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ABSTRACT Demand response (DR) shaves peak energy consumption and drives energy conservation to
ensure reliable operation of power grid. With the emergence of the smart power grid (SPG), DR has become
increasingly popular and highly contributes to energy optimization. On this note, in this work, DR is adopted
for scheduling home appliances to reduce utility bill payment, peak to average demand ratio (PADR), and
discomfort. First, home appliances are classified into two categories according to time and power flexibility:
time-flexible and power-flexible. Secondly, the demand-side users power usage scheduling problem is
modelled as per the user priority and modes of operation considering demand and supply. Finally, the energy
consumption scheduler (ECS) is developed to adjust the time and power of both types of appliances under
different operation modes to acquire desired tradeoff between utility bills payment and discomfort, and
PADR and discomfort. Simulation results depict that employing the proposed ECS benefits demand-side
users by minimizing their utility bills payment, PADR, and achieving the desired tradeoff between utility
bill payment and discomfort, and PADR and discomfort. Results illustrate that developed model reduced
utility bill payment and alleviated PADR without compromising comfort by 28% and 21%, respectively,
compared to without scheduling case.

INDEX TERMS Demand response, appliances scheduling, pricing signals, optimization, smart grid.

I. INTRODUCTION
Energy demand grows around the globe due to growing pop-
ulation and technological advancement [1]. Also, fossil fuels
are limited and environment foe, on the record, cause 27%
pollution emission, which is dangerous for the environment
and, in the worst case, can cause global warming [2], [3],
[4]. To meet this growing energy demand and minimize
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dependence on the fossil fuel, load prediction and optimal
energy management is needed [5]. With smart power grid
(SPG) technology, users can perform energy management
using demand response (DR) and renewable energy sources
(RESs) [6], [7]. DR is a SPG program that encourages
energy consumption monitoring and control [8], [9], [10],
[11] in response to varying pricing signal or payment incen-
tives. On the one hand, consumers control and shift their
power usage pattern to low-price hours to minimize energy
bills. On the other hand, the utility decline peak-to-average
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demand ratio (PADR) directly impacts the power generation,
transmission, and distribution of SPG. Thus, DR is a win-
win program, where the distribution networks [12], [13],
[14], [15] manage demand according to supply to avoid the
need for peak power plant and reduce electricity bill for
consumers [16].

To solve the energy management problem, in litera-
ture, various DR models are implemented for optimal
residential load scheduling considering peak energy con-
sumption, load profiles, energy costs, environmental con-
cerns, and consumer comfort. Different technologies like
on chip-filters [17], measurement sensors [18], current sen-
sors [19], etc are developed. However, DR implementa-
tions are ignored. Thus, a detailed review of DR models
for solving energy management problems is presented
in [20] and [21]. Several studies of DR models with deci-
sion maker focus on different objectives like cost mini-
mization, which is most commonly used objective, mostly
focused due to well-defined structure, ease in measure-
ment, and implementation [22], [23]. Some authors discussed
in [24], [25], [26], [27], [28], and [29] fault detection and
diagnosis aspects in power grid. Few studies focused on
PADR alleviation via load profile optimization [30], [31],
[32]. Likewise, some authors presented research works [33],
[34], [35] covering user comfort or well-being maximiza-
tion. Similarly, authors discussed carbon emission reduction
in [36] by optimal energy management. The above-discussed
literature works achieved single objective energy optimiza-
tion: energy cost or pollution emission or PADR or user com-
fort, via power usage scheduling and smoothing load demand
profile. However, these objectives are conflicting and inter-
dependent, so the authors ignored their simultaneous opti-
mization. Considering this research gap, several researchers
attempted to simultaneously achieve some of these con-
flicting objectives. For instance, authors in [37] performed
optimal energy management catering cost and discomfort
minimization in SPG. Authors developed deep learning mod-
els in [38], [39], and [40] for online pricing of DR smart home
energy management, and commercial buildings optimiza-
tion, respectively. Similarly, several studies simultaneously
catered energy cost and PADR by optimal power scheduling
in SPG [30], [41], [42]. Likewise, few studies addressed
operational cost and pollution emission minimization by
energy optimization in SPG [43], [44], [45]. However, the
above-discussed works focused on two objectives simultane-
ous optimization like, cost and discomfort, energy cost and
PADR, and operational cost and pollution emission via single
energy optimization approach, which is insufficient. On this
note, multi-objective optimization approches are developed
in [46], [47], [48], and [49]. The work in [42] developed
DA-GmEDE based model for bill payment, PADR, and
tradeoff achievement between bill payment and discomfort.
However, bill payment, PADR, discomfort simultaneousmin-
imization, and a tradeoff between PADR and discomfort
are not addressed. Considering some aspects and ignoring

other aspects is not enough. Thus, a model is needed which
solves energy management via power usage scheduling
optimally.

Optimal energy management in SPG has primary objec-
tives: utility bill payment, PADR, and user discomfort min-
imization. The above literature studies have investigated
energy management areas from different perspectives and
built an in-depth understanding of the theme. For example,
on the one hand, several studies catered single objectives like
utility bill payment minimization while others focused on
user discomfort minimization or PADRminimization. On the
other hand, few studies catered two objectives: utility bill
payment and discomfort or utility bill payment and PADR
or operational cost and pollution emission minimization.
However, considering only one or two aspects (utility bill
payment, user discomfort, PADR) is not enough. Every aspect
(utility bill payment, user discomfort, PADR) are indispens-
able and can be catered simultaneously. Besides, above stud-
ies covered optimal energy management via a single energy
optimization mechanism. Thus there is a need to develop
ECS for optimal power usage scheduling in SPG. In this
work, which is continuation of the previous work [42] power
usage pattern is scheduled under DR by ECS to benefits
demand-side users by minimizing their utility bills payment,
PADR, and achieving the desired tradeoff between utility bill
payment and discomfort, and PADR and discomfort.

The remaining work is arranged as follows. Section II
discusses the proposed optimal energy management frame-
work and and its mathematical modeling. Overall problem
formulation is presented in Section III. The simulation results
covering all objectives are discussed in Section IV. Finally
this work is concluded in Section V.

II. SYSTEM MODEL FOR OPTIMAL ENERGY
MANAGEMENT
The proposed system model aims to curtail utility bills, mit-
igate PADR, and achieve the desired tradeoff between utility
bills and average waiting time via power usage scheduling
of loads. The developed model has two sides: electric utility
company (supply side) and residential consumers (demand-
side). The demand-side considers residential homes. The
homes have ECS, smart appliances, AMI, monitoring and
controlling display (MCD), and smart meters similar as
in [56]. The proposed system model for optimal energy man-
agement is presented in Figure 1.
The ECS is installed at the home gateway and programmed

based on algorithm to schedule power usage pattern under
the DR signal and available generation. Two kinds of smart
appliances are considered flexible and inflexible appliances.
Furthermore, flexible appliances have two types: Time flex-
ible, and power flexible. Time flexible are those appliances
with flexible operation time, like dishwashers, cloth dryers,
washing machines, and water pumps. On the other hand,
power flexible are those appliances with flexible operating
power like air conditioners, fridges, and water dispensers.
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FIGURE 1. Proposed system model schematic diagram.

Inflexible appliances are those appliances, whose operating
power and time both can not tolerate shifting. They are also
known as critical appliances likemicro-ovens, electric kettles,
and electric irons. Moreover, these appliances are assumed
to be smart, having transceiver (TX/RX) and data-processor
to transmit/receives, process, and evaluate operation param-
eters. The AMI establishes bi-directional communication
between the supply side (electric utility company (EUC))
and demand-side via smart meter. The AMI collects and
exchanges energy consumption data from demand-side and
delivers it to EUC. The EUC generates utility bill for con-
sumed energy and delivers it to the demand-side through
smart meter (SM) [56]. The SM is responsible for measur-
ing and monitoring energy and load. Also, SM exchanges
energy consumption records from demand-side to EUC and
DR signal from EUC to ECS on demand-side for power
usage scheduling. The SM is installed outdoor at homes
between ECS and AMI. The ECS receives DR signal and
appliances operation pattern for power usage scheduling of
consumers. The communication between SMs, smart appli-
ances, and ECS can prevail via communication infrastruc-
tures like ZWave, WiFi, and ZigBee [57], [58], which is
schematically illustrated in Figure 2. The appliances can not
consult with each other, and can only consult with ECS as
depicted in Figures 1 and 2. The ECS schedules appliances
in aspects of both power and time flexibility via DR signal
and operation profile subjected to constraints: EUC avail-
able power supply, demand-side priority, operation modes,
etc. The ECS broadcast created operation schedule for all
appliances, which is received by the transceiver (TX/RX)
of appliances, and processed by data processor to operate
appliances as per the schedule. The ECS created schedule
and set out parameters like operation power level, operation
starting time, appliance class, etc., to monitor and control
the overall energy management process using MCD/mobile
installed at home. The proposed system model modeling is
presented in the subsequent section.

A. PROPOSED SYSTEM MODEL MATHEMATICAL
MODELING
This section presents the mathematical modeling of the pro-
posed system model. The EUC sends DR signal ρt for

FIGURE 2. The ECS created schedule broadcasting via communication
links like ZWave, WiFi, and ZegBee.

day-ahead time span H = {1, 2, 3, 4, . . . . . . ,T }. The entire
time span is 24 hours, where 1 shows the first hour, and T
denotes the last 24th hour. The demand-side has two types of
appliances A =

{
AOTf ∪ AOPf ∪ AIf

}
. AOTf , AOPf , and AIf repre-

sent time flexible, power flexible, and inflexible appliances,
respectively. An appliance a starting time is αa and operation
finishing time βa. Appliances on/off status are indicated by
X ta, remaining operation hours r ta, and waiting hours w

t
a. Fur-

thermore, E ta is energy consumption. We assume it is zero for
t < αa & t > βa because outside the operation time period
energy consumption is zero. Smart appliances modeling is
presented below.

1) TIME FLEXIBLE APPLIANCES MODELING
These appliances have flexible operation time, tolerate oper-
ation delay/advance during the scheduling period, and work
with predefined power rating pra for defined operation
hours T la. Consequently, operation time can be scheduled to
any hour in the entire period (shifted, delayed, advanced,
and shutdown) to achieve desired objectives. Time flexible
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appliances current status is defined below.

χ t
a =

(
T la, αa − βa − T la + 1

)
, (1)

χ t+1
a =

{(
r ta,w

t
a − 1

)
if X ta = 0, wta ⩾ 1(

r ta − 1,wta
)

if X ta = 1, r ta ⩾ 1,
(2)

where Eqs. (1) and (2) represent the current and next status
of time-flexible appliances, respectively, similar as in [42].
Time flexible appliances energy consumption and utility bill
are computed below [42].

EAa =

∑
a∈AOTf

T∑
t=1

(
pra × X ta

)
, (3)

CA
a =

∑
a∈AOTf

T∑
t=1

(
pra × X ta × ρ

f
t

)
, (4)

Eqs. (3) and (4) denote net energy consumption EAa and utility
bill CA

a , respectively.

2) POWER FLEXIBLE APPLIANCES MODELING
Power flexible appliances have flexible operating power
between pr min

a and pr max
a minimum and maximum power

ratings, respectively. For instance, in fridges, air condition-
ers, etc., operation power regulates between pr min

a and pr max
a

during the scheduling period to achieve desired objectives.
Power flexible appliances current and next status are deter-
mined below using Eqs. (5) and (6), respectively, [42].

χ t
a =

(
T la, αa − βa − T la + 1

)
, (5)

χ t+1
a =

{(
r ta − 1, 0

)
if X ta = 1, r ta ⩾ 1

pr min
a ⩽ pra ⩽ pr max

a if X ta = 1, r ta ⩾ 1,
(6)

Power flexible appliances net energy consumption and utility
bill is computed below using Eqs. (7) EAa and (8) CA

a , respec-
tively, [42].

EAa =

∑
a∈AOPf

T∑
t=1

(
pra × X ta

)
, (7)

CA
a =

∑
a∈AOPf

T∑
t=1

(
pra × X ta × ρ

f
t

)
, (8)

3) INFLEXIBLE APPLIANCES
Inflexible appliances cannot be shed/shutdown during oper-
ation because they have critical nature and are also known
as critical appliances. Inflexible appliances current and
next status are calculated below from Eqs. (9) and (10),
respectively, [42].

χ t
a =

(
T la, αa − βa − T la + 1

)
, (9)

χ t+1
a =

{(
r ta,w

t
a − 1

)
if X ta = 0, wta ⩾ 1(

r ta − 1, 0
)

if X ta = 1, r ta ⩾ 1,
(10)

Inflexible appliances net energy consumption and utility
bill are calculated from Eqs. (11) EAa and (12) CA

a , respec-
tively, [42].

EAa =

∑
a∈AIf

T∑
t=1

(
pra × X ta

)
, (11)

CA
a =

∑
a∈AIf

T∑
t=1

(
pra × X ta × ρ

f
t

)
, (12)

Smart appliances optimal operation scheduling set κ is
defined below [42].

κ = {E/E ta = pra, ∀ t ∈

{
F ta, . . . .,F

t
a + T la − 1

}
⊂ [αa, βa], ∀a ∈ AOTf ,

E ta = 0, ∀t ∈ H\

{
F ta, . . . .,F

t
a + T la − 1

}
, ∀a ∈ AOTf ,

pr min
a ⩽ E ta ⩽ pr max

a , ∀t ∈ [αa, βa], ∀a ∈ AOPf ,

E ta = 0, ∀t ∈ H\[αa, βa], ∀a ∈ AOPf ,

E/E ta = pra, ∀ t ∈ T la ⊂ [αa, βa], ∀a ∈ AIf ,

E ta = 0, ∀t ∈ T la\[αa, βa], ∀a ∈ AIf }. (13)

Scheduling set κ depends on control parameters like αa, βa,
T la, p

r
a, p

r max
a , pr min

a , and DR signal.

III. PROBLEM FORMULATION
The ECS receives DR signal and demand-side power pat-
tern to schedule appliances operation hours in such a way
as to achieve desired objectives like utility bill minimiza-
tion, PADR alleviation, and tradeoff between utility bills and
discomfort achievement. However, obtaining all objectives
simultaneously is challenging due tradeoff and conflicting
parameters. For instance, in the case of time-flexible appli-
ances, the washing machine has assigned the task of laundry
to finish before the afternoon with specifications like αa =

10am and βa = 1pm. The ECS postpones the washing
machine task to αa = 5pm and βa = 9pm as per user prior-
ity to minimize utility bills. However, the demand-side user
confront discomfort due to the delayed operation of washing
machine. For power flexible appliances, the ECS regulates
power between pr min

a and pr max
a to curtail utility bill. Conse-

quently, curtailed utility bills cause user discomfort. The ECS
regulates appliances such that desired tradeoff between utility
bills and discomfort is achieved. Hence, objective function
is formulated as minimization problem to minimize utility
bills, PADR, user discomfort, etc. First, desired objectives
like utility bills, PADR, and user discomfort are modeled
separately. Then, the complete scheduling problem as min-
imization problem is modeled [42]. The utility bill of smart
appliances during the scheduling period is computed below.

CA
a =

∑
a∈A

T∑
t=1

(
pra × X ta × ρ

f
t

)
. (14)
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User discomfort arising due to time-flexible appliance
scheduling is calculated below.

d
AOTf
t (F ta) = λa

(
F ta − αa

)n
, (15)

where 0 < λa < 1 and n ⩾ 1 represent time shiftable
appliances operation characteristics.

Power flexible appliances cause discomfort due to power
regulation, defined below.

d
AOPf
p (E ta) = ωt

a

(
E ta − Ê ta

)2
, (16)

where ωt
a is the time varying parameter and normal energy

consumption is Ê ta. Moreover, d
AOPf
p = 0 at E ta = Ê ta for t ∈

H \[αa, βa]. The quadratic function is minimum at E ta =

Ê ta and increases as the deviation of E ta increases from Ê ta.
An appliancemalfunction occurs at two extremes of deviation
Ê ta ± 1. Hence, countermeasures are necessary to overcome
such malfunction. At extreme Ê ta + 1 or Ê ta − 1 counter
measure for malfunction is ς . Inflexible appliances are oper-
ated as per user priority and thus can not tent discomfort. The
time and power-flexible appliances posed discomfort cost is
defined below.

dAa =

∑
a∈AOTf

λa
(
F ta − αa

)n
+

∑
t

∑
a∈AOPf

d
AOPf
p (E ta). (17)

The PADR created during the scheduling period is defined
below in Eq. (18) denoted by RPA. Minimization of PADR is
one of our objectives, described below.

RPA =
max(E ta)

1
T

T∑
t=1

A∑
i=

(E ta)

, (18)

The complete power usage scheduling problem is modeled
as minimization problem, which is formulated below in
Eq. (19).

min
(
γ1CA

a + γ2RPA + γ3dAa
)

E/E ta = pra, ∀ t ∈

{
F ta, . . . .,F

t
a + T la − 1

}
⊂ [αa, βa], ∀a ∈ AOTf ,

E ta = 0, ∀t ∈ H\

{
F ta, . . . .,F

t
a + T la − 1

}
, ∀a ∈ AOTf ,

pr min
a ⩽ E ta ⩽ pr max

a , ∀t ∈ [αa, βa], ∀a ∈ AOPf ,

E ta = 0, ∀t ∈ H\[αa, βa], ∀a ∈ AOPf ,

E/E ta = pra, ∀ t ∈ T la ⊂ [αa, βa], ∀a ∈ AIf ,

E ta = 0, ∀t ∈ T la\[αa, βa], ∀a ∈ AIf },

var iables F ta (a ∈ AOTf , t ∈ H ),

E ta (a ∈ AOPf , t ∈ H ),

pra (a ∈ AIf ), (19)

whereCA
a , R

P
A, and d

A
a denote objective functions of the utility

bill, PADR, and discomfort, which are defined in Eqs. (14),

(18), and (17), respectively. γ1, γ2, and γ3 are weights that
are tuned to achieve the desired tradeoff between conflicting
objectives.

Demand-side users operate based on priority, and desired
objectives are classified into four modes, formulated in the
subsequent section.

1) DEMAND-SIDE USERS MODE 1
Demand-side users mode 1 aims to curtail their utility bill
even at the expense of high discomfort. The ECS tune weights
(γ1 = 1, γ2 = 0, γ3 = 0) of the objective function to ensure
utility bill minimization. Hence, the optimization problem is
modified in Eq. (20) to ensure operation for mode 1.

min
∑
a∈A

T∑
t=1

(
pra × X ta × ρ

f
t

)
sub. to: E/E ta = pra, ∀ t ∈

{
F ta, . . . .,F

t
a + T la − 1

}
⊂ [αa, βa], ∀a ∈ AOTf ,

E ta = 0, ∀t ∈ H\

{
F ta, . . . .,F

t
a + T la−1

}
,∀a ∈ AOTf ,

pr min
a ⩽ E ta ⩽ pr max

a , ∀t ∈ [αa, βa], ∀a ∈ AOPf ,

E ta = 0, ∀t ∈ H\[αa, βa], ∀a ∈ AOPf ,

E/E ta = pra, ∀ t ∈ T la ⊂ [αa, βa], ∀a ∈ AIf ,

E ta = 0, ∀t ∈ T la\[αa, βa], ∀a ∈ AIf },

variables F ta (a ∈ AOTf , t ∈ H ),

E ta (a ∈ AOPf , t ∈ H ),

pra (a ∈ AIf ). (20)

2) DEMAND-SIDE USERS MODE 2
In mode 2, the users desire to operate their appliances to
smoothly run their activities even during high-price hours
because mode 2 is user comfort centric. In this mode of
operation, users do not tolerate delay and are willing to
pay more to enhance their comfort. The ECS tunes the
(γ1 = 0, γ2 = 0, γ3 = 1) weights of the optimization
problem to ensure smooth operation of the activities as per
the priority of users irrespective of utility bills. The modified
optimization problem as per the demand-side users mode 2 is
modeled below.

min
∑
a∈AOTf

λa
(
F ta − αa

)n
+

∑
t

∑
a∈AOPf

d
AOPf
p (E ta)

sub. to: E/E ta=pra, ∀ t ∈

{
F ta, . . . .,F

t
a + T la−1

}
⊂ [αa, βa], ∀a ∈ AOTf ,

E ta=0, ∀t ∈ H\

{
F ta, . . . .,F

t
a+T

l
a−1

}
,∀a ∈ AOTf ,

pr min
a ⩽ E ta ⩽ pr max

a , ∀t ∈ [αa, βa], ∀a ∈ AOPf ,

E ta = 0, ∀t ∈ H\[αa, βa], ∀a ∈ AOPf ,

E/E ta = pra, ∀ t ∈ T la ⊂ [αa, βa], ∀a ∈ AIf ,

E ta = 0, ∀t ∈ T la\[αa, βa], ∀a ∈ AIf },
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variables F ta (a ∈ AOTf , t ∈ H ),

E ta (a ∈ AOPf , t ∈ H ),

pra (a ∈ AIf ). (21)

3) DEMAND-SIDE USERS MODE 3
Mode 3 is favorable for end-users and utility both because it
reduces PADR. Consequently, reduces the burden on utility
by decreasing the need for peak power plants and curtails
the burden on end-users by lowering utility bills. The ECS
tune(γ1 = 0, γ2 = 1, andγ3 = 0) weights to ensure mode
3 operation and achieve desired objectives. The optimization
problem is adapted for mode 3 and formulated below.

pra (a ∈ AIf )

min
max(E ta)

1
T

T∑
t=1

A∑
i=

(E ta)

sub. to: E/E ta = pra, ∀ t ∈

{
F ta, . . . .,F

t
a + T la − 1

}
⊂ [αa, βa], ∀a ∈ AOTf ,

E ta = 0, ∀t ∈ H\

{
F ta, . . . .,F

t
a + T la−1

}
, ∀a ∈ AOTf ,

pr min
a ⩽ E ta ⩽ pr max

a , ∀t ∈ [αa, βa], ∀a ∈ AOPf ,

E ta = 0, ∀t ∈ H\[αa, βa], ∀a ∈ AOPf ,

E/E ta = pra, ∀ t ∈ T la ⊂ [αa, βa], ∀a ∈ AIf ,

E ta = 0, ∀t ∈ T la\[αa, βa], ∀a ∈ AIf },

variables F ta (a ∈ AOTf , t ∈ H ),

E ta (a ∈ AOPf , t ∈ H ),

pra (a ∈ AIf ). (22)

4) DEMAND-SIDE USER MODE 4
Mode 4 focuses on balancing operations to achieve all objec-
tives simultaneously, i.e., utility bill and PADR reduction
and desired tradeoff between the utility bills and discom-
fort achievement. The ECS set weights (γ1 = 1/3, γ2 =

1/3, andγ3 = 1/3) ensure mode 4 operation and achieve
desired objectives. Themode 4 adopted optimization problem
is formulated below.

min
(
1
3
CA
a +

1
3
RPA +

1
3
dAa

)
sub. to: E/E ta = pra, ∀ t ∈

{
F ta, . . . .,F

t
a + T la − 1

}
⊂ [αa, βa], ∀a ∈ AOTf ,

E ta = 0, ∀t ∈ H\

{
F ta, . . . .,F

t
a+T

l
a−1

}
, ∀a ∈ AOTf ,

pr min
a ⩽ E ta ⩽ pr max

a , ∀t ∈ [αa, βa], ∀a ∈ AOPf ,

E ta = 0, ∀t ∈ H\[αa, βa], ∀a ∈ AOPf ,

E/E ta = pra, ∀ t ∈ T la ⊂ [αa, βa], ∀a ∈ AIf ,

E ta = 0, ∀t ∈ T la\[αa, βa], ∀a ∈ AIf },

variables F ta (a ∈ AOTf , t ∈ H ),

FIGURE 3. Real-time and day-ahead pricing signals adopted from FERC
MISO.

E ta (a ∈ AOPf , t ∈ H ),

pra (a ∈ AIf ). (23)

IV. SIMULATION RESULTS AND DISCUSSION
This section presents simulation results of the developed
power usage scheduling strategy under DR signals like
day-ahead and real-time pricing for performance validation.
Two classes of appliances: power and time flexible, are
considered under four modes of operation. Parameters and
descriptions of appliances are listed in Table 1, which is
taken from [42]. The time horizon considered for scheduling
is twenty four hours, i.e., from 8am to 8am. DR signals
like day-ahead and real-time pricing are taken from FERC
MISO [58], which is depicted in Figure 3. The energy con-
sumption scheduler (ECS) schedules the operation of appli-
ances under the pricing signal for four modes to acquire
desired objectives and meet demand-side users requirements.
The detailed description is as follows.

Demand-side users appliances power consumption pattern
for four modes of operation are shown in Figures 4, 5,
6, and 7. Appliances power consumption under mode 1 is
depicted in Figure 4. Inmode 1 the ECS operate only essential
power flexible appliances at minimum power level. In con-
trast, all-time flexible appliances are scheduled by ECS to
low price hours because the focus of demand-side users in
mode 1 is on utility bill payment reduction. Precisely, time-
flexible appliances like washing machines, dishwashers, and
clothdryers operation are shifted from high to low price hours
by ECS, and power-flexible appliances like Air conditioners,
refrigerators, dispensers, etc. are operated with lower power
ratings to ensure utility bill payment minimization. The ECS
minimizes utility bill payments without taking care of user
comfort. In mode 2, the ECS schedules time-flexible and
power-flexible appliances such that to improve the comfort
of demand-side users, this behavior is depicted in Figure 5.
It is clear from Figure 5 that power-flexible appliances:
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TABLE 1. Parameters of demand-side users appliances.

FIGURE 4. Demand-side users power consumption of power and
time-flexible appliances for mode 1.

air conditioners, refrigerators, dispensers, etc., are mostly
operated at their maximum rated power, and time-flexible
appliances: washing machines, dishwashers, and clothdry-
ers are scheduled by ECS as per the users priority with-
out taking care bill payment maximization. Thus, the ECS
ensured user comfort as per their priority under operation
mode 2 without considering bill payment minimization. The
power consumption of appliances under operation mode 3 is
illustrated in Figure 6. In mode 3, the ECS focus is on PADR
minimization to satisfy both utility and demand-side users at
the same time. The ECS ensures PADR minimization such
that sometimes flexible appliances are postponed during peak
hours and shifted to operate during low-price hours. On the
other hand, some power-flexible appliances are operated with
lower power ratings to ensure PADR minimization. This
behavior is clearly depicted in Figure 6. Likewise, appliance
power consumption under mode 4 is illustrated in Figure 7.
In this mode of operation, the ECS schedule operation of both
type of appliances such that to achieve the desired tradeoff
between utility bills payment and discomfort, and PADR and
discomfort.

The average energy consumption of both types of appli-
ances for modes 1, 2, 3, and 4 is depicted in Figure 8. It is
obvious from the results presented in Figure 8 that the energy
consumption of operation mode 2 is highest compared to
mode 1, 3, and 4, respectively, because under mode 2 the
ECS ensures demand-side users comfort even at expense of

FIGURE 5. Demand-side users power consumption of power and
time-flexible appliances for mode 2.

FIGURE 6. Demand-side users power consumption of power and
time-flexible appliances for mode 3.

increased utility bill payment. In contrast, the energy con-
sumption under mode 1 is lowest compared to mode 2, 3,
and 4, respectively, because under operation mode 1 the ECS
ensures utility bill payment minimization at the cost of high
discomfort as per the users priority. The energy consumption
under operation mode 3 is lower than mode 2 and higher than
modes 1 and 4 because under mode 3 the ECS ensures PADR
minimization. Likewise, the mode 4 energy consumption is
moderate compared to modes 1, 2, and 3 because the ECS in
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FIGURE 7. Demand-side users power consumption of power and
time-flexible appliances for mode 4.

FIGURE 8. Demand-side users average power consumption for modes 1,
2, 3, and 4.

mode 4 achieves desired tradeoff between utility bill payment
and discomfort, and PADR and discomfort.

The utility bill payment against the consumed energy for
modes 1, 2, 3, and 4 is illustrated in Figure 9. It is clear from
the results presented in Figure 9 that demand-side users in
operation mode 2 pay high utility bills compared to modes 1,
3, and 4 because, in mode 2, demand-side users want to
enhance their comfort, leading high utility bill payment.
On the other hand, demand-side users in mode 1 want to
minimize bill payment that causes high discomfort. Like-
wise, in mode 3 the ECS minimizes PADR to satisfy both
demand-side users and utility, and thus, energy consumption
under 3 is higher thanmode 1 andmode 4. The ECS schedules
appliances formode 4 such that to achieve the desired tradeoff
between user discomfort and bill payment and PADR and
discomfort. Thus, energy consumption under mode 4 is mod-
erate compared to modes 1, 2, and 3, and it achieves desired
tradeoff between objectives.

FIGURE 9. Demand-side users utility bill payment against consumed
energy for modes 1, 2, 3, and 4.

FIGURE 10. Demand-side users power consumption under real-time and
day-ahead pricing signals.

The power usage scheduling based on real-time and day-
ahead pricing signals is compared to ensure which pricing is
suitable in returning to the optimal schedule, where desired
objectives are achieved. Comparative results are shown in
Figures 10 and 11. The comparison reveals that in a day-ahead
pricing signal, demand-side users are charged against a
day-ahead broadcasted signal which is a stable signal for
that day and does not have any flexibility for demand-side
users. Consequently, leading to high peak energy consump-
tion and utility bill payment as depicted in Figures 10 and 11.
In contrast, real-time pricing signal changes in real-time
so demand-side users can easily adapt their load, and thus
ECS can easily achieve the desired objectives. Besides, the
peak energy consumption under day-ahead pricing scheme
is higher than the real-time pricing signal, as clearly seen in
Figure 10. The ECS via real-time pricing signal uniformly
distributes energy consumption than the day-ahead pricing
signal. Thus, real-time pricing signal is more effective and
suitable for reducing peak energy consumption, PADR, and
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TABLE 2. Comparison between different pricing signals in aspects of PADR and utility bill payment.

FIGURE 11. Demand-side users utility bill payment under real-time and
day-ahead pricing signals.

utility bill payment. Utility bills payment under real-time
and day-ahead pricing signals are shown in Figure 11, and
results are presented in Table 2. Findings reveal that ECS
using real-time pricing signal effectively reduced peak energy
consumption, PADR, and utility bill payment compared to
day-ahead pricing signal.

V. CONCLUSION
In this work, ECS is developed for power usage scheduling of
time and power-flexible appliances under a real-time pricing
scheme for four modes of operation as per the demand-side
users priority and utility constraints. The developed ECS aims
to minimize utility bill payment, PADR, and achieve the
desired tradeoff between utility bills payment and discomfort,
and PADR and discomfort. For this purpose, the power usage
scheduling problem is formulated as an optimization problem
implementing DR in aspects of a real-time pricing scheme for
four modes of operation. Simulations are conducted for the
developedmodel’s validity and applicability in aspects of per-
formance metrics. Findings reveal that the developed model
under a real-time pricing scheme achieves desired objectives
and tradeoff between utility bill payment and discomfort, and
PADR and discomfort.

REFERENCES
[1] P. Jiang, Y. V. Fan, and J. J. Klemeš, ‘‘Impacts of COVID-19 on energy

demand and consumption: Challenges, lessons and emerging opportuni-
ties,’’ Appl. Energy, vol. 285, Mar. 2021, Art. no. 116441.

[2] M. Liu, X. Zhang, M. Zhang, Y. Feng, Y. Liu, J. Wen, and L. Liu,
‘‘Influencing factors of carbon emissions in transportation industry based
on CD function and LMDI decomposition model: China as an example,’’
Environ. Impact Assessment Rev., vol. 90, Sep. 2021, Art. no. 106623.

[3] P. Wang, P. Yu, L. Huang, and Y. Zhang, ‘‘An integrated
technical, economic, and environmental framework for evaluating
the rooftop photovoltaic potential of old residential buildings,’’
J. Environ. Manage., vol. 317, Sep. 2022, Art. no. 115296, doi:
10.1016/j.jenvman.2022.115296.

[4] L. Ge, T. Du, C. Li, Y. Li, J. Yan, and M. U. Rafiq, ‘‘Virtual col-
lection for distributed photovoltaic data: Challenges, methodologies,
and applications,’’ Energies, vol. 15, no. 23, p. 8783, Nov. 2022, doi:
10.3390/en15238783.

[5] L. Lin, C. Chen, B.Wei, H. Li, J. Shi, J. Zhang, and N. Huang, ‘‘Residential
electricity load scenario prediction based on transferable flow generation
model,’’ J. Electr. Eng. Technol., vol. 18, no. 1, pp. 99–109, Jan. 2023, doi:
10.1007/s42835-022-01172-6.

[6] S. P. Bihari, P. K. Sadhu, K. Sarita, B. Khan, L. D. Arya, R. K. Saket, and
D. P. Kothari, ‘‘A comprehensive review of microgrid control mechanism
and impact assessment for hybrid renewable energy integration,’’ IEEE
Access, vol. 9, pp. 88942–88958, 2021.

[7] M. Papadimitrakis, N. Giamarelos, M. Stogiannos, E. N. Zois,
N. A.-I. Livanos, and A. Alexandridis, ‘‘Metaheuristic search in
smart grid: A review with emphasis on planning, scheduling and power
flow optimization applications,’’ Renew. Sustain. Energy Rev., vol. 145,
Jul. 2021, Art. no. 111072.

[8] W. Xu, S. Qu, and C. Zhang, ‘‘Fast terminal sliding mode current control
with adaptive extended state disturbance observer for PMSM system,’’
IEEE J. Emerg. Sel. Topics Power Electron., vol. 11, no. 1, pp. 418–431,
Feb. 2023, doi: 10.1109/JESTPE.2022.3185777.

[9] C. Zhong, Y. Zhou, J. Chen, and Z. Liu, ‘‘DC-side synchronous active
power control of two-stage photovoltaic generation for frequency support
in islanded microgrids,’’ Energy Rep., vol. 8, pp. 8361–8371, Nov. 2022,
doi: 10.1016/j.egyr.2022.06.030.

[10] S. Liu, Z. Song, Y. Liu, Y. Chen, and C. Liu, ‘‘Flux-weakening controller
design of dual three-phase PMSM drive system with copper loss mini-
mization,’’ IEEE Trans. Power Electron., vol. 38, no. 2, pp. 2351–2363,
Feb. 2023, doi: 10.1109/TPEL.2022.3216513.

[11] Y. Lin, H. Song, F. Ke, W. Yan, Z. Liu, and F. Cai, ‘‘Optimal caching
scheme in D2D networks with multiple robot helpers,’’Comput. Commun.,
vol. 181, pp. 132–142, Jan. 2022, doi: 10.1016/j.comcom.2021.09.027.

[12] L. Ge, Y. Li, Y. Li, J. Yan, andY. Sun, ‘‘Smart distribution network situation
awareness for high-quality operation and maintenance: A brief review,’’
Energies, vol. 15, no. 3, p. 828, Jan. 2022, doi: 10.3390/en15030828.

[13] B. Sun, Y. Li, Y. Zeng, J. Chen, and J. Shi, ‘‘Optimization planning
method of distributed generation based on steady-state security region of
distribution network,’’ Energy Rep., vol. 8, pp. 4209–4222, Nov. 2022, doi:
10.1016/j.egyr.2022.03.078.

[14] J. Chen, B. Sun, Y. Li, R. Jing, Y. Zeng, and M. Li, ‘‘Credible capacity
calculation method of distributed generation based on equal power supply
reliability criterion,’’ Renew. Energy, vol. 201, pp. 534–547, Dec. 2022,
doi: 10.1016/j.renene.2022.10.129.

[15] P. Zhao, K. Ma, J. Yang, B. Yang, J. M. Guerrero, C. Dou, and X. Guan,
‘‘Distributed power sharing control based on adaptive virtual impedance
in seaport microgrids with cold ironing,’’ IEEE Trans. Transp. Electrific.,
early access, Sep. 30, 2022, doi: 10.1109/TTE.2022.3211204.

[16] M. Asaad, F. Ahmad, M. S. Alam, and M. Sarfraz, ‘‘Smart grid and Indian
experience: A review,’’Resour. Policy, vol. 74, Dec. 2021, Art. no. 101499.

[17] K.-D. Xu, Y.-J. Guo, Y. Liu, X. Deng, Q. Chen, and Z. Ma, ‘‘60-GHz
compact dual-mode on-chip bandpass filter usingGaAs technology,’’ IEEE
Electron Device Lett., vol. 42, no. 8, pp. 1120–1123, Aug. 2021, doi:
10.1109/LED.2021.3091277.

[18] C. Lu, R. Zhu, F. Yu, X. Jiang, Z. Liu, L. Dong, Q. Hua, and Z. Ou,
‘‘Gear rotational speed sensor based on FeCoSiB/Pb(Zr,Ti)O3 magneto-
electric composite,’’ Measurement, vol. 168, Jan. 2021, Art. no. 108409,
doi: 10.1016/j.measurement.2020.108409.

33648 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.jenvman.2022.115296
http://dx.doi.org/10.3390/en15238783
http://dx.doi.org/10.1007/s42835-022-01172-6
http://dx.doi.org/10.1109/JESTPE.2022.3185777
http://dx.doi.org/10.1016/j.egyr.2022.06.030
http://dx.doi.org/10.1109/TPEL.2022.3216513
http://dx.doi.org/10.1016/j.comcom.2021.09.027
http://dx.doi.org/10.3390/en15030828
http://dx.doi.org/10.1016/j.egyr.2022.03.078
http://dx.doi.org/10.1016/j.renene.2022.10.129
http://dx.doi.org/10.1109/TTE.2022.3211204
http://dx.doi.org/10.1109/LED.2021.3091277
http://dx.doi.org/10.1016/j.measurement.2020.108409


A. Alzahrani et al.: Demand Response for Optimal Power Usage Scheduling Considering Time and Power Flexibility

[19] C. Lu, H. Zhou, L. Li, A. Yang, C. Xu, Z. Ou, J. Wang, X. Wang, and
F. Tian, ‘‘Split-core magnetoelectric current sensor and wireless cur-
rent measurement application,’’ Measurement, vol. 188, Jan. 2022,
Art. no. 110527, doi: 10.1016/j.measurement.2021.110527.

[20] A. M. Vega, F. Santamaria, and E. Rivas, ‘‘Modeling for home electric
energy management: A review,’’ Renew. Sustain. Energy Rev., vol. 52,
pp. 948–959, Dec. 2015.

[21] B. Zhou, W. Li, K. W. Chan, Y. Cao, Y. Kuang, X. Liu, and X. Wang,
‘‘Smart home energy management systems: Concept, configurations, and
scheduling strategies,’’ Renew. Sustain. Energy Rev., vol. 61, pp. 30–40,
Aug. 2016.

[22] J. Ma, H. H. Chen, L. Song, and Y. Li, ‘‘Residential load scheduling in
smart grid: A cost efficiency perspective,’’ IEEE Trans. Smart Grid, vol. 7,
no. 2, pp. 771–784, Mar. 2016.

[23] Y. Liu, N. U. Hassan, S. Huang, and C. Yuen, ‘‘Electricity cost minimiza-
tion for a residential smart grid with distributed generation and bidirec-
tional power transactions,’’ in Proc. IEEE PES Innov. Smart Grid Technol.
Conf. (ISGT), Feb. 2013, pp. 1–6.

[24] S. Xu, W. Huang, H. Wang, W. Zheng, J. Wang, Y. Chai, and
M. Ma, ‘‘A simultaneous diagnosis method for power switch and cur-
rent sensor faults in grid-connected three-level NPC inverters,’’ IEEE
Trans. Power Electron., vol. 38, no. 1, pp. 1104–1118, Jan. 2023, doi:
10.1109/TPEL.2022.3200721.

[25] N. Huang, Q. Chen, G. Cai, D. Xu, L. Zhang, and W. Zhao, ‘‘Fault diagno-
sis of bearing in wind turbine gearbox under actual operating conditions
driven by limited data with noise labels,’’ IEEE Trans. Instrum. Meas.,
vol. 70, pp. 1–10, 2021, doi: 10.1109/TIM.2020.3025396.

[26] L. Guo, C. Ye, Y. Ding, and P. Wang, ‘‘Allocation of centrally switched
fault current limiters enabled by 5G in transmission system,’’ IEEE
Trans. Power Del., vol. 36, no. 5, pp. 3231–3241, Oct. 2021, doi:
10.1109/TPWRD.2020.3037193.

[27] C. Guo, C. Ye, Y. Ding, and P. Wang, ‘‘A multi-state model for trans-
mission system resilience enhancement against short-circuit faults caused
by extreme weather events,’’ IEEE Trans. Power Del., vol. 36, no. 4,
pp. 2374–2385, Aug. 2021, doi: 10.1109/TPWRD.2020.3043938.

[28] J. Li, Y. Deng, W. Sun, W. Li, R. Li, Q. Li, and Z. Liu, ‘‘Resource
orchestration of cloud-edge–based smart grid fault detection,’’ ACMTrans.
Sensor Netw., vol. 18, no. 3, pp. 1–26, 2022, doi: 10.1145/3529509.

[29] H. Tang, J. Di, Z.Wu, andW. Li, ‘‘Temperature analysis for the asymmetric
six-phase permanent magnet synchronous motor in healthy and fault-
tolerant modes,’’ IEEE Trans. Ind. Electron., vol. 70, no. 7, pp. 6482–6493,
Jul. 2023, doi: 10.1109/TIE.2022.3199938.

[30] Y. Liu, C. Yuen, S. Huang, N. Ul Hassan, X. Wang, and S. Xie, ‘‘Peak-
to-average ratio constrained demand-side management with consumer’s
preference in residential smart grid,’’ IEEE J. Sel. Topics Signal Process.,
vol. 8, no. 6, pp. 1084–1097, Dec. 2014.

[31] H. K. Nguyen, J. B. Song, and Z. Han, ‘‘Demand side management to
reduce peak-to-average ratio using game theory in smart grid,’’ in Proc.
IEEE INFOCOM Workshops, Mar. 2012, pp. 91–96.

[32] N. Tutkun, A. Burgio, M. Jasinski, Z. Leonowicz, and E. Jasinska, ‘‘Intelli-
gent scheduling of smart home appliances based on demand response con-
sidering the cost and peak-to-average ratio in residential homes,’’Energies,
vol. 14, no. 24, p. 8510, Dec. 2021.

[33] M. Waseem, Z. Lin, S. Liu, I. A. Sajjad, and T. Aziz, ‘‘Optimal
GWCSO-based home appliances scheduling for demand response consid-
ering end-users comfort,’’ Electr. Power Syst. Res., vol. 187, Oct. 2020,
Art. no. 106477.

[34] K. E. Mary Reena, A. T. Mathew, and L. Jacob, ‘‘A flexible control
strategy for energy and comfort aware HVAC in large buildings,’’ Building
Environ., vol. 145, pp. 330–342, Nov. 2018.

[35] C. Marche, M. Nitti, and V. Pilloni, ‘‘Energy efficiency in smart building:
A comfort aware approach based on social Internet of Things,’’ in Proc.
Global Internet Things Summit (GIoTS), Jun. 2017, pp. 1–6.

[36] H. Kanchev, D. Lu, B. Francois, and V. Lazarov, ‘‘Smart monitoring
of a microgrid including gas turbines and a dispatched PV-based active
generator for energy management and emissions reduction,’’ in Proc. IEEE
PES Innov. Smart Grid Technol. Conf. Eur. (ISGT Europe), Oct. 2010,
pp. 1–8.

[37] H. S. Shreenidhi and N. S. Ramaiah, ‘‘A two-stage deep convolu-
tional model for demand response energy management system in IoT-
enabled smart grid,’’ Sustain. Energy, Grids Netw., vol. 30, Jun. 2022,
Art. no. 100630.

[38] X. Kong, D. Kong, J. Yao, L. Bai, and J. Xiao, ‘‘Online pricing of demand
response based on long short-term memory and reinforcement learning,’’
Appl. Energy, vol. 271, Aug. 2020, Art. no. 114945.

[39] S.-J. Chen, W.-Y. Chiu, and W.-J. Liu, ‘‘User preference-based demand
response for smart home energy management using multiobjective rein-
forcement learning,’’ IEEE Access, vol. 9, pp. 161627–161637, 2021.

[40] D. Deltetto, D. Coraci, G. Pinto, M. S. Piscitelli, and A. Capozzoli,
‘‘Exploring the potentialities of deep reinforcement learning for incentive-
based demand response in a cluster of small commercial buildings,’’ Ener-
gies, vol. 14, no. 10, p. 2933, 2021.

[41] S. Ali, I. Khan, S. Jan, and G. Hafeez, ‘‘An optimization based power usage
scheduling strategy using photovoltaic-battery system for demand-side
management in smart grid,’’ Energies, vol. 14, no. 8, p. 2201, Apr. 2021.

[42] G. Hafeez, K. S. Alimgeer, Z. Wadud, I. Khan, M. Usman, A. B. Qazi, and
F. A. Khan, ‘‘An innovative optimization strategy for efficient energy man-
agement with day-ahead demand response signal and energy consumption
forecasting in smart grid using artificial neural network,’’ IEEE Access,
vol. 8, pp. 84415–84433, 2020.

[43] H. Shahinzadeh, J. Moradi, G. B. Gharehpetian, S. H. Fathi, and M. Abedi,
‘‘Optimal energy scheduling for a microgrid encompassing DRRs and
energy hub paradigm subject to alleviate emission and operational costs,’’
in Proc. Smart Grid Conf. (SGC), Nov. 2018, pp. 1–10.

[44] K. Zhou, S. Yang, Z. Chen, and S. Ding, ‘‘Optimal load distribution model
of microgrid in the smart grid environment,’’ Renew. Sustain. Energy Rev.,
vol. 35, pp. 304–310, Jul. 2014.

[45] S. Ali, K. Ullah, G. Hafeez, I. Khan, F. R. Albogamy, and S. I. Haider,
‘‘Solving day-ahead scheduling problem with multi-objective energy opti-
mization for demand side management in smart grid,’’ Eng. Sci. Technol.,
Int. J., vol. 36, Dec. 2022, Art. no. 101135.

[46] B. Cao, Y. Yan, Y. Wang, X. Liu, J. C.-W. Lin, A. K. Sangaiah, and
Z. Lv, ‘‘A multiobjective intelligent decision-making method for multi-
stage placement of PMU in power grid enterprises,’’ IEEE Trans. Ind.
Informat., early access, Oct. 19, 2022, doi: 10.1109/TII.2022.3215787.

[47] Y. Wu, H. Sheng, Y. Zhang, S. Wang, Z. Xiong, and W. Ke, ‘‘Hybrid
motion model for multiple object tracking in mobile devices,’’ IEEE
Internet Things J., vol. 10, no. 6, pp. 4735–4748, Mar. 2023, doi:
10.1109/JIOT.2022.3219627.

[48] L. Yan, S. Yin-He, Y. Qian, S. Zhi-Yu, W. Chun-Zi, and L. Zi-Yun,
‘‘Method of reaching consensus on probability of food safety based on
the integration of finite credible data on block chain,’’ IEEE Access, vol. 9,
pp. 123764–123776, 2021, doi: 10.1109/ACCESS.2021.3108178.

[49] S. Liu, Z. Song, Z. Dong, Y. Liu, and C. Liu, ‘‘Generic carrier-based PWM
solution for series-end winding PMSM traction system with adaptative
overmodulation scheme,’’ IEEE Trans. Transp. Electrific., vol. 9, no. 1,
pp. 712–726, Mar. 2023, doi: 10.1109/TTE.2022.3193272.

[50] A. Al-Obaidi, H. Khani, H. E. Z. Farag, and M. Mohamed, ‘‘Bidirectional
smart charging of electric vehicles considering user preferences, peer to
peer energy trade, and provision of grid ancillary services,’’ Int. J. Electr.
Power Energy Syst., vol. 124, Jan. 2021, Art. no. 106353.

[51] A. A. Shobole and M. Wadi, ‘‘Multiagent systems application for the
smart grid protection,’’ Renew. Sustain. Energy Rev., vol. 149, Oct. 2021,
Art. no. 111352.

[52] L. Zhang, X. Hu, Z. Wang, J. Ruan, C. Ma, Z. Song, D. G. Dorrell, and
M. G. Pecht, ‘‘Hybrid electrochemical energy storage systems: An
overview for smart grid and electrified vehicle applications,’’ Renew. Sus-
tain. Energy Rev., vol. 139, Apr. 2021, Art. no. 110581.

[53] W.Anupong, R. Azhagumurugan, K. B. Sahay, D. Dhabliya, R. Kumar, and
D. Vijendra Babu, ‘‘Towards a high precision in AMI-based smart meters
and new technologies in the smart grid,’’ Sustain. Comput., Informat. Syst.,
vol. 35, Sep. 2022, Art. no. 100690.

[54] K. Ullah, S. Ali, T. A. Khan, I. Khan, S. Jan, I. A. Shah, and G. Hafeez,
‘‘An optimal energy optimization strategy for smart grid integrated with
renewable energy sources and demand response programs,’’ Energies,
vol. 13, no. 21, p. 5718, Nov. 2020.

[55] K. Ullah, T. A. Khan, G. Hafeez, I. Khan, S. Murawwat, B. Alamri,
F. Ali, S. Ali, and S. Khan, ‘‘Demand side management strategy for multi-
objective day-ahead scheduling considering wind energy in smart grid,’’
Energies, vol. 15, no. 19, p. 6900, Sep. 2022.

[56] G. Hafeez, Z. Wadud, I. U. Khan, I. Khan, Z. Shafiq, M. Usman, and
M. U. A. Khan, ‘‘Efficient energy management of IoT-enabled smart
Homes under price-based demand response program in smart grid,’’ Sen-
sors, vol. 20, no. 11, p. 3155, Jun. 2020.

VOLUME 11, 2023 33649

http://dx.doi.org/10.1016/j.measurement.2021.110527
http://dx.doi.org/10.1109/TPEL.2022.3200721
http://dx.doi.org/10.1109/TIM.2020.3025396
http://dx.doi.org/10.1109/TPWRD.2020.3037193
http://dx.doi.org/10.1109/TPWRD.2020.3043938
http://dx.doi.org/10.1145/3529509
http://dx.doi.org/10.1109/TIE.2022.3199938
http://dx.doi.org/10.1109/TII.2022.3215787
http://dx.doi.org/10.1109/JIOT.2022.3219627
http://dx.doi.org/10.1109/ACCESS.2021.3108178
http://dx.doi.org/10.1109/TTE.2022.3193272


A. Alzahrani et al.: Demand Response for Optimal Power Usage Scheduling Considering Time and Power Flexibility

[57] Z. Zhao, W. Cheol Lee, Y. Shin, and K.-B. Song, ‘‘An optimal power
scheduling method for demand response in home energy management
system,’’ IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1391–1400, Sep. 2013.

[58] K. Ma, T. Yao, J. Yang, and X. Guan, ‘‘Residential power scheduling for
demand response in smart grid,’’ Int. J. Electr. Power Energy Syst., vol. 78,
pp. 320–325, Jun. 2016.

[59] L. A. Soriano, M. Avila, P. Ponce, J. de Jesús Rubio, and A.Molina, ‘‘Peer-
to-peer energy trades based on multi-objective optimization,’’ Int. J. Electr.
Power Energy Syst., vol. 131, Oct. 2021, Art. no. 107017.

[60] L. Tao and Y. Gao, ‘‘Real-time pricing for smart grid with distributed
energy and storage: A noncooperative game method considering spatially
and temporally coupled constraints,’’ Int. J. Electr. Power Energy Syst.,
vol. 115, Feb. 2020, Art. no. 105487.

[61] P. Pawar, ‘‘Design and development of advanced smart energy manage-
ment system integrated with IoT framework in smart grid environment,’’
J. Energy Storage, vol. 25, Oct. 2019, Art. no. 100846.

[62] M. Babar, M. U. Tariq, and M. A. Jan, ‘‘Secure and resilient demand side
management engine using machine learning for IoT-enabled smart grid,’’
Sustain. Cities Soc., vol. 62, Nov. 2020, Art. no. 102370.

[63] O. Majeed Butt, M. Zulqarnain, and T. Majeed Butt, ‘‘Recent advance-
ment in smart grid technology: Future prospects in the electrical power
network,’’ Ain Shams Eng. J., vol. 12, no. 1, pp. 687–695, Mar. 2021.

[64] M. I. Khalil, N. Z. Jhanjhi, M. Humayun, S. Sivanesan, M. Masud,
and M. S. Hossain, ‘‘Hybrid smart grid with sustainable energy efficient
resources for smart cities,’’ Sustain. Energy Technol. Assessments, vol. 46,
Aug. 2021, Art. no. 101211.

[65] E. M. Ahmed, R. Rathinam, S. Dayalan, G. S. Fernandez, Z. M. Ali,
S. H. E. Abdel Aleem, and A. I. Omar, ‘‘A comprehensive analysis of
demand response pricing strategies in a smart grid environment using
particle swarm optimization and the strawberry optimization algorithm,’’
Mathematics, vol. 9, no. 18, p. 2338, Sep. 2021.

[66] K. Aurangzeb, S. Aslam, S. M. Mohsin, and M. Alhussein, ‘‘A fair pric-
ing mechanism in smart grids for low energy consumption users,’’ IEEE
Access, vol. 9, pp. 22035–22044, 2021.

[67] X. Jiang and L.Wu, ‘‘A residential load scheduling based on cost efficiency
and consumer’s preference for demand response in smart grid,’’ Electr.
Power Syst. Res., vol. 186, Sep. 2020, Art. no. 106410.

[68] T. Ahmad, H. Zhang, and B. Yan, ‘‘A review on renewable energy and
electricity requirement forecasting models for smart grid and buildings,’’
Sustain. Cities Soc., vol. 55, Apr. 2020, Art. no. 102052.

[69] F. R. Albogamy, Y. Ashfaq, G. Hafeez, S. Murawwat, S. Khan, F. Ali,
F. Aslam Khan, and K. Rehman, ‘‘Optimal demand-side management
using flat pricing scheme in smart grid,’’ Processes, vol. 10, no. 6, p. 1214,
Jun. 2022.

[70] A. Imran, ‘‘Heuristic-based programable controller for efficient energy
management under renewable energy sources and energy storage system
in smart grid,’’ IEEE Access, vol. 8, pp. 139587–139608, 2020.

[71] S. Ali, A. U. Rehman, Z. Wadud, I. Khan, S. Murawwat, G. Hafeez,
F. R. Albogamy, S. Khan, and O. Samuel, ‘‘Demand response program for
efficient demand-side management in smart grid considering renewable
energy sources,’’ IEEE Access, vol. 10, pp. 53832–53853, 2022.

[72] R. Kappagantu and S. A. Daniel, ‘‘Challenges and issues of smart grid
implementation: A case of Indian scenario,’’ J. Electr. Syst. Inf. Technol.,
vol. 5, no. 3, pp. 453–467, Dec. 2018.

[73] S.-K. Kim and J.-H. Huh, ‘‘A study on the improvement of smart grid
security performance and blockchain smart grid perspective,’’ Energies,
vol. 11, no. 8, p. 1973, Jul. 2018.

AHMAD ALZAHRANI received the Ph.D. degree
from the Missouri University of Science and Tech-
nology, Rolla, MO, USA, in 2018. He is currently
an Assistant Professor with the Department of
Electrical Engineering, Najran University, Najran,
Saudi Arabia. His research interests include power
electronic converters, renewable energy applica-
tions, electric vehicles, energy harvesting, power
management, wireless power systems, and power
converters design and control.

GHULAM HAFEEZ received the B.Sc. degree
in electrical engineering from the University of
Engineering and Technology, Peshawar, Pakistan,
and the M.S. and Ph.D. degrees in electrical
engineering from COMSATS University Islam-
abad, Islamabad, Pakistan. He is currently a
lifetime Charted Engineer with the Pakistan
Engineering Council. He is also the Manager
University–Industry Linkages/Research Opera-
tions & Development with the Directorate of

ORIC, University of Engineering and Technology, Mardan, where he was
a Lecturer with the Department of Electrical Engineering. He was also
a Lecturer with the University of Wah, Wah Cantt, Pakistan. He was
also a Research Associate with COMSATS University Islamabad. His
industrial experience includes working with Alcatel-Lucent and PTCL as
an Optimization Engineer in Islamabad. He has authored or coauthored
peer-reviewed research papers in reputed international journals and con-
ferences. His research interests include computational intelligence, forecast
process, energy management, operation of electricity markets, electric vehi-
cles in smart power grids, sustainable and smart energy, cities and societies,
smart grids, applications of deep learning and blockchain in smart power
grids, and stochastic techniques for power usage optimization in smart power
grids.

GUL RUKH received the B.Sc. and M.S. degrees
in electrical engineering and the Ph.D. degree
in electrical engineering with power as a spe-
cialty from the University of Engineering and
Technology, Peshawar, Pakistan. She is currently a
lifetime Charted Engineer with the Pakistan Engi-
neering Council. She is also a Lecturer with the
Department of Electrical Engineering, University
of Engineering and Technology, Mardan. She has
authored or coauthored over seven peer-reviewed

research papers in reputed international journals and conferences. Her
research interests include electrical energy storage devices, renewable ener-
gies, and compressed air energy systems (CAES).

SADIA MURAWWAT is currently an Associate
Professor with the Department of Electrical Engi-
neering, Lahore College for Women University,
Lahore, Pakistan. She has authored or coauthored
peer-reviewed research papers in reputed inter-
national journals and conferences. Her research
interests include the performance analysis of wire-
less communication systems, OFDM, OFDMA,
MIMO, cooperative networks, cognitive radio sys-
tems, and energy management in smart grids.

FAIZA IFTIKHAR received the B.Sc. and M.Sc.
degrees in electrical engineering from the Uni-
versity of Engineering and Technology (UET),
Lahore, Pakistan, in 2008 and 2012, respectively,
and the Ph.D. degree in electrical engineering from
the Lahore University of Management Sciences
(LUMS), in 2022. She is currently a Faculty Mem-
ber with the Electrical Engineering Department,
Lahore College for Women University, Lahore,
Pakistan.

33650 VOLUME 11, 2023



A. Alzahrani et al.: Demand Response for Optimal Power Usage Scheduling Considering Time and Power Flexibility

SAJJAD ALI received the B.Sc. degree in com-
puter information systems engineering and the
M.S. degree in computer systems engineering
from the University of Engineering and Technol-
ogy, Peshawar, Pakistan, where he is currently
pursuing the Ph.D. degree. He is also a lifetime
Chartered Engineer with the Pakistan Engineering
Council. He is also a Lecturer with the Department
of Telecommunication Engineering, University of
Engineering and Technology, Mardan. He has

authored or coauthored over four peer-reviewed research articles in reputed
national and international journals and conferences. His research interests
include optimization, planning, energy management, smart/microgrids, and
cognitive networks.

SYED IRTAZA HAIDER received the B.E. degree
in electronics engineering from the National Uni-
versity of Sciences and Technology (NUST),
Pakistan, in 2010, and the M.S. degree in electron-
ics engineering fromKing SaudUniversity (KSU),
Saudi Arabia, in 2015. He is currently a Researcher
with the Embedded Computing and Signal Pro-
cessing Laboratory (ECASP), KSU. His research
interest includes signals.

MUHAMMAD IFTIKHAR KHAN received the
B.Sc. degree in electrical engineering, the M.Sc.
degree in electrical power engineering, and the
Ph.D. degree from the University of Engineer-
ing and Technology, Peshawar, Pakistan, in 1997,
2000, and 2019, respectively. Currently, he is
engaged as an Assistant Professor with the Electri-
cal Engineering Department, UET Peshawar. His
research interests include electrical power genera-
tion, distribution, microgrids, power system mod-

eling, distributed energy resources, and control and integration of distributed
generation.

AZHER M. ABED received the Ph.D. degree in
renewable energy from UKM. He is currently a
mechanical engineer. He is also the Head of the Air
Conditioning and Refrigeration Techniques Engi-
neering Department. He has published more than
70 articles in peer-reviewed journals. His research
interests include renewable energy, heat transfer,
and fluid flows.

VOLUME 11, 2023 33651


