu and
Chen [17] designed a smart home monitoring system in which
arobot performs tasks at programmed commands at the emer-
gency identified by the smart home. Li et al. [18] proposed
a multi-sensor fusion framework for a smart home social
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FIGURE 1. CBASH system overview.

robot to operate household appliances. Sarkar [19] developed
a smart home care system with a robot named*“NurseBot,”
supervising the medicine-taking of the elderly. Although the
robots in these systems can provide some services, they d ot
have specific perception capabilities to offer active and per-
sonalized services. To complete more comprehensive tasks,
the sensation and reasoning capabilities of robots should be
integrated into smart home systems [20].

Several researchers have made some explorations. Do et al.
[21] proposed a robot-integrated smart home (RiSH) sys-
tem to detect and respond to the elderly falls through the
fusion of service robots, intelligent wearable devices, and
smart homes. Wilson et al. [22] developed a Robot Activ-
ity Support (RAS) system, which builds an error detection
model to increase the robot’s automatic perception ability.
Tenorth and Beetz [23] proposed a knowledge processing
system called KnowRob to reason about simple events and
help robots understand abstract instructions. Zhang et al.
[24] explored a system architecture, which explores a robot
service mechanism based on system cooperation to assist
the robot in actively discovering and providing the service
task. Abate et al. [25] presented a semantic trust model to
integrate different contextual information, which can couple
the robot to the smart home. Harman et al. [10] proposed a
continual planning framework, which can incorporate sensing
and actuation capabilities into a robot’s state estimation, task
planning, and execution. As mentioned above, robots have a
certain level of proactive perception ability but are relatively
simple and cannot conduct multi-task planning, especially
rapid response in emergencies. Thus, this paper proposes a
system architecture to empower robots to percept various
types of events and make an instant and appropriate response
by task planning.

Ill. PROPOSED SYSTEM DESIGN

This section presents the system architecture named CareBot
Assisted Smart Home (CBASH), as shown in Fig.1. The
system comprises three main parts: a smart sensor network,
a service center, and a CareBot. The three components will
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FIGURE 2. Hardware architecture.

work independently or collaboratively in implementing event
detection, task planning, and service provision. Firstly, the
data from all resources, including smart sensor networks,
robots, and wearable devices, are preprocessed to filter out
time-out, duplicate and wrong data. Secondly, the Jena infer-
ence engine reasons the tasks according to the rule base estab-
lished by historical and real-time information. Thirdly, event
perception and task planning are fulfilled based on a series of
optimization algorithms with the goal of the shortest response
time to the emergency. Finally, CareBot performs the cor-
responding tasks according to the generated task sequence
and the path. Specifically, the proposed system established
unified hardware and software interfaces, allowing flexible
adding of new services, application and components with
minimum impact on existing system functionality.

A. HARDWARE DESIGN

The hardware design of CBASH is presented in Fig. 2. The
cloud server connects the smart home, CareBot, and remote
caregiving resources to optimize the service provision, espe-
cially empowering CareBot to tackle more complex service
demands.

CareBot is equipped with various sensors and manipula-
tors, including a mobile chassis, a configurable sensor mod-
ule, a video call system, an Al chat system, and a smart
logistics module. The mobile chassis is equipped with LIDAR
(Light Detection and Ranging), IMU (Inertial Measurement
Unit), and ultrasonic sensor for positioning, navigation, and
path planning. The sensor module integrates different kinds
of sensors, including a camera, a fire sensor, and a gas sensor.
The sensors in this module are configured with rules of
modularization and expandability. They can be easily reduced
or added at the demand of future applications. The sensor
module is designed within a compact box with three degrees
of freedom, i.e., up and down, pitching, and left and right. The
data from those sensors, as one source of event perception,
will be processed and integrated at the center service with
information from other sources. The video call and Al chat
systems on CareBot have a voice module and a display mod-
ule responsible for human-robot interactions and spiritual
accompanying of the elderly. The smart logistics module is
designed within the CareBot body, holding and managing
important daily activities. The current version of CareBot
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FIGURE 3. CBASH system architecture.

has sphygmomanometers and an intelligent pill box in the
automatic drawer to assist the elderly in measuring blood
pressure and taking medicine on time. When the system needs
to perform this task, the robot moves to the position of the
elderly, and the robot drawer automatically pops up the smart
medicine box. The robot then prompts the elderly to take
medicine by voice, and the smart medicine box detects the
elderly’s medication status.

The intelligent sensor network platform comprises various
sensors deployed in the home environment to collect behav-
ioral, physiological, and environmental data. The behavioral
sensors include depth cameras, door sensors, and human
body sensors to record daily behaviors and detect falls of the
elderly. The physiological sensors, including an intelligent
sleep detector, sphygmomanometer, glucometers, and smart
weight scales, are used for ADL detection. The environmental
sensors include a temperature-humidity sensor, water sensor,
gas sensor, and fire sensor used to monitor the home environ-
ment conditions. In addition, the SOS button and smartwatch
are used to detect falls and call for help.

A home gateway is a personal computer to serve as a local
hub for data collection and processing [26]. It is responsi-
ble for the data transmission between the server, the sensor
network, and the CareBot. The controller node manages the
databases, authentication, message queue, and networking
in the cloud server. The computer node hosts hypervisors
and client services. User interfaces are designed both for
smartphones and computers.

B. SOFTWARE DESIGN

This section presents the software design of CBASH,
as shown in Fig. 3. To provide various kinds of elderly care
services, CBASH is required to have a variety of functions
based on the four physical modules: a smart sensor network,
a server center, CareBot, and user interfaces. To reduce the
requirements on computing resources and sensor configu-
rations on CareBot, most data collection and processing,
together with event reasoning and task planning, are con-
ducted on the Server Center [27]. With the mobility advan-
tage, CareBot can make up for the blind points of event
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observation while implementing most service tasks in the
smart home environment.

The smart sensor network module collects event-related
data from various sensors and transmits these data to the cloud
server through the smart gateway. Raw data are preprocessed
before the ontology deals with the data heterogeneity and
generates the event knowledge. Still, the event reasoning and
task planning are fulfilled in the server center. The outcomes
of task planning will be transmitted to CareBot as direct
commands on robot moving and manipulation. CareBot is
an independent, smart device with event perception, path
planning, and interaction functions. When the commands are
output by the task planning on the server center, CareBot
receives them and performs the tasks using SLAM [27],
human-robot interaction, and task implementation functions.

In addition, user interfaces are designed to choose services,
check the rooms and operate the robot remotely for the family
members and care providers. It comprises service selection,
robot operation, data reading, sensor control, and task execu-
tion.

C. PROPOSED ONTOLOGY

The system integrates various sensors and generates enor-
mous heterogeneous data, affecting data processing effi-
ciency. To address this problem, this study explores an
ontology for CBASH and uses OWL (web ontology lan-
guage) [29], [30] to build the CBASH ontology, which is
richer in content than other studies [24].

As Fig. 4 shows, in the CBASH ontology, the smart home
knowledge base is divided into three top-level classes: people,
environment, and task.

For the people class, there are two subclasses: demographic
data and behavior. The demographic data class is divided
into the elderly class, family member class, and care provider
class, which are used to store the demographic data. The
behavior class is used to store the status information and is
divided into sit, stand, sleep, fall, check, serve, control, and
order classes.

For the environment class, there are three subclasses:
items, location, and stateitems. The Items class represents the
device’s information and includes distributed sensor, sensor,
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actuator, and object class. The location class means the
thing’s location and has living room, bedroom, kitchen, and
office classes. The stateitems class represents the state of the
items and is divided into on, off, and broken classes.

For the task class, there are three subclasses: time, robot,
and operate. The time class is used to store time information
and includes time on and time off. The robot class is used to
store the state of the robot and is divided into turnoff, working,
and charging. The operate class is divided into pick, close,
send, open, check, and rescue classes.

Furthermore, a knowledge representation should be set up
to eliminate the heterogeneity of context information from all
sources. In CBASH, a promising method is chosen to abstract
the contextual knowledge, where classes are described in
either the definition domain or the function range according
to the different properties, as shown in Fig. 5. For example,
in the description “an old man is in the bedroom,” ‘““an old
man”’ belongs to the demographic data class and “‘bedroom”
belongs to location class. Its property is hasLocation; the
definition domain is the demographic data class, and the
function range is the location class.

D. EVENT PERCEPTION

1) DATA PREPROCESSING

To reduce the system’s burden in transporting, computing,
and storing redundant and erroneous data, data preprocess-
ing is conducted as the first step, as shown in Fig. 6.
In data preprocessing, Sensor_Data = {Data_ID, Value,
Time, Cycle_Time}

Data_ID: ID of each sensor used for data classification.

Value: the value of the sensor.

Time: the collection time of the data

Cycle_Time: the collection period of the data.

A table is designed to store the sensor data. When the new
data is collected, its ID will be checked in the table. A unique
ID will be created if no corresponding ID exists. CBASH will
judge whether it is less than Tcycle_Time_max- If it exceeds the
maximum period Tcycle_Time_max» CBASH identifies an error
with this sensor and marks the sensor’s ID. If it is less than
Tcycle_Time_max» the time of this data will be judged whether
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Body : Demographic data(B, D) A Behavior(B, B) A Location(B, L) A
Time(B,T) A hasBehavior(B, D, B, B) A hasTime(B, D, B,T)
AhasLocation(B,D, B, L)

Head : OperateOn(H,0,H 1) A hasService(H,R,H, 1)

FIGURE 7. The rule of the behavior information.

it is more significant than Tcycle_Time. If yes, the data will be
output; if not, these duplicate data will be discarded.

2) CONSTRUCTION OF SWRL RULE BASE
In addition to an ontology, CBASH requires specific rules
based on perception events in dynamic and complex smart
home environments. SWRL language is selected to construct
the rule base [31]. Three SWRL rule bases are constructed:
elderly behavior, environmental information, and task status.
Fig. 7 shows an example of the behavior information rule.
The body part is the demographic data class, behavior class,
location class, and time class. The object properties are has-
Behavior, hasTime, and hasLocation. The head part contains
the operate class, the robot class and the items class. The
object properties are described as operateOn and hasService.
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Body : Demographic data(B, D) A Items(B,I) A Location(B, L) A
Time(B,T) A hasStateltems(B,D,B,S) A hasTime(B,D,B,T)
AhasLocation(B,D, B, L)

Head : OperateOn(H ,0,H 1) A hasService(H ,R,H,I)

FIGURE 8. The rule of the environmental information.

Body : Robot(B,R) A Items(B,I) A Location(B,L) A
Time(B,T) A hasStateltems(B,R,B,S) A hasTime(B,R,B,T)
AhasLocation(B,R,B,L)

Head : OperateOn(H ,0,H,I)

FIGURE 9. The rule of the task status.
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Robot(ready) A Time(B,T) A hasBehavior(Tony,sit) A
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FIGURE 10. The rule of the example.
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Fig. 8 shows an example of the environmental information
rule. The body part is the demographic data class, items class,
location class, and time class. The object properties are has-
Stateltems, hasTime, and hasLocation. The head part contains
the operate class, the robot class and the items class. The
object properties are described as OperateOn and hasService.

Fig. 9 shows an example of a task status rule. The body
part is the robot class, items class, location class, and time
class. The object properties are hasStateltems, hasTime and
hasLocation. The head part contains the operate class, and
the items class. The object property is OperateOn.

3) EVENT REASONING

Before event reasoning, rules to classify historical informa-
tion should be generated. For example, when the elderly are
ready for a blood pressure measurement on the sofa, the
system will take the following rule to percept and perform the
task of sending a sphygmomanometer, as shown in Fig. 10.
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TABLE 1. Summary of notations.

0, Represents task i at level 1

0, Represents task j at level 2

0, Represents task z at level 3

ki The coefficient of level 1 task

k; The coefficient of level 3 task

k. The coefficient of level 3 task

C, The completion time of task i at level 1

G, The completion time of task j at level 2

G, The completion time of task z at level 3

n The number of level 1 task

n; The number of level 2 task

n. The number of level 3 task

Py | The starting time of the task

Pi= | The total time of the task

D ;z The ending time of the task

e | The starting time for the robot moving to the task
€lj: | The total time for the robot moving to the task
el | The ending time for the robot moving to the task

Jena is used as the inference engine for event reasoning.
Jena is an inference engine for the Semantic Web, with more
efficient reasoning efficiency than Jess [32]. The reasoning
process is shown in Fig. 11. Jena inference engine makes the
inference and outputs the inference result as a command for
the robot to execute.

E. TASK PLANNING

The tasks perceived by the perception module are continuous
and cannot perform by CBASH. In addition, when multi-
ple tasks are perceived, CBASH must perform them with a
rule for saving time and resources. Therefore, task planning
should be considered to perform tasks [33].

Suppose there are n service tasks to be executed by Care-
Bot. Each service task has 1 subtasks, and each subtask has at
least one operable device, which is a TSP problem [34].

Among all n tasks, emergencies like falls and fires occur
randomly but should be dealt with high priorities. Further-
more, a charging strategy is essential to ensure the execution
of tasks, assuring CareBot has enough electricity to imple-
ment tasks when an emergency occurs.

1) MATHEMATICAL MODEL
According to the above description, to establish and descript

the model, the following symbols and variables are intro-
duced in Table 1.

2) OPTIMIZATION GOAL

In optimization problems, the optimization goal is usually
the minimum completion time. However, in this situation,
completing emergency tasks in a short time to ensure the
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safety of the elderly is essential. In addition, different tasks
have different levels of significance. To address this problem,
the accumulation of response time to an emergency is set
as the main optimization goal. Task urgency is rated with
three levels. This proposed system aims to calculate the sum
of the completion times for all the tasks, multiplied by a
different coefficient k, indicating the urgency level. Thus the
task sequence is generated based on the shortest task period,
while tasks with the highest urgency are solved as soon as
possible, as shown in (1).

minf = min(max(Cyj + -+ + Cy; + -+ + Cip) * ki
+ max(Cyy + -+ 4 Coj + - - + Cop)) % kj
+ max(C3p + -+ G+ -+ C3) x k) (1)

According to the above assumptions and the actual situa-
tion, the constraint conditions are as follows:
The robot can only perform one task at a time, as shown in

Q).

%
> xjw <1 ()
w=1

The ending time of the task is the sum of the starting time
and the whole time of the task, as shown in (3).

P = Piiz + Pigz ©)
The ending time for the robot moving to the task is the sum

of the starting time and the whole time moving to the task,
as shown in (4).

et,-jz = et,:siz + ety 4

The ending time for the robot moving to the task cannot
exceed the task’s starting time, and the task’s ending time
cannot exceed the starting time for the robot moving to the
next task, as shown in (5), and (6).

ety < D, Q)

s e
eti+l,/+lz+l > PUZ (6)

3) ALGORITHM

An improved genetic algorithm (IGA) is proposed based on
the traditional genetic algorithm to address the problem [35].
The genetic Algorithm (GA) is a computational model that
simulates the biological evolution process of natural selection
and the Genetic mechanism of Darwin’s biological evolution
[36].

a: FITNES FUNCTION

When the fitness difference between different individuals in
the population is slight, the ability of selection operation is
weak, and the population evolution is slow, the algorithm
is easy to fall into a local optimal. The dynamic linear
calibration method is used to adjust the population fitness
dynamically.

F=f" +A&"—f& €(0.9,0.99) 7)
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F is the fitness function. Field £ . is the maximum objective
function of the n-generation individual, A£" is the dynamic
pressure regulation number of the n-generation individual.
Because the population difference of the problem studied in
this paper is modest in the experimental process, an initial
value is set based on [37] and a value of 450 is obtained on
experiments in our algorithm. f is the objective function.

b: SELECTION OPERATOR

The genetic algorithm has many selection operators, such as
the tournament selection operator, roulette selection operator,
and ranking method selection operator. The combination of
the tournament selection operator and ranking method selec-
tion operator is used in CBASH. This process is repeated
until the number of offspring generations reaches a prede-
termined termination condition. Suppose the population size
is N. There will be offspring generations. Next, the ranking
operator selection is used to select a parent for the crossover
operator from the populations in the tournament selection
operator. By using this combination of methods, the quality
of selection is improved.

¢: CROSSOVER OPERATOR

Position-based crossover (PBX) [38] operator is typical.
Though this operator has excellent advantages, it sometimes
slows down the algorithm. Therefore, an operator based on
segmentation rules is proposed. A threshold value set is
S. The threshold S is determined by analyzing the algo-
rithm’s results before improvement. When the desired path
length exceeds the threshold S, PBX is used for crossover
operations. In addition, the self-crossover (SX) operator is
used. The convergence speed and stability of the algorithm
are improved through the improvement. S is set to 1000 in
CBASH.

Firstly, the PBX operator selects discontinuous intersec-
tions from parent one, then extracts the crossroads to the
offspring. The remaining genes are filled sequentially by
parent two from the second intersection, as shown in Fig. 12.

Then, there is SX, which is more accessible. Two positions
are randomly selected on the parent generation, and a region
is formed in the middle of the two positions. The regions’
numbers are swapped left and right to get the child generation,
as shown in Fig. 13.

d: MUTATION OPERATOR
A heuristic mutation operator is applied in the following
steps:

Stepl: Assume M=98765432 1

Step2: Pick three points at random, like 8, 3, 1, and swap
them arbitrarily to get five different individuals, as listed
below.

987654123

937654128

937654821

917654328
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7
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Offspring1

Parents2 | 5 | 7|91 [2]6[4]3]8]

Crossover Point

Parents2 | 5 [ 7[9]1[2]6[4a]3]38]

l

Offsping2 | 6 [ 7 [ 98 [2[1]4]3][5]

Parents1 | 1 |2 [3]4]5]|6[7][8]9]

FIGURE 12. An example of PBX.

Parent |8 |9[4[3][5]2]7]6]1]

Offspring | 8 |9 [ 2[5 [3[4[7 |6 [ 1|

FIGURE 13. An example of SX.

917654823
Step3: the one with the highest fitness is selected as the
new individual from these individuals.

e: ALGORITHM PROCESS
The proposed IGA is described as follows.

Step1: Input the location of each service task, and catego-
rize all the tasks

Step2: Create an initial population, and set relevant param-
eters, including the task coefficient.

Step3: Dynamic linear calibration and calculation of indi-
vidual fitness.

Step4: The tournament algorithm selects the next genera-
tion directly, and the ranking operator selects the parent of the
CrOSsoVver.

Step5: When the value is greater than the threshold N, use
PBX; otherwise, use SX.

Step6: Heuristic mutation operation.

Step7: Determine whether the condition is satisfied. If yes,
output the optimal solution; otherwise, return to Step 3.

The specific flow chart is shown in Fig. 14.

4) BATTERY CHARGING STRATEGY

Due to power limitations, the robot may need to charge many
times during task implementation. If the battery is low, the
robot must stop the task and returns to the charging pile. The
robot cannot work while charging. A fixed threshold cannot
be set for the robot recharging. One reason is that the robot
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Input the service task
coordinate matrix

Categorize by task
category

Generating the initial
population

Satisfy the terminal Output the optimal
condition? solution

/ «»
Dynamic linear calibration and
calculation of individual fitness

The ranking operator
selects the parent of
the crossover

The threshold is
greater than N? +
Tournament
selection method

Y
Self Position based
crossover(SX) crossover(PBX)

» Heuristic variation

« Produce offspring «

FIGURE 14. The IGA algorithm in CBASH.

may be far from the charging pile when the power reaches the
fixed threshold level and cannot return to the charging pile
within the rest of the power. The other reason is that the rest
task can be completed within the power of the fixed threshold
level, and there is no need for recharging during the tasks.
Hence, an adaptable charging strategy is proposed to address
the recharging requirements, as shown in Fig. 15

For every ten minutes, calculations on the power level of
the robot at three different task statuses will be conducted
to determine whether there is a recharging need. The first
calculation is on the current power status (E1). The second
is to judge the power (E2) required by the robot to move
from the current position to the charging pile. The third is
to compare the gap between the power needed for the next
task (E3) plus E2 and E1.

IV. SYSTEM IMPLEMENTATION
To validate how CBASH supports daily elderly care activities
in smart home, five types of tasks are fulfilled: emergency aid,

VOLUME 11, 2023

Record the time N
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Whether the
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Calculate the power Ez from the

Record the time
current position to the charging pile

Back to charging pile
N

FIGURE 15. Charging strategy.

Control

Box Control Setting

Robot Control

FIGURE 16. Family member interface.

health management, daily life assistance, emotional compan-
ionship, and security detection.

The drivers for the robot are developed on ROS (Robot
Operating System) [39] in the Ubuntu environment on the
Intel X86 minicomputer. A Micro Control Unit named
STM32 is used for data acquisition and operation in the
robot. STM32 communicates with X86 through serial ports
to establish a data transmission channel. In addition, the robot
communicates with the server remotely through TCP/IP.

The cloud computing server runs the Ubuntul6.04 operat-
ing system. A relational database is built based on MySQL
Service 5.6 [40], and event perception and task planning are
realized in Eclipse.

For data transmission, CAN bus, Zigbee, and RFID [41]
are applied in an ARM-based gateway to collect and transmit
data. 5G technology is used to send data to the server in the
shortest time [42], [43].

The user interfaces based on Android and Web are
designed for family members and care providers, as shown in
Fig.16 and Fig.17. For family member users, the data check-
ing module, robot control module, and equipment control
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FIGURE 17. Care provider interface.

TABLE 2. Task importance leve.

Task Level Task Level Task Level
number number number
P1 3 P7 3 P13 2
P2 3 P8 3 P14 1
P3 3 P9 3 P15 1
P4 3 P10 3
P5 3 P11 3
P6 3 P12 3

module are designed to remotely check the status of the
elderly and indoor conditions and control CareBot. For care
providers, the interface provides access to check data from
sensors and interact with CareBot and other smart devices in
the smart home.

We experimented with these five types of tasks to test the
prototype system in our lab. According to the daily needs of
the elderly, we set the following events for system response
in the experiments of five tasks

Event 1: An older man named Tony watches TV on the sofa
(P11) in the living room in the morning, and he needs to take
medicine this morning.

Event 2: Water leakage occurred in the toilet (P12) and
kitchen (P13), and the robot needs to check.

Event 3: The robot needs to check the smoke sensor alarm
in the kitchen (P14) and the fire sensor alarm in the kitchen
(P15).

Event 4: The robot needs to water the flowers in 5 posi-
tions, respectively P1, P2, P3, P4, and P5.

Event 5: The robot needs to clean five positions, respec-
tively P1, P2, P3, P4, and P5.

In CBASH, the smart sensor network collects the data of
these five types of events and transmits them to the service
center through the smart gateway. Protégé 4.3 is used to
create intelligent space ontology and realize the construction
of an ontology library through MySQL Server 5.0. The Jena
inference engine matches the data information with the rules
in the rule base and identifies five events by event percep-
tion. The executable sequences of these five types of tasks
are generated in the task planning module. This sequence
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TABLE 3. The parameters of IGA.
The number
of urgent 15 The mutation probability 0.05
tasks
The
population 500 The number of iterations 500
number
The The task importance
crossover 0.8 ki k Tk 1.00/1.05/1.09
probability coefficient " /" =
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FIGURE 19. Task planning path by IGA.

includes the sequence in which the robot executes five events
and the steps of each type of event. Since the current flow
of all the events is fixed, this paper discusses the overall task
sequence of the five types of events. Each of the five events
is implemented by a certain number of tasks attributed to
the robo’s locations. The tasks are rated by the level of task
emergency from 1 to 3, as shown in Table 2.

The corresponding locations of the above subtasks are as
shown in Figure 18.
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TABLE 4. Compare the two algorithms.

Algorithm The optimal path /s The average path /s
IGA 1618 1636
AGA 1857 1902
Algorithm convergence diagram
3600 ‘ ' ' ' ' ' IGA
3400 ﬂl AGA
3200 il

3000 il
2800 -};
2600 |
2400 H
2200 | Ll

2000F | —

Sum of the end times of each task/s

1800

1600

0 100 200 300 400 500 600 700 800
The number of iterations

FIGURE 20. Iterative figure by IGA and AGA.

FIGURE 21. The real path in the lab.

To address the task planning problem, an IGA algorithm
is run to generate a path with a minimized sum of the
completion time of all tasks. Simulations of path generation
are conducted on MATLAB [44]. After specific trials, the
following parameters are applied, as shown in Table 3.

As shown in Fig. 19, the optimized moving route of Care-
Bot is:

0—-14—-15—-12—-13-4—-7—>8—

1-3—-2—-6—-1—-9—-10—-5—->0

Fig. 20 shows that the best result is 1618s with 203 iterations.
To compare the result with the adaptive genetic algorithm,
IGA performs better, as shown in Table 4.

At the same time, the adaptive genetic algorithm (AGA)
addresses the same problem. The shortest sum of time is
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FIGURE 22. Examples of Task Implementations.

1857s, and the number of iterations is 318. The result of IGA
is better than AGA, as shown in Fig. 20. Fig. 21 presents the
path of CareBot in the whole cycle of task implantation in the
experimental context.

V. CONCLUSION AND FUTURE WORK

The applications of smart home and robotic technologies have
received significant interests for their support to “Aging-in-
place.” This paper focuses on integrating robots into smart
home systems and building a robot-smart home collaboration
system. The system integrates the robot’s mobility advantage
with the smart home’s perception ability for instant responses
to emergencies. This paper takes the proposed system archi-
tecture as the main idea and then introduces the software and
hardware of the system from the perspective of functions and
gives an overview of the problems, including event perception
and task planning that need to be solved in the framework.
Finally, this paper explores the implementation of a complete
task in a quick response to emergencies under the constraint
of robot charging. The experiment results show that the pro-
posed CareBot-Assisted Smart Home (CBASH) can perceive
complex or ambiguous events and plan for homecare tasks
with a quick response to emergencies. Future research can
focus on improving the CBASH system’s proactive percep-
tion based on training in realistic scenarios. At the same time,
a deep reinforcement learning algorithm can be integrated
into the CBASH system to improve the efficiency of task
planning in response to emergencies.
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