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ABSTRACT This paper offers a new tracking algorithm for clustered targets of focal plane unmanned
aerial vehicles (UAVs) by integrating the random hypersurface model (RHM) model into the δ-generalized
label multi-Bernoulli (δ-GLMB) filter to guarantee a robust UAV cluster target tracking on such focal
planes. We first investigated the infrared imaging features of UAV cluster targets by emphasizing the
target imaging size and dispersion. Next, we designed an elliptical RHM-based measurement model to map
the measurement, state parameters, scaling factors, and errors to pseudo-measurement ‘‘0’’, followed by
establishing a pseudo-measurement equation to reflect the target’s extended shape size. Then, in order to
enhance measurement estimation accuracy, the RHM model was implemented with the δ-GLMB filter and
Gamma-Gaussian mixture, which can perform a real-time estimate of the targets’ centroid motion state and
extended state. We also used the grid-based fast density-based spatial clustering of applications with noise
(DBSCAN) segmentation algorithm to overcome the distance-based segmentation method restrictions for
infrared radiation (IR) measurement data and diminish the algorithm’s complexity even more in the mea-
surement update. Extensive simulations demonstrated that this algorithm outperformed existing matching
filtering algorithms in the target centroid motion and extended states. Our investigations also revealed that
the algorithmwas less vulnerable to clutter and more adaptive, making it more straightforward to accomplish
reliable tracking of UAV cluster targets.

INDEX TERMS UAV cluster, RHM model, extended multi-target tracking, δ-GLMB filter, OSPA distance.

I. INTRODUCTION
Multi-target filtering is the sequential estimation of a target’s
current state that may emerge, move and disappear, given
previous and current noise sensor data. It is widely utilized
in military and civilian applications, including air traffic
control [1], [2], ship tracking at sea [3], and autonomous
driving [4]. A cluster target is a group of spatially confined
targets that move collaboratively, such as unmanned aerial
vehicle (UAV) clusters, convoys, and bird flocks [5]. They
may be perceived as formations of cooperating individuals
whose locations obey a particular structure. Accordingly, this
paper concentrates on tracking UAV cluster targets.

Traditional multi-target tracking algorithms represent tar-
gets as point targets and presume that a single-point
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target provides only one measurement, following the com-
bination of targets and measures to track multiple targets.
Reference [6] proposed a flexible and effective tracker that
divided the tracking task into classification and regression.
To comprehensively use the local and context information, [7]
depicted the Siamese Parallel Interaction Network tracker.
However, the data correlation between measurements and
targets frequently results in a computational load that is
exceptionally challenging for these algorithms. In such cases,
although the distance between the measurements generated
by individual population targets is small compared to the
detection gate, making it challenging to estimate the tar-
get states, the population’s targets are spread near enough,
or the sensors far enough away from the targets. Thus,
estimating the group targets’ extended state and measure-
ment rate to assess the kinematic state of group targets,
as in standard point target tracking, has been proposed.
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Accordingly, Mahler implemented a probabilistic hypothesis
density (PHD) filter [8] based on the finite set statistics the-
ory (FISST) [9] to handle this problem. Examples of highly
sophisticated FISST algorithms are the Cardinalized PHD
(CPHD) filter, the Cardinal Balanced Multi-target Multi-
Bernoulli (CBMeMBer) filter, and the generalized label
multi-Bernoulli (GLMB) filter [10], [11], [12]. Consequently,
their study tracked an unknown number of multiple targets
in Poisson false alarms, missed detections, and target emer-
gence, disappearance, and generation.

In a previous study, B. T. Vo et al. [13] demonstrated the
δ-generalized label multi-Bernoulli (δ-GLMB) filter. Since
the δ-GLMB filter is based on the GLMB density rel-
ative to the multi-target measurement probability and is
closed under the Chapman-Kolmogorov prediction equation,
it could model target states using labeled random finite sets
(RFS), allowing the target state to span several time steps and
enabling trajectory generation. Reference [14] also describes
a computationally efficient version of the δ-GLMB filter
that integrates prediction and updates it into a single phase.
The label multi-Bernoulli (LMB) filter and the marginalized
δ-GLMBfilter are emphasized as principle approximations of
the δ-GLMB filter that retain the essential statistical aspects
of the total multi-target density. The states and measurements
of the targets are modeled using random finite sets (RFS) in
these filter algorithms, as mentioned earlier, eliminating the
computational complexity of data correlation. Reference [15]
applies the δ-GLMB filter to track UAV cluster targets, con-
centrating on three distinct views to simulate and investi-
gate the tracking problem during UAV cluster splitting and
merging. Due to the loss of extended information, however,
the previously mentioned extended target tracking filter algo-
rithms can only approximate the kinematic state of the target
centroid, resulting in tracking errors.

Despite the successes of the above studies, it remains
problematic to generate stable trajectories for dense tar-
gets with low measurement precision and significant echo
crossover. Therefore, a holistic tracking strategy has been
recommended to focus on the group shape and centroid state
rather than the targets inside the group. For instance, [16]
highlighted a random matrix method to estimate the kine-
matic and extended states simultaneously, characterizing the
group’s center of mass variation by the kinematic model and
the group’s extended state variation by the random matrix.
Other studies then cultivated the Gaussian inverse Wishart
probability hypothesis density (GIW-PHD) filter [17] and
the Gamma-Gaussian inverse Wishart probability hypothesis
density (GGIW-PHD) filter to track multiple elliptical exten-
sion targets with this method. Unfortunately, these random
matrix-based filters were only relevant in specific tracking
circumstances where ellipsoids may approximate the tar-
get expansion well. Hence, the random hypersurface model
(RHM) [18], [19] that assumes a diverse range of measure-
ment sources from a scaled hypersurface with shape bounds
was proposed as another target extension modeling strategy.

This model could notably track primary elliptical and sophis-
ticated extended targets, such as star-convex shapes. For
group target segmentation, the distance-based group target
segmentation algorithm proposed by Granström et al. [20],
[21] is a more extensively utilized method. Still, when the
target shape size and the distance between targets are close,
while this algorithm is less strategic for clustering, UAV
cluster targets on infrared images offer small target groups,
making statistical characteristics invisible. Therefore, clus-
tering based on distance information that can only influence
quantitative classification results is required.

According to the comprehensive reference review, three
issues should be addressed for focal-plane UAV cluster target
tracking:

1) The relatively limited research on UAV cluster target
tracking currently, while only the motion character-
istics of the UAV cluster target are considered when
tracking the UAV cluster target, the infrared imaging
characteristics of the UAV cluster target are not fully
considered. The UAV cluster target tracking is also not
realized on the focal plane.

2) Most current research on cluster target tracking
employs the random matrix model for quantitative
modeling, but this model does not account for the
sensor’s inherent noise and low estimation accuracy.
Meanwhile, it cannot identify the splitting process of
the target accurately.

3) The current δ-GLMB filter framework for measure-
ment division primarily depends on distance division,
but it does not meet the cluster tracking demands such
as UAV clusters.

Accordingly, this paper proposes an algorithm for UAV clus-
ter target tracking on the focal plane based on RHM-δ-
GLMB, with the following significant contributions:

1) Initially, the RHM model is embedded in the δ-GLMB
filter to estimate the motion and extended states of the
UAV cluster target center of mass on the focal plane.

2) Next, we establish an elliptical RHM-based measure-
ment model to map the measurement, state parame-
ters, scaling factors, and errors to pseudo-measurement
‘‘0’’, then develop pseudo-measurement equations to
reflect the target’s extended shape size and resolve the
problem that the random matrix model cannot realize
target splitting and merging.

3) Finally, we implement the grid-based fast density-
based spatial clustering of applications with noise
(DBSCAN) measurement partitioning algorithm based
on image element magnitude information in the mea-
surement update to overcome the distance-based par-
titioning method constraints for infrared radiation (IR)
measurement data partitioning.

The remainder of this paper is organized as follows: Section II
introduces the RHM, Section III implements the proposed
algorithm, Section IV illustrates the simulation data/analysis,
and Section V summarizes the conclusion.
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II. RANDOM HYPERSURFACE MODEL
This model efficiently estimates a target’s extended state by
integrating target shape parameters and motion state into the
filtering algorithm.

A. ELLIPTIC RHM DEFINITION
Since the actual shape of the extended target is uncertain,
an elliptical shape is commonly used to approximate the
actual shape of the target. Another motivation for choosing
an elliptic shape is that the ellipse’s long axis can indicate
the direction of the target’s motion. Thus, an ellipse in the
two-dimensional plane was defined as:{

z | z ∈ R2, (z− rk)T A
−1
k (z− rk) ≤ 1

}
(1)

where rk is the ellipse center position, Ak is the positive
definite matrix used to describe the shape of the ellipse,
including the long axis, short axis, and direction angle of
the ellipse, and the positive definite matrix Ak is Cholesky
decomposed to simplify the calculation [22]:

Ak = LkLTk (2)

Lk =

[
l(1)k 0
l(3)k l(2)k

]
(3)

where, Lk is the lower triangular matrix of Ak ’s Cholesky
decomposed, l(1)k , l(2)k , l(3)k are the partitioned matrixes of Lk .
Consequently, the target shape parameter at the moment k
was obtained as ςk = [l(1)k , l(2)k , l(3)k ]T . Combining it with the
state vector of the target, the target state at the moment k was
obtained again, denoted as

xk = [rk , ςk ]T (4)

The boundary shape equation of the new ellipse was also
obtained:

g (z, ςk) = (z− rk)T ·

(
LkLTk

)
· (z− rk) (5)

Finally, by reducing the shape of the extended target
according to a specific ratio sk (sk ∈ [0, 1]), we obtain the
ellipse RHM. The boundary equation of the extended target
is shown below:

O (xk) =

{
zk | zk ∈ R2, g (zk , xk)
= (zk − rk)

(
LkLTk

)−1
(zk − rk)T − 1

}
(6)

The reduced elliptic boundary equation is given by

Õ (xk) =

{
zk | zk ∈ R2, g∗ (zk , xk)
= (zk − rk)

(
LkLTk

)−1
(zk − rk)T − s2k

}
(7)

B. ELLIPTICAL RHM-BASED MEASUREMENT MODEL
A target measurement can be represented by a measurement
source ylk on an elliptical target surface and the additive noise
vlk of the sensor itself. As shown in Fig. 1, the corresponding
measurement equation for the elliptical target surface mea-
surement source ylk is

zlk = ylk + vlk l = 1, 2, · · · , n (8)

FIGURE 1. Schematic showing the elliptical RHM measurement model.

where the additive noise vlk of the sensor itself is Gaussian
white noise with mean 0 and variance Rk . n denotes the
number of measurements obeying the Poisson distribution.

Assuming that S̄ is the extended target’s boundary, the
measurement source of the RHM model was described as

ylk ∈ rk + sk ·O (xk) (9)

The elliptical RHM was then expressed as polar coordi-
nates to facilitate the calculation.

ylk = rk + sk · R
(
θ lk ; ak , bb, ϕk

)
· ek (10)

R(θ; a, b, ϕ) =
ab√

[a sin(θ − ϕ)]2 + [b cos(θ − ϕ)]2
(11)

ek =

[
cos θ lk sin θ lk

]T
(12)

where the centroid is rk = [rxk , ryk ]T , a and b are the long
and short axes of the ellipse, ϕ is the rotation angle of the
ellipse, representing the angle between the long axis of the
ellipse and the positive semi-axis of the x-axis, ϕ ∈ [0, 2π ];
θ is the coordinate parameter; ek is the unit vectors from polar
to Cartesian coordinates [22].

Substituting (10) into (8), we obtained an equation for the
ellipse RHM in terms of measurement.

zlk = rk + sk · R
(
θ lk ; ak , bb, ϕk

)
· ek + vlk

= h (xk , zk , sk)+ vlk (13)

where θ lk is unknown, and the angle approximates the vector
from the measurement point to the ellipse’s center at the
x-axis.
Finally, we introduce a pseudo-measurement equation to

reduce the influence of θ lk on the extended target state
estimation

h
(
xk , zlk , s

l
k , v

l
k

)
= 0 (14)
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TABLE 1. The grid fast DBSCAN algorithm steps.

The function h(xk , zlk , s
l
k , v

l
k ) is calculated in APPENDIX.

It maps the measurements, state parameters, scaling factors,
and errors to pseudo-measurement ‘‘0’’, which is the essential
difference between the measurement equations constructed
by the elliptical RHMmodel and those created by other group
target tracking algorithms.

III. ELLIPTIC RHM-BASED GAMMA-GAUSSIAN HYBRID
δ-GENERALIZED LABEL MULTI-BERNOULLI FILTERING
A. GRID-FAST DBSCAN MEASUREMENT SEGMENTATION
BASED ON IMAGE ELEMENT MAGNITUDE INFORMATION
This study applied a fast DBSCAN approach to rapidly dis-
tinguish between targets and noise points in sparse grids,
avoiding DBSCAN’s low clustering accuracy due to global
parameter usages to reduce the algorithm’s time complexity
considerably.

While Table 1 presents the grid-fast DBSCAN algorithm’s
operation stages, Fig. 2 depicts the flowchart of the grid-
fast DBSCAN measurement partitioning algorithm based on
image element magnitude information.

We employed the DBSCAN measurement classification
algorithm based on image element magnitude information.
The algorithm clusters focal planemeasurement data utilizing
the grid-based clustering strategy, differentiates the dense
grid from the sparse grid, links the neighboring dense grid
into clusters, and labels the points in the sparse grid as noise
points. Consequently, we observed many local maxima in the
measurement set since the superposition of image element
magnitudes at the clustering of UAV cluster targets on the
focal plane generated a wave peak, and the development of
a wave trough at a smaller number of UAV cluster targets
formed a wave trough.

B. THE RHM-δ -GLMB ALGORITHM
1) BASIC CONCEPTS OF LABEL MULTI-BERNOULLI (LMB)
FILTER
We used the regeneration probability r of a single target and
the information that the target obeys the state space distribu-
tion p(·) to illustrate the uncertainty of a target’s regeneration
in Bernoulli RFS. The Bernoulli RFS probability density
function was single, as shown below

π (X) =

{
1 − r X = 8

r · p(X) X = {X}
(15)

We also obtained the multi-Bernoulli RFS probability den-
sity function, as shown below:

π ({x1, x2, · · · , xn})

=

M∏
j=1

(1 − r (j)) ×

∑
1≤i1 ̸=···̸=in

n∏
j=1

r (ij)p(ij)(xj)

1 − r (ij)
(16)

The probability density was indicated as π = {(r (i), p(i))}Mi=1,
and the cardinality distribution of the multi-Bernoulli RFS
was presented as follows, disregarding the spatial distribution
in (16) above.

ρ (n) =

M∏
j=1

(1 − r (j)) ×

∑
1≤i1 ̸=···̸=in

n∏
j=1

r (ij)

1 − r (ij)
(17)

In a previous study, [13] extended the label to address the
problem of disordered items in a set of target states via the
conventional RFS theory-based multi-extended target track-
ing, x ∈ X .
Target states labeled RFS was exhibited as

X = {(x, ℓ)i, i = 1, 2, . . . , |X |} (18)

where x denotes the target state vector, ℓ ∈ L is the label
corresponding to the target, L denotes the label space, |x|
denotes the cardinality of the target state set, the label ℓ can
be represented by ℓ = (k, i), k denotes the time when the
target is newborn, and i indicates a different newborn target
at the moment. Fig. 3 illustrates the target’s label.

For the convenience of subsequent studies, several con-
cepts are given as follows:

The multiobjective index of the real-valued function h (·)
is defined as

[h(·)]x =

∏
x∈x

h(x) (19)

the generalized Kronecker δ function is defined as

δY (X ) =

{
1 X = Y
0 X ̸= Y

(20)

the inclusion function is defined as

1Y (X ) =

{
1 X ⊆ Y
0 otherwise

(21)
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FIGURE 2. Algorithm flow chart showing the grid-fast DBSCAN measurement partitioning.

FIGURE 3. Schematic showing the target label.

the inner product of the functions f (x) and g(x) is defined as

⟨f , g⟩ ≜ ∫ f (x)g(x)dx (22)

The label set of RFS X can be represented on the target
space X × L as L(X) = {L(x) : x ∈ X}, where L : X × L →

L is a map of L((x, ℓ)) = ℓ. When the target state set X’s
cardinality equaled the label set’s cardinality L(X) = {L(x) :

x ∈ X}, X was distinctly labeled, and the function indicated
discrete labels 1(X) = δ|X |(|L(X)|) = 1.
Since the parameter set represents the labeled multi-

Bernoulli RFSπ = {(r (ζ ), p(ζ )), ζ ∈ 9}, the probability
density function of the labeled multi-Bernoulli RFS in the
target space X × L can be described as

π ({(r1, ℓ1) , . . . , (rn, ℓn)})

= δn (|{ℓ1, . . . , ℓn}|)
∏
ζ∈9

(
1 − r (ζ )

)

×

n∏
j=1

1α(9)
(
ℓj
)
r
(
α−1(ℓj)

)
p
(
α−1(ℓj)

) (
xj
)

1 − r(α−1(ℓj))
(23)

For the convenience of subsequent studies, (23) was
also abbreviated as π = {(r (ζ ), p(ζ ))}ζ∈9 , and the LMB

probability density function corresponding to the parameter
set π = {(r (ℓ), p(ℓ))}ℓ∈L was expressed as

π (X) = 1(X)ω(L(X))pX (24)

where

ω (L) =

∏
i∈L

(1 − r (i))×
∏
i∈L

1L(ℓ)r (ℓ)

1 − r (ℓ)
(25)

p(x, ℓ) = p(ℓ)(x) (26)

2) RHM-δ-GLMB FILTER
The δ-GLMB filter is a unique form of the GLMB filter with
a special structure in the index space. The δ-GLMB filter was
derived as follows.

C = F(L) ×4 (27)

ω(c)(L) = ω(I ,ξ )(L) = ω(ℓ,ξ )δI (L) (28)

p(c) = p(I ,ξ ) = p(ξ) (29)

where 4 is the discrete space, ξ belongs to 4, and I is the set
of trajectory labels.

At the k moment, the probability density of δ-GLMB RFS
was obtained as follows:

π (X) = 1(X)
∑

(I ,ξ )∈F (L)×ξ
ω(I ,ξ )δI (L(X))

[
p(ξ )

]X
(30)

Its cardinality distribution was as follows:

ρ(n) =

∑
(I ,ξ )∈F (L)×4

∑
L∈F (L)

ω(I ,ξ )δI (L(X))

=

∑
(I ,ξ )∈F (L)×4

ω(I ,ξ ) (31)

Finally, we incorporated the RHM model xk = [ζ Tk , ς
T
k ]

T

into the description of the target motion state for δ-GLMB
filtering, denoting the target motion state vector as ζ Tk and
the target shape parameter as ςTk . This paper also imple-
mented the algorithm in Gaussian mixture form, using the
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Gauss distribution to approximate the target state distribution,
which can be denoted as N (xk ; rk ,Pk). Furthermore, we
used γ distribution to approximate the target volume mea-
surement rate distribution, which could be characterized as
GAM (γk ;αk , βk).

The spatial probability density function of the target was
also defined as

p (ξk) ≜ p (γk | z1:k) · p (xk | z1:k)

=GAM (γk ;αk , βk) · N (xk ; rk ,Pk)=GG (γk ; xk)
(32)

Then, we denoted the spatial probability density of the
target εk = {(αk , βk , rk ,Pk)} to facilitate the study.
1. Prediction steps:
Since the previous time’s posterior probability density was

considered to be LMB RFS, its parameter set may be com-
piled as {(r (ℓ), p(ℓ))}ℓ∈L. Assuming the multi-extended target
model to be LMB RFS, the parameter set was designated as
{(r (ℓ)B , p(ℓ)B )}ℓ∈B.
Consequently, while we derived the predictive density of

the multi-expansion target as LMB RFS L+ = B ∪ L, (B ∪

L = 8), the parameter set was obtained as follows:

π+ =

{(
r (ℓ)+,s, p

(ℓ)
+,s

)}
ℓ∈L

∪

{(
r (ℓ)B , p(ℓ)B

)}
ℓ∈B

=

{(
r (ℓ)+ , p(ℓ)+

)}
ℓ∈L+

(33)

where

r (ℓ)
+,S = ηS (ℓ)r (ℓ) (34)

p(ℓ)+,s =
⟨ps(·, ℓ)f (x | ·, ℓ), p(·, ℓ)⟩

ηs(ℓ)
(35)

ηs(ℓ) = ⟨ps(·, ℓ), p(·, ℓ)⟩ (36)

In the above equations, ps(·, ℓ) is the survival probability of
the trajectory and f (x | ·, ℓ) is theMarkov transfer probability
of a single target.

Assuming that the parameter set of the posterior probabil-
ity density of the extended target at the previous moment is
τk+1 = {(αk+1, βk+1, rk+1,Pk+1)}, the probability density
parameters of the prediction space can be obtained according
to the γ distribution and Kalman filtering-related theory as

αk+1|k =
αk

µ
(37)

βk+1|k =
βk

µ
(38)

rk+1|k =
(
Fk+1|k ⊗ Id

)
rk (39)

Pk+1|k = Fk+1|k Pk|k FTk+1|k + Qk+1|k (40)

2. Update step.
Because the elliptic RHM-based measurement model is

a high-dimensional nonlinear pseudo-measurement model,
the target state must be estimated utilizing linearization.
Although the EKF algorithm is the standard linearization
method, it is insufficient for solving the elliptic RHM-based

measurement model since it includes the goal state, the scal-
ing factor, and measurement noise. Furthermore, this algo-
rithm does not need to calculate the measurement Jacobi
matrix. It rather uses the UT transform to estimate the Gauss
term parameters via Sigma sampling points while retaining
the Kalman filtering procedure.

Based on the above considerations, the objective xk was
expanded into an augmented matrix xaug = [xTk , sk , v

T
k ]
T ,

with random variables sk ∼ N (µs, σ 2
s
/
4), where the corre-

sponding means and variances are

maug =

[
mT
k+1|k , µs,0

T
2

]T
(41)

Paug = diag
[
Pk+1|k , σ

2
s ,Rk

]
(42)

Consequently, the UT transform of the augmented matrix
generates Sigma sampling points:

χ0 = maug

χi = maug +

√
(n+ λ)Paug i = 1, 2, . . . , d

χi = maug −

√
(n+ λ)Paug i = d + 1, . . . , 2d

(43)

The weights of each sampling point are as follows:
ω
(m)
0 = λ/(λ+ n)

ω
(c)
i = λ/(λ+ n) +1 − α2 + β

ω
(m)
i = 0.5/(λ+ n), i = 1, 2, . . . , 2d

(44)

where the parameters are taken as λ = α2(n + κ) − n, α =

0.01, κ = 0, β = 2.
We then solved the pseudo-measurements using the Sigma

sample point set and updated them to obtain the mean z′′ of
the pseudo-measurements, the covariance Snz and the covari-
ance Pxz of the augmentation matrix. The update process is
as follows:

ẑnz =

n∑
i=1

ω
(m)
i zi =

n∑
i=1

ω
(m)
i h (χi) (45)

Snz =

n∑
i=1

ω
(c)
i

(
zi − ẑnz

) (
zi − ẑnz

)T (46)

Pxz =

n∑
i=1

ω
(c)
i

(
χi −maug

k

) (
zi − ẑnz

)T (47)

maug
k = maug

k + Pxz (Snz)−1 (0 − ẑnz
)

(48)

Ca
k = Ca

k − Pxz (Snz)−1 Snz
(
Pxz (Snz)−1

)T
(49)

Finally, we can obtain the updated set of parameters τk+1 =

{(αk+1, βk+1, rk+1,Pk+1)} from the above equation, where

m(j),W
k+1 = maug

k (1 : n) (50)

P(j),W
k+1 = Ca

k (1 : n) (51)

α
(j),W
k+1 = α

(j)
k+1|k + |W | (52)

β
(j),W
k+1 = β

(j)
k+1|k + 1 (53)
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FIGURE 4. Algorithm flow chart of the GGM-RHM-δ-GLMB.

The quantitative likelihood of the clustered set W is.

L(j),Wk =

∏
z∈W

N
(
0; ẑnz

)
(54)

L(j),γk =
1

|W |!

0
(
α
(j),W
k|k

)
β
α
(j)
k|k−1

k|k−1

0
(
α
(j)
k|k−1

) (
β
(j),W
k|k

)α(j),Wk|k

(55)

The updated LMB RFS can also be expressed as π (· | z) =

{(r (ℓ), p(ℓ)(·))}ℓ∈L+
, where

r (ℓ) =

∑
(I+,θ)∈F(L+)

|Ik |+1∑
i=1

∑
u(Zk )∈Pi(Zk )
θ∈2(u(Zk ))

w(Ik ,θ)u(Zk ) (
Ik) 1Ik (ℓ)

(56)

p(ℓ)(x) =

∑
(I+,θ)∈F (L+)

|Ik |+1∑
i=1

∑
u(zk )∈Pi(zk )
θ∈2(u(zk ))

w
(Ik ,θ)

u(zk )

× (Ik )1Ik (ℓ)p
(Ik ,θ)(x, ℓ) (57)

p(Ik ,θ )(xk , ℓ |u(zk ) )

=
p(Ik ,θ )(xk , ℓ)ψu(zk )(xk , ℓ; θ )

η
(Ik ,θ )
u(zk )

(ℓ)
(58)

η(Ik ,θ )
u(zk )

(ℓ) = p(·, ℓ), ψu(zk )(·, ℓ; θ ) (59)

ψu(zk )(x, ℓ; θ)

=


pD(x, ℓ)g

(
uθ (ℓ)(zk ) |x , ℓ

)
[κ (·)]uθ (ℓ)(zk )

θ (ℓ) > 0

1 − pD(x, ℓ) θ (ℓ) = 0
(60)

g (• |x , ℓ) = L(j),Wk L(j),γk (61)

where pD(x, ℓ) is the detection probability of the trajectory,
κ (•) is the clutter density obeying the Poisson distribution,
and 2I+ is the mapping from the measurement space to the
state space: I+ → {0, 1, · · · , |Z |}. The mapping is notably
independent and non-repetitive.

3) ALGORITHM FLOW
Fig. 4 depicts the flow chart of the GGM-RHM-δ-GLMB
algorithm. Table 2 displays the detailed implementation steps
of the algorithm.

IV. SIMULATION
A. EVALUATION METRICS
This paper used the Optimal Sub-Pattern Assignment (OSPA)
to evaluate the algorithm’s performance. It can also more
comprehensively determine the distance relationship between
the estimated and real target sets: the smaller the OSPA, the
better the algorithm can track the target.

First, we define theOSPAdistance between two non-empty
finite setsX = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym}

as [21], (62), as shown at the bottom of the page, wherem and
n are the cardinalities of the finite sets X and Y , respectively,
c and p are the truncation and order parameters, respectively,

d̄ (c)p (X ,Y ) =


0 m = n = 0(
1
n

(
min
π∈5n

n∑
i=1

d (c)(xi, yπ (i))p + cp(n− m)

))1/p

m ≤ n

d̄ (c)p (Y ,X ) m > n

(62)
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with smaller c indicating smaller penalties for estimating
errors in the number of targets and p generally taken as 2,
and the distance between the state x and y is denoted as
d (c)(x, y) = min(c, d(x, y)).

B. ANALYSIS OF THE EFFECT OF DIFFERENT
MEASUREMEN DIVISION METHODS
Based on image element magnitude information, we
subsequently compared the distance-based measurement
technique with this paper’s algorithm to validate further the
efficiency of the proposed fast DBSCAN measurement divi-
sion. The threshold value of the distance-based measurement
was 3 pixels.

Furthermore, based on the UAV cluster simulation image
infrared sequence, the simulation involved measurements at
50 s, 100 s, and 150 s. While the image size of the UAV
cluster simulation image infrared sequence was 256 × 256
pixels, there were 25 UAVs altogether that could be split into
six UAV subgroups throughout the flight.

Fig. 5 is on the previous page. Fig. 5(a)–(c) exhibit the UAV
cluster simulation IR image sequences, Fig. 5(d)–(f) demon-
strate the measurement division results based on distance
division, and the three images in Fig. 5(g)–(i) show the mea-
surement division results based on the grid-fast DBSCAN
algorithm. The red point in the figure is the mass center of the
UAV cluster after clustering, the yellow × is the real position
of the UAV, and the blue ellipse is the extent of the UAV
cluster target measurement.

Fig. 5 also depicts the algorithm’s efficacy on focus plane
quantitative segmentation. The reason for the poor quantita-
tive segmentation results in Fig. 5(d)–(f) is dictated by the
threshold value in the distance-based segmentation algorithm.
As for the threshold, its value is too high to cause difficulty
in capturing the UAV cluster clustering process, making the
threshold value too low to produce a significant number of
inaccurate clusters and causing redundant clusters for the
infrared images of UAV clusters, where the targets are close
to each other. Consequently, relying solely on the division of
threshold values to achieve clustering for the UAV cluster
target on the infrared image plane cannot fulfill the target
tracking command.

This paper’s proposed algorithm thus fully exploits the
magnitude of the image elements in the UAV cluster infrared
image sequences. It also determines the position of most
targets during the initial clustering of the image plane mea-
surement data via the grid-based clustering algorithm and
clusters using the fast DBSCAN algorithm to achieve the
UAV cluster targets. The experimental results demonstrate
the algorithm’s capabilities in the infrared scenario, providing
reliable information for future UAV cluster target tracking.

C. PARAMETER SETTINGS
Given that the tracking time for the UAV cluster target is
150 s, the sampling time is 1 s, and the six UAV subgroups
are all moving at a uniform speed in a straight line. Fig. 6
describes the motion trajectories of the six UAV cluster

TABLE 2. The GGM-RHM-δ-GLMB algorithm Implementation Steps.

subgroups. Table 3 shows the simulated set parameters related
to the centroid of the UAV cluster on the next page.

The target detection probability was 0.99, and the target
survival probability was 0.98, with the clutter obeying a
Poisson distribution with mean λ = 15 in the image plane,
the scaling factor sk ∼ N (0.6, 0.07) in the RHM model, the
gamma distribution parameter α = 10, β = 2, and the target
state, expressed as x = [x, y, vx , vy, a, b, ϕ]T . Consequently,
state transfer and process noise matrixes were obtained as
follows:

F =



1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,
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FIGURE 5. Clustering effects of different measurement division methods: (a)–(c) the UAV cluster simulation IR image sequences; (d)–(f) results based on
distance division; (g)–(i) results based on the grid-fast DBSCAN.

Q =



0.01 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(63)

Additionally, the target regeneration model was δ-GLMB
RFS with distribution [23], [24]

π0 = {(r (i)0 , p
(i)
0 ), ℓ(i)0 }

6
i=1 (64)

where

r (1)0 = r (2)0 = 0.02 (65)

r (3)0 = r (4)0 = r (5)0 = r (6)0 = 0.03 (66)

p(i)0 (x) = N
(
x;m(i)

γ ,Pγ
)

(67)

Pγ = diag([5 5 5 5]) (68)

Table 4 displays the target distribution values on the top of
the page.
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TABLE 3. Parameter settings related to the centroid of the UAV cluster.

TABLE 4. The target distribution values.

TABLE 5. Statistical OSPA distance characteristics for the 0-150 s IR image sequences.

D. ANALYSIS OF THE EFFECT UNDER DIFFERENT
TRACKING ALGORITHMS FOR UAV CLUSTER TARGET
TRACKING
We chose the GGM-RHM-PHD [25] and GMM-ET-
PHD [26] algorithms to validate the effectiveness of the
GGM-RHM-δ-GLMB algorithm developed in the UAV clus-
ter target tracking. On the next page, Fig. 7 presents the
simulation results, including the infrared pictures. The fig-
ure’s comparative effects of the GMM-ET-PHD and GMM-
RHM-PHD algorithms represent the obvious advantages of
integrating the RHM model to establish the measurement
model. Although the centroid positions of the UAV subclus-
ters estimated by both algorithms were close to the center of

the pixel clusters on the real focal-plane UAV subclusters,
some discrepancies existed between the estimation results of
the two figures. We also observed that the GMM-RHM-PHD
and GGM-RHM-δ-GLMB algorithms depicted in this paper
more accurately characterized the UAV cluster target state.
The fundamental cause of this occurrence is the improved
precision of the measurement model developed using the
RHM model.

Simultaneously, the performance of this paper’s algo-
rithm exceeded the GMM-RHM-PHD algorithm, primarily
because the GMM-RHM-PHD algorithm used a random
matrix model in the measurement division process and the
method of updating the target motion state stimulated the
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FIGURE 6. UAV cluster motion trajectory at 50 s, 100 s and 150 s.

accumulation of measurement errors, affecting the estimation
of the UAV cluster target state. Since the suggested algorithm

FIGURE 7. Tracking results under different algorithms at 50 s, 100 s and
150 s.

used the UKF algorithm instead to solve the measurement
Jacobi matrix, the Gauss term parameters were calculated
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utilizing the Sigma sampling points, preserving the Kalman
filtering process and enhancing the algorithm’s target state
estimation performance.

Afterward, we assessed the three algorithms via 100Monte
Carlo Simulations to evaluate their performance further.
On page 11–12, Figs. 8–10 display the target tracking results
of the three algorithms for the simulated UAV cluster IR
image sequences within 0–150 s. We observed from the
figures that although the three systems could track six UAV
subgroups, disparities existed in their tracking effects, with
this paper’s algorithm providing an excellent tracking per-
formance. Furthermore, while the tracking trajectory had far
more overlap with the real trajectory, it had the least overlap
with the fake trajectory. In contrast, the trajectory overlap of
the other two algorithms diminished compared to this paper’s
algorithm, mainly because the GMM-ET-PHD algorithm had
more spurious trajectories in the tracking process and, thus,
a poor tracking effect.

On page 14. Fig. 11 illustrates the OSPA curves of the three
algorithms within 0–150 s, Fig. 12 highlights the tracking
cardinality estimation curves of the three algorithms within
0–150 s, and Table 5 displays the related OSPA distance
statistical properties in 0–150 s. Fig. 11 verified the track-
ing effectiveness of the three algorithms in Figs.8–10 and
depicted the performance of this paper’s algorithm for UAV
cluster target tracking. Interestingly, the OSPA distance fluc-
tuation in this paper’s algorithm was lower than in the other
two algorithms because the proposed algorithm exploited
RHM for measurement modeling after applying the fast grid
DBSCAN algorithm for measurement division. It also added
a corresponding label to the target state, thus avoiding error
accumulations in the estimation process.

Although the GMM-RHM-PHD algorithm employed the
RHM model for quantitative modeling, its PHD filtering
algorithm only obtained the target’s probability density at this
moment in tracking the extended target rather than forming a
continuous tracking trajectory of the target. In this paper, the
δ-GLMB algorithm in the framework of the LMB algorithm
could thus properly estimate the goal state and provide a con-
tinuous tracking trajectory with minimal tracking error. Even
though the GMM-ET-PHD algorithm could track extended
targets, improving the target measurement division and self-
adaptability in the GMM-ET-PHD algorithm, which has high
operational complexity and less accurate estimation of the
number of targets when compared with the algorithm in this
paper and the GMM-RHM-PHD algorithm, was still needed.
Meanwhile, when coupled with the statistical OSPA distance
characteristics of the three different algorithms illustrated in
Table 5, the adaptability and stability of this paper’s suggested
method were compared to other algorithms.

Fig. 12 suggests that although the two compared algo-
rithms largely deviated from the target estimations, causing
significantly larger fluctuations in the GMM-ET-PHD algo-
rithm within 0–10 s, all three algorithms fluctuated within
70–85 s, making this paper’s algorithm experience the small-
est fluctuation range. When estimating the measurement of

FIGURE 8. Effects of the three algorithms on UAV cluster target tracking
within 0–50 s.

other targets in the region of the nascent target, an error gen-
erally triggers a bias in estimating the state of the target. Since
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FIGURE 9. Effects of the three algorithms on UAV cluster target tracking
within 50–100 s.

FIGURE 10. Effects of the three algorithms on UAV cluster target tracking
within 100–150 s.

VOLUME 11, 2023 37265



Y. Wang et al.: RHM-δ-GLMB Tracking Algorithm on the Focal Plane for UAV Cluster Targets

FIGURE 11. The three algorithms’ OSPA curves within 0–50 s, 50—100 s,
100-150 s.

FIGURE 12. The three algorithms for tracking cardinality estimation
0–50 s, 50—100 s, 100-150 s.
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FIGURE 13. Running time of the three algorithms.

the clutter can be spread in the neighborhood of the newborn
target, the algorithmmistakenly perceives it as a target. It then
incorrectly distributes the weight of the Bernoulli component,
resulting in a bad final tracking effect.

The running time comparison curves of the three algo-
rithms are given in Fig. 13 on page 15. Fig. 13 reveals that
this paper’s algorithm had aminimum running time. The three
algorithms’ design processes were mostly responsible for this
scenario. Therefore, the algorithm proposed in this paper
was optimized throughout the design phase via the δ-GLMB
algorithm, providing highly parallel processing performances
by introducing the label space. Notably, it did not increase
the algorithm’s running duration since the GMM-ET-PHD
algorithm solved the probability density of the target and per-
formed data association to maintain the tracking trajectory’s
continuity.

V. CONCLUSION
This paper proposes an RHM-δ-GLMB-based algorithm for
UAV cluster tracking on the focal plane that embeds the RHM
model into the δ-GLMB filter, for the case of a single trans-
mitter and two receivers, specifies the degree of target expan-
sion with the RHM model, fully utilizes the merits of the
δ-GLMB filter in handling extended multi-target track-
ing, and ultimately implements the proposed algorithm in
the form of the Gamma-Gaussian mixture to increase the
accuracy of the algorithm,. Since this paper’s simulation
results demonstrate that the model and algorithm had cer-
tain improvements over the previous models and algorithms,
some conclusions could be drawn. First, the simulation com-
pared the algorithm of this research with distance-based mea-
surement division. This paper’s algorithm could employ the
imaging characteristics of the focal plane to eliminate false
and redundant clustering triggered by selecting the threshold
value in the distance-based division algorithm, demonstrating
the advantages of the outlook in the infrared scenario. There-
fore, we simulated and analyzed the simulation results of the
three tracking algorithms on the IR image sequences of the
UAV cluster targets within 0–150 s in a single simulation.

According to the focal plane tracking results, this algorithm
consistently tracked UAV clusters on the focal plane, how-
ever, the other two algorithms had considerable discrepan-
cies in UAV cluster centroid position and shape estimation.
Finally, we used 100 Monte Carlo experiments to prove the
effectiveness of this paper’s algorithm for UAV cluster IR
image sequences, after which the advantages of this paper’s
algorithm in the target centroid motion and extended states
were demonstrated by comparing the OSPA distance, cardi-
nality estimation, and running time of this paper’s algorithm
to the GMM-RHM-PHD and GMM-ET-PHD algorithms.

In practical scenarios, a UAV cluster’s movement may
take on various complicated motions, including splitting and
merging. In the following study, we will consider the impact
of the complex movement of the UAV cluster on the effect
of the tracking algorithm. Additionally, when the quantity of
UAVs rises and the density of the cluster increases, whether
the algorithm can achieve stable tracking of the target is also
the focus of subsequent research. Meanwhile, we anticipate
that the algorithm will be validated for more complicated
scenarios and the real measured data in future work.

APPENDIX
Based on Sections II-A and II-B, the equation of the ellipse
where any measurement source is located in

(z− rk)T A−1
k (z− rk)− s2k = 0 (A1)

Let

g
(
xk , zlk , s

l
k

)
≜
(
zlk − rk

)T
A−1
k

(
zlk − rk

)
− slk (A2)

Substituting (1) in this equation yields

g
(
xk , zlk , s

l
k

)
= g(xk , ylk + vlk , s

l
k )

= g(xk , ylk , s
l
k )︸ ︷︷ ︸

=0

+2
(
ylk − rk

)T
A−1
k vlk + vlkA

−1
k vlk

(A3)

Then, by separating the non-zero and zero-containing
terms, we can obtain that

0 = g
(
xk , zlk , s

l
k

)
− 2

(
ylk − rk

)T
A−1
k vlk − vlkA

−1
k vlk .

≜ h
(
xk , zlk , s

l
k , v

l
k

)
(A4)
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